Showing 19 open source projects for "clustering algorithm"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Rezku Point of Sale Icon
    Rezku Point of Sale

    Designed for Real-World Restaurant Operations

    Rezku is an all-inclusive ordering platform and management solution for all types of restaurant and bar concepts. You can now get a fully custom branded downloadable smartphone ordering app for your restaurant exclusively from Rezku.
    Learn More
  • 1
    HDBSCAN

    HDBSCAN

    A high performance implementation of HDBSCAN clustering

    HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates the result to find a clustering that gives the best stability over epsilon. This allows HDBSCAN to find clusters of varying densities (unlike DBSCAN), and be more robust to parameter selection. In practice this means that HDBSCAN returns a good clustering straight away with little or no parameter tuning -- and the primary parameter, minimum cluster size, is intuitive and easy to select. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    sktime

    sktime

    A unified framework for machine learning with time series

    ...It features dedicated time series algorithms and tools for composite model building such as pipelining, ensembling, tuning, and reduction, empowering users to apply an algorithm designed for one task to another.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Alink

    Alink

    Alink is the Machine Learning algorithm platform based on Flink

    Alink is Alibaba’s scalable machine learning algorithm platform built on Apache Flink, designed for batch and stream data processing. It provides a wide variety of ready-to-use ML algorithms for tasks like classification, regression, clustering, recommendation, and more. Written in Java and Scala, Alink is suitable for enterprise-grade big data applications where performance and scalability are crucial.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    homemade-machine-learning is a repository by Oleksii Trekhleb containing Python implementations of classic machine-learning algorithms done “from scratch”, meaning you don’t rely heavily on high-level libraries but instead write the logic yourself to deepen understanding. Each algorithm is accompanied by mathematical explanations, visualizations (often via Jupyter notebooks), and interactive demos so you can tweak parameters, data, and observe outcomes in real time. The purpose is pedagogical: you’ll see linear regression, logistic regression, k-means clustering, neural nets, decision trees, etc., built in Python using fundamentals like NumPy and Matplotlib, not hidden behind API calls. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Repair-CRM Icon
    Repair-CRM

    For small companies that repair and maintenance customer machines

    All-In-One Solution with an Online Booking portal for automating scheduling & dispatching to ditch paperwork and improve the productivity of your technicians!
    Learn More
  • 5
    Smile

    Smile

    Statistical machine intelligence and learning engine

    Smile is a fast and comprehensive machine learning engine. With advanced data structures and algorithms, