• Vibes don’t ship, Retool does Icon
    Vibes don’t ship, Retool does

    Start from a prompt and build production-ready apps on your data—with security, permissions, and compliance built in.

    Vibe coding tools create cool demos, but Retool helps you build software your company can actually use. Generate internal apps that connect directly to your data—deployed in your cloud with enterprise security from day one. Build dashboards, admin panels, and workflows with granular permissions already in place. Stop prototyping and ship on a platform that actually passes security review.
    Build apps that ship
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 1
    DeepSeek-V3

    DeepSeek-V3

    Powerful AI language model (MoE) optimized for efficiency/performance

    DeepSeek-V3 is a robust Mixture-of-Experts (MoE) language model developed by DeepSeek, featuring a total of 671 billion parameters, with 37 billion activated per token. It employs Multi-head Latent Attention (MLA) and the DeepSeekMoE architecture to enhance computational efficiency. The model introduces an auxiliary-loss-free load balancing strategy and a multi-token prediction training objective to boost performance. Trained on 14.8 trillion diverse, high-quality tokens, DeepSeek-V3...
    Downloads: 64 This Week
    Last Update:
    See Project
  • 2
    H2O LLM Studio

    H2O LLM Studio

    Framework and no-code GUI for fine-tuning LLMs

    Welcome to H2O LLM Studio, a framework and no-code GUI designed for fine-tuning state-of-the-art large language models (LLMs). You can also use H2O LLM Studio with the command line interface (CLI) and specify the configuration file that contains all the experiment parameters. To finetune using H2O LLM Studio with CLI, activate the pipenv environment by running make shell. With H2O LLM Studio, training your large language model is easy and intuitive. First, upload your dataset and then start training your model. Start by creating an experiment. You can then monitor and manage your experiment, compare experiments, or push the model to Hugging Face to share it with the community.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    dm_control

    dm_control

    DeepMind's software stack for physics-based simulation

    DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo. DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo physics. The MuJoCo Python bindings support three different OpenGL rendering backends: EGL (headless, hardware-accelerated), GLFW (windowed, hardware-accelerated), and OSMesa (purely software-based). At least one of these three backends must be available in order render through dm_control. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    ManiSkill

    ManiSkill

    SAPIEN Manipulation Skill Framework

    ManiSkill is a benchmark platform for training and evaluating reinforcement learning agents on dexterous manipulation tasks using physics-based simulations. Developed by Hao Su Lab, it focuses on robotic manipulation with diverse, high-quality 3D tasks designed to challenge perception, control, and planning in robotics. ManiSkill provides both low-level control and visual observation spaces for realistic learning scenarios.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    BindsNET

    BindsNET

    Simulation of spiking neural networks (SNNs) using PyTorch

    A Python package used for simulating spiking neural networks (SNNs) on CPUs or GPUs using PyTorch Tensor functionality. BindsNET is a spiking neural network simulation library geared towards the development of biologically inspired algorithms for machine learning. This package is used as part of ongoing research on applying SNNs to machine learning (ML) and reinforcement learning (RL) problems in the Biologically Inspired Neural & Dynamical Systems (BINDS) lab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Brax

    Brax

    Massively parallel rigidbody physics simulation

    Brax is a fast and fully differentiable physics engine for large-scale rigid body simulations, built on JAX. It is designed for research in reinforcement learning and robotics, enabling efficient simulations and gradient-based optimization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Habitat-Lab

    Habitat-Lab

    A modular high-level library to train embodied AI agents

    ...Providing algorithms for single and multi-agent training (via imitation or reinforcement learning, or no learning at all as in SensePlanAct pipelines), as well as tools to benchmark their performance on the defined tasks using standard metrics.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Ray

    Ray

    A unified framework for scalable computing

    ...Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. Find the best model and reduce training costs by using the latest optimization algorithms. Deploy your machine learning models at scale with Ray Serve, a Python-first and framework agnostic model serving framework. Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO. Easily build out scalable, distributed systems in Python with simple and composable primitives in Ray Core.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Godot RL Agents

    Godot RL Agents

    An Open Source package that allows video game creators

    godot_rl_agents is a reinforcement learning integration for the Godot game engine. It allows AI agents to learn how to interact with and play Godot-based games using RL algorithms. The toolkit bridges Godot with Python-based RL libraries like Stable-Baselines3, making it possible to create complex and visually rich RL environments natively in Godot.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    MedicalGPT

    MedicalGPT

    MedicalGPT: Training Your Own Medical GPT Model with ChatGPT Training

    MedicalGPT training medical GPT model with ChatGPT training pipeline, implementation of Pretraining, Supervised Finetuning, Reward Modeling and Reinforcement Learning. MedicalGPT trains large medical models, including secondary pre-training, supervised fine-tuning, reward modeling, and reinforcement learning training.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Transformer Reinforcement Learning X

    Transformer Reinforcement Learning X

    A repo for distributed training of language models with Reinforcement

    trlX is a distributed training framework designed from the ground up to focus on fine-tuning large language models with reinforcement learning using either a provided reward function or a reward-labeled dataset. Training support for Hugging Face models is provided by Accelerate-backed trainers, allowing users to fine-tune causal and T5-based language models of up to 20B parameters, such as facebook/opt-6.7b, EleutherAI/gpt-neox-20b, and google/flan-t5-xxl. For models beyond 20B parameters, trlX provides NVIDIA NeMo-backed trainers that leverage efficient parallelism techniques to scale effectively.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    CORL

