Showing 44 open source projects for "clustering algorithm"

View related business solutions
  • AI-powered conversation intelligence software Icon
    AI-powered conversation intelligence software

    Unlock call analytics that provide actionable insights with our call tracking software, empowering you to identify what's working and what's not.

    Every customer interaction is vital to your business success and revenue growth. With Jiminny’s AI-powered conversation intelligence software, we take recording, capturing, and meticulous analysis of call recordings to the next level. Unlock call analytics that provide actionable insights with our call tracking software, empowering you to identify what's working and what's not. Seamlessly support your biggest objectives across the entire business landscape with our innovative call tracking system.
    Learn More
  • Skillfully - The future of skills based hiring Icon
    Skillfully - The future of skills based hiring

    Realistic Workplace Simulations that Show Applicant Skills in Action

    Skillfully transforms hiring through AI-powered skill simulations that show you how candidates actually perform before you hire them. Our platform helps companies cut through AI-generated resumes and rehearsed interviews by validating real capabilities in action. Through dynamic job specific simulations and skill-based assessments, companies like Bloomberg and McKinsey have cut screening time by 50% while dramatically improving hire quality.
    Learn More
  • 1
    Clustering.jl

    Clustering.jl

    A Julia package for data clustering

    Methods for data clustering and evaluation of clustering quality.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    HDBSCAN

    HDBSCAN

    A high performance implementation of HDBSCAN clustering

    HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates the result to find a clustering that gives the best stability over epsilon. This allows HDBSCAN to find clusters of varying densities (unlike DBSCAN), and be more robust to parameter selection. In practice this means that HDBSCAN returns a good clustering straight away with little or no parameter tuning -- and the primary parameter, minimum cluster size, is intuitive and easy to select. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    sktime

    sktime

    A unified framework for machine learning with time series

    ...It features dedicated time series algorithms and tools for composite model building such as pipelining, ensembling, tuning, and reduction, empowering users to apply an algorithm designed for one task to another.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Alink

    Alink

    Alink is the Machine Learning algorithm platform based on Flink

    Alink is Alibaba’s scalable machine learning algorithm platform built on Apache Flink, designed for batch and stream data processing. It provides a wide variety of ready-to-use ML algorithms for tasks like classification, regression, clustering, recommendation, and more. Written in Java and Scala, Alink is suitable for enterprise-grade big data applications where performance and scalability are crucial.
    Downloads: 2 This Week
    Last Update:
    See Project
  • HOA Software Icon
    HOA Software

    Smarter Community Management Starts Here

    Simplify HOA management with software that handles everything from financials to communication.
    Learn More
  • 5
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    homemade-machine-learning is a repository by Oleksii Trekhleb containing Python implementations of classic machine-learning algorithms done “from scratch”, meaning you don’t rely heavily on high-level libraries but instead write the logic yourself to deepen understanding. Each algorithm is accompanied by mathematical explanations, visualizations (often via Jupyter notebooks), and interactive demos so you can tweak parameters, data, and observe outcomes in real time. The purpose is pedagogical: you’ll see linear regression, logistic regression, k-means clustering, neural nets, decision trees, etc., built in Python using fundamentals like NumPy and Matplotlib, not hidden behind API calls. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    ML for Beginners

    ML for Beginners

    12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all

    ML-For-Beginners is a structured, project-driven curriculum that teaches foundational machine learning concepts with approachable math and lots of code. Organized as a multi-week course, it mixes short lectures with labs in notebooks so learners practice regression, classification, clustering, and recommendation techniques on real datasets. Each lesson aims to connect the algorithm to a relatable scenario, reinforcing intuition before diving into parameters, metrics, and trade-offs. The repository includes quizzes, solutions, and instructor materials to make the content usable in classrooms or self-study. It emphasizes ethical considerations and model evaluation—accuracy is not the only metric—so students learn to validate and communicate results responsibly. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Smile

