Showing 15 open source projects for "clustering algorithm"

View related business solutions
  • AestheticsPro Medical Spa Software Icon
    AestheticsPro Medical Spa Software

    Our new software release will dramatically improve your medspa business performance while enhancing the customer experience

    AestheticsPro is the most complete Aesthetics Software on the market today. HIPAA Cloud Compliant with electronic charting, integrated POS, targeted marketing and results driven reporting; AestheticsPro delivers the tools you need to manage your medical spa business. It is our mission To Provide an All-in-One Cutting Edge Software to the Aesthetics Industry.
    Learn More
  • AI-powered conversation intelligence software Icon
    AI-powered conversation intelligence software

    Unlock call analytics that provide actionable insights with our call tracking software, empowering you to identify what's working and what's not.

    Every customer interaction is vital to your business success and revenue growth. With Jiminny’s AI-powered conversation intelligence software, we take recording, capturing, and meticulous analysis of call recordings to the next level. Unlock call analytics that provide actionable insights with our call tracking software, empowering you to identify what's working and what's not. Seamlessly support your biggest objectives across the entire business landscape with our innovative call tracking system.
    Learn More
  • 1
    HDBSCAN

    HDBSCAN

    A high performance implementation of HDBSCAN clustering

    HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates the result to find a clustering that gives the best stability over epsilon. This allows HDBSCAN to find clusters of varying densities (unlike DBSCAN), and be more robust to parameter selection. In practice this means that HDBSCAN returns a good clustering straight away with little or no parameter tuning -- and the primary parameter, minimum cluster size, is intuitive and easy to select. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    sktime

    sktime

    A unified framework for machine learning with time series

    ...It features dedicated time series algorithms and tools for composite model building such as pipelining, ensembling, tuning, and reduction, empowering users to apply an algorithm designed for one task to another.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Alink

    Alink

    Alink is the Machine Learning algorithm platform based on Flink

    Alink is Alibaba’s scalable machine learning algorithm platform built on Apache Flink, designed for batch and stream data processing. It provides a wide variety of ready-to-use ML algorithms for tasks like classification, regression, clustering, recommendation, and more. Written in Java and Scala, Alink is suitable for enterprise-grade big data applications where performance and scalability are crucial.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    homemade-machine-learning is a repository by Oleksii Trekhleb containing Python implementations of classic machine-learning algorithms done “from scratch”, meaning you don’t rely heavily on high-level libraries but instead write the logic yourself to deepen understanding. Each algorithm is accompanied by mathematical explanations, visualizations (often via Jupyter notebooks), and interactive demos so you can tweak parameters, data, and observe outcomes in real time. The purpose is pedagogical: you’ll see linear regression, logistic regression, k-means clustering, neural nets, decision trees, etc., built in Python using fundamentals like NumPy and Matplotlib, not hidden behind API calls. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Business Automation Software for SMBs Icon
    Business Automation Software for SMBs

    Fed up with not having the time, money and resources to grow your business?

    The only software you need to increase cash flow, optimize resource utilization, and take control of your assets and inventory.
    Learn More
  • 5
    Smile

    Smile

    Statistical machine intelligence and learning engine

    Smile is a fast and comprehensive machine learning engine. With advanced data structures and algorithms, Smile delivers the state-of-art performance. Compared to this third-party benchmark, Smile outperforms R, Python, Spark, H2O, xgboost significantly. Smile is a couple of times faster than the closest competitor. The memory usage is also very efficient. If we can train advanced machine learning models on a PC, why buy a cluster? Write applications quickly in Java, Scala, or any JVM...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Clustering by Shared Subspaces

    Clustering by Shared Subspaces

    Grouping Points by Shared Subspaces for Effective Subspace Clustering

    These functions implement a subspace clustering algorithm, proposed by Ye Zhu, Kai Ming Ting, and Mark J. Carman: "Grouping Points by Shared Subspaces for Effective Subspace Clustering", Published in Pattern Recognition Journal at https://doi.org/10.1016/j.patcog.2018.05.027
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7

    popt4jlib

    Parallel Optimization Library for Java

    popt4jlib is an open-source parallel optimization library for the Java programming language supporting both shared memory and distributed message passing models. Implements a number of meta-heuristic algorithms for Non-Linear Programming, including Genetic Algorithms, Differential Evolution, Evolutionary Algorithms, Simulated Annealing, Particle Swarm Optimization, Firefly Algorithm, Monte-Carlo Search, Local Search algorithms, Gradient-Descent-based algorithms, as well as some well-known...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8