    CORL

    High-quality single-file implementations of SOTA Offline

    CORL (Collection of Reinforcement Learning Environments for Control Tasks) is a modular and extensible set of high-quality reinforcement learning environments focused on continuous control and robotics. It aims to offer standardized environments suitable for benchmarking state-of-the-art RL algorithms in control tasks, including physics-based simulations and custom-designed scenarios.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    CleanRL

    CleanRL

    High-quality single file implementation of Deep Reinforcement Learning

    CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation with research-friendly features. The implementation is clean and simple, yet we can scale it to run thousands of experiments using AWS Batch. CleanRL is not a modular library and therefore it is not meant to be imported. At the cost of duplicate code, we make all implementation details of a DRL algorithm variant easy to understand, so CleanRL comes with its own pros and cons. You should consider using CleanRL if you want to 1) understand all implementation details of an algorithm's variant or 2) prototype advanced features that other modular DRL libraries do not support (CleanRL has minimal lines of code so it gives you great debugging experience and you don't have to do a lot of subclassing like sometimes in modular DRL libraries).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    ...Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no assumptions about the structure of your agent, and is compatible with any numerical computation library, such as TensorFlow or Theano. The gym library is a collection of test problems — environments — that you can use to work out your reinforcement learning algorithms. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    ...For those who are interested in knowing what this book covers in general, I’d describe it as a comprehensive resource on the fundamental concepts of machine learning and deep learning. The first half of the book introduces readers to machine learning using scikit-learn, the defacto approach for working with tabular datasets. Then, the second half of this book focuses on deep learning, including applications to natural language processing and computer vision.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Trax

    Trax

    Deep learning with clear code and speed

    Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively used and maintained in the Google Brain team. Run a pre-trained Transformer, create a translator in a few lines of code. Features and resources, API docs, where to talk to us, how to open an issue and more. Walkthrough, how Trax works, how to make new models and train on your own data. Trax includes basic models (like ResNet, LSTM, Transformer) and RL algorithms (like REINFORCE, A2C, PPO). It...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    DouZero

    DouZero

    [ICML 2021] DouZero: Mastering DouDizhu

    DouZero is a reinforcement learning-based AI for playing DouDizhu, a popular Chinese card game. It focuses on perfecting AI strategies for competitive play using value-based deep RL techniques.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    ReinventCommunity

    ReinventCommunity

    Jupyter Notebook tutorials for REINVENT 3.2

    This repository is a collection of useful jupyter notebooks, code snippets and example JSON files illustrating the use of Reinvent 3.2.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Hands-on Unsupervised Learning

    Hands-on Unsupervised Learning

    Code for Hands-on Unsupervised Learning Using Python (O'Reilly Media)

    ...Unsupervised learning can be applied to unlabeled datasets to discover meaningful patterns buried deep in the data, patterns that may be near impossible for humans to uncover. Author Ankur Patel provides practical knowledge on how to apply unsupervised learning using two simple, production-ready Python frameworks - scikit-learn and TensorFlow. With the hands-on examples and code provided, you will identify difficult-to-find patterns in data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    gym-pybullet-drones

    gym-pybullet-drones

    PyBullet Gymnasium environments for multi-agent reinforcement

    Gym-PyBullet-Drones is an open-source Gym-compatible environment for training and evaluating reinforcement learning agents on drone control and swarm robotics tasks. It leverages the PyBullet physics engine to simulate quadrotors and provides a platform for studying control, navigation, and coordination of single and multiple drones in 3D space.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    RL Baselines Zoo

    RL Baselines Zoo

    A collection of 100+ pre-trained RL agents using Stable Baselines

    RL Baselines Zoo is a comprehensive training framework and collection of pre-trained RL agents using Stable-Baselines3. It offers tools for training, tuning, and evaluating RL algorithms across many standard environments, including MuJoCo, Atari, and robotics simulations. Designed for reproducible RL research and benchmarking, it includes scripts, hyperparameter presets, and best practices for training robust agents.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    ChainerRL

    ChainerRL

    ChainerRL is a deep reinforcement learning library

    ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms in Python using Chainer, a flexible deep learning framework. PFRL is the PyTorch analog of ChainerRL. ChainerRL has a set of accompanying visualization tools in order to aid developers' ability to understand and debug their RL agents. With this visualization tool, the behavior of ChainerRL agents can be easily inspected from a browser UI. Environments that support the subset of OpenAI Gym's interface (reset and step methods) can be used.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    ...Coach supports many state-of-the-art reinforcement learning algorithms, which are separated into three main classes - value optimization, policy optimization, and imitation learning. Coach supports a large number of environments which can be solved using reinforcement learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Rainbow

    Rainbow

    Rainbow: Combining Improvements in Deep Reinforcement Learning

    Combining improvements in deep reinforcement learning. Results and pretrained models can be found in the releases. Data-efficient Rainbow can be run using several options (note that the "unbounded" memory is implemented here in practice by manually setting the memory capacity to be the same as the maximum number of timesteps).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Easy-TensorFlow

    Easy-TensorFlow

    Simple and comprehensive tutorials in TensorFlow

    ...In addition to the aforementioned points, the large community of TensorFlow enriches the developers with the answer to almost all the questions one may encounter. Furthermore, since most of the developers are using TensorFlow for code development, having hands-on on TensorFlow is a necessity these days. Tensorboard is a powerful visualization suite that is developed to track both the network topology and performance, making debugging even simpler.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next