    Smile

    Statistical machine intelligence and learning engine

    Smile is a fast and comprehensive machine learning engine. With advanced data structures and algorithms, Smile delivers the state-of-art performance. Compared to this third-party benchmark, Smile outperforms R, Python, Spark, H2O, xgboost significantly. Smile is a couple of times faster than the closest competitor. The memory usage is also very efficient. If we can train advanced machine learning models on a PC, why buy a cluster? Write applications quickly in Java, Scala, or any JVM...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8

    AngClust

    AngClust: Angle-based feature clustering for time series

    .... * We defined three indicators to identify significant clusters: (i) the fluctuation degree of expression levels, (ii) homogeneity, and (iii) the degree of clustering while the clusters are functionally significant. * The clustering outcome of our algorithm (AngClust) is better than the currently most popular STEM algorithm. * AngClust can be used to analyze any short time series gene expression profiles.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9

    MScDB

    A Mass Spectrometry Centric Protein Sequence Database for Proteomics

    ...The core modules of MScDB are an in-silico proteolytic digest and a peptide centric clustering algorithm that groups protein sequences that are indistinguishable by mass spectrometry.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Lightspeed golf course management software Icon
    Lightspeed golf course management software

    Lightspeed Golf is all-in-one golf course management software to help courses simplify operations, drive revenue and deliver amazing golf experiences.

    From tee sheet management, point of sale and payment processing to marketing, automation, reporting and more—Lightspeed is built for the pro shop, restaurant, back office, beverage cart and beyond.
    Learn More
  • 10
    DeepCluster

    DeepCluster

    Deep Clustering for Unsupervised Learning of Visual Features

    DeepCluster is a classic self-supervised clustering-based representation learning algorithm that iteratively groups image features and uses the cluster assignments as pseudo-labels to train the network. In each round, features produced by the network are clustered (e.g. k-means), and the cluster IDs become supervision targets in the next epoch, encouraging the model to refine its representation to better separate semantic groups.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Machine Learning Octave

    Machine Learning Octave

    MatLab/Octave examples of popular machine learning algorithms

    This repository contains MATLAB / Octave implementations of popular machine learning algorithms, along with explanatory code and mathematical derivations, intended as educational material rather than production code. Implementations of supervised learning algorithms (linear regression, logistic regression, neural nets). The author’s goal is to help users understand how each algorithm works “from scratch,” avoiding black-box library calls. Code written so as to expose and comment on mathematical steps. The repository includes clustering, regression, classification, neural networks, anomaly detection, and other standard ML topics. Does not rely heavily on specialized toolboxes or library shortcuts.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 12

    weka-MTreeClusterer

    Flat clustering algorithm based on MTrees implemented for weka.

    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Clustering by Shared Subspaces

    Clustering by Shared Subspaces

    Grouping Points by Shared Subspaces for Effective Subspace Clustering

    These functions implement a subspace clustering algorithm, proposed by Ye Zhu, Kai Ming Ting, and Mark J. Carman: "Grouping Points by Shared Subspaces for Effective Subspace Clustering", Published in Pattern Recognition Journal at https://doi.org/10.1016/j.patcog.2018.05.027
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14

    NNC

    Nuclear Norm Clustering

    We present Nuclear Norm Clustering (NNC), an algorithm that can be used in different fields as a promising alternative to the k-means clustering method, and that is less sensitive to outliers. The NNC algorithm requires users to provide a data matrix M and a desired number of cluster K. We employed simulate annealing techniques to choose an optimal L that minimizes NN(L).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15

    spark-msna

    Algorithm on Spark for aligning multiple similar DNA/RNA sequences

    The algorithm uses suffix tree for identifying common substrings and uses a modified Needleman-Wunsch algorithm for pairwise alignments. In order to improve the efficiency of pairwise alignments, an unsupervised learning based on clustering technique is used to create a knowledge base to guide them.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16

    popt4jlib

    Parallel Optimization Library for Java

    popt4jlib is an open-source parallel optimization library for the Java programming language supporting both shared memory and distributed message passing models. Implements a number of meta-heuristic algorithms for Non-Linear Programming, including Genetic Algorithms, Differential Evolution, Evolutionary Algorithms, Simulated Annealing, Particle Swarm Optimization, Firefly Algorithm, Monte-Carlo Search, Local Search algorithms, Gradient-Descent-based algorithms, as well as some well-known...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17