    DGRLVQ

    Dynamic Generalized Relevance Learning Vector Quantization

    Some of the usual problems for Learning vector quantization (LVQ) based methods are that one cannot optimally guess about the number of prototypes required for initialization for multimodal data structures i.e.these algorithms are very sensitive to initialization of prototypes and one has to pre define the optimal number of prototypes before running the algorithm. If a prototype, for some reasons, is ‘outside’ the cluster which it should represent and if there are points of a different...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Density-ratio based clustering

    Density-ratio based clustering

    Discovering clusters with varying densities

    This site provides the source code of two approaches for density-ratio based clustering, used for discovering clusters with varying densities. One approach is to modify a density-based clustering algorithm to do density-ratio based clustering by using its density estimator to compute density-ratio. The other approach involves rescaling the given dataset only. An existing density-based clustering algorithm, which is applied to the rescaled dataset, can find all clusters with varying densities that would otherwise impossible had the same algorithm been applied to the unscaled dataset. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Dun and Bradstreet Risk Analytics - Supplier Intelligence Icon
    Dun and Bradstreet Risk Analytics - Supplier Intelligence

    Use an AI-powered solution for supply and compliance teams who want to mitigate costly supplier risks intelligently.

    Risk, procurement, and compliance teams across the globe are under pressure to deal with geopolitical and business risks. Third-party risk exposure is impacted by rapidly scaling complexity in domestic and cross-border businesses, along with complicated and diverse regulations. It is extremely important for companies to proactively manage their third-party relationships. An AI-powered solution to mitigate and monitor counterparty risks on a continuous basis, this cutting-edge platform is powered by D&B’s Data Cloud with 520M+ Global Business Records and 2B+ yearly updates for third-party risk insights. With high-risk procurement alerts and multibillion match points, D&B Risk Analytics leverages best-in-class risk data to help drive informed decisions. Perform quick and comprehensive screening, using intelligent workflows. Receive ongoing alerts of key business indicators and disruptions.
    Learn More
  • 10
    Unsupervised TXT classifier

    Unsupervised TXT classifier

    Classify any two TXT documents, no training required - JAVA

    ...First, over-training and second, shortage of data for a training of categories. Instead, each TXT file is a category on its own, rather than an assigned category. In a way, this is similar to clustering but not really a clustering algorithm since there is some training involved. The summarizer from Classifier4J has been adjusted to accept two inputs (lets call them A and B). Then, the summarizer gets trained with A to summarize a document B, and vice versa. This extracts a relevant structure for both documents (and thus avoids the over-training) which are then compared using the Vector-Space analysis to give a range of belonging of one document to another (and thus avoids the shortage of information). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Stanford Machine Learning Course

    Stanford Machine Learning Course

    machine learning course programming exercise

    ...It includes implementations of a variety of fundamental algorithms using Python and MATLAB/Octave. The repository covers a broad set of topics such as linear regression, logistic regression, neural networks, clustering, support vector machines, and recommender systems. Each folder corresponds to a specific algorithm or concept, making it easy for learners to navigate and practice. The exercises serve as practical, hands-on reinforcement of theoretical concepts taught in the course. This collection is valuable for students and practitioners who want to strengthen their skills in machine learning through coding exercises.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 12
    Leark is a Data Mining library developed in C#.NET. It contains several methods for ranking web documents described with a set of normalized features, and a feature selection algorithm. The methods are based on perceptron and clustering.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    BorderFlow
    BorderFlow implements a general-purpose graph clustering algorithm. It maximizes the inner to outer flow ratio from the border of each cluster to the rest of the graph.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Java package to study a clustering model described in the paper \"Novel Clustering Algorithm Based Upon Games on Evolving Network\" by Q. Li, Z. Chen, Y. He and J-P. Jiang (in arxiv: http://arxiv.org/pdf/0812.5064v1), generalizations and similar issues.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    IslandEv distributes a Genetic Algorithm (like <a href="/projects/jaga">JaGa</a>) across a network (see <a href="/projects/distrit">DistrIT</a>) using an island based coevolutionary model in which neighbouring islands swap migrating individuals every
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next