    DGRLVQ

    Dynamic Generalized Relevance Learning Vector Quantization

    Some of the usual problems for Learning vector quantization (LVQ) based methods are that one cannot optimally guess about the number of prototypes required for initialization for multimodal data structures i.e.these algorithms are very sensitive to initialization of prototypes and one has to pre define the optimal number of prototypes before running the algorithm. If a prototype, for some reasons, is ‘outside’ the cluster which it should represent and if there are points of a different...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18

    BISD

    Batch incremental SNN-DBSCAN clustering algorithm

    Incremental data mining algorithms process frequent up- dates to dynamic datasets efficiently by avoiding redundant computa- tion. Existing incremental extension to shared nearest neighbor density based clustering (SNND) algorithm cannot handle deletions to dataset and handles insertions only one point at a time. We present an incremen- tal algorithm to overcome both these bottlenecks by efficiently identify- ing affected parts of clusters while processing updates to dataset in batch mode.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    MCODER, an R Implementation Of MCODE Network Clustering Algorithm.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    node2vec

    node2vec

    Learn continuous vector embeddings for nodes in a graph using biased R

    The node2vec project provides an implementation of the node2vec algorithm, a scalable feature learning method for networks. The algorithm is designed to learn continuous vector representations of nodes in a graph by simulating biased random walks and applying skip-gram models from natural language processing. These embeddings capture community structure as well as structural equivalence, enabling machine learning on graphs for tasks such as classification, clustering, and link prediction. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Density-ratio based clustering

    Density-ratio based clustering

    Discovering clusters with varying densities

    This site provides the source code of two approaches for density-ratio based clustering, used for discovering clusters with varying densities. One approach is to modify a density-based clustering algorithm to do density-ratio based clustering by using its density estimator to compute density-ratio. The other approach involves rescaling the given dataset only. An existing density-based clustering algorithm, which is applied to the rescaled dataset, can find all clusters with varying densities that would otherwise impossible had the same algorithm been applied to the unscaled dataset. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Fuzzy clustering variation looks for a good subset of attributes in order to improve the classification accuracy of supervised learning techniques in classification problems with a huge number of attributes involved. It first creates a ranking of attributes based on the Variation value, then divide into two groups, last using Verification method to select the best group.Simon Fong, Justin Liang, YanZhuang, "Improving Classification Accuracy Using Fuzzy Clustering Coefficients of Variations (FCCV) Feature Selection Algorithm", 2014 IEEE 15th International Symposium on Computational Intelligence and Informatics (CINTI), pp.147-151
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Machine learning library that performs several clustering algorithms (k-means, incremental k-means, DBSCAN, incremental DBSCAN, mitosis, incremental mitosis, mean shift and SHC) and performs several semi-supervised machine learning approaches (self-learning and co-training). --------------------------------------------------------------------------- To run the library, just double click on the jar file. Also, you can use the following command line: Java -Xms1500m -jar "ML Library.jar"...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    ALCHEMY is a genotype calling algorithm for Affymetrix and Illumina products which is not based on clustering methods. Features include explicit handling of reduced heterozygosity due to inbreeding and accurate results with small sample sizes
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    SynergyTwo is ortholog clustering software for both prokaryotic and eukaryotic genomes. It requires Workflow (also available on sourceforge) to manage the computes. It is a reimplementation of the algorithm described in Wapinski et al Bioinformatics 2007.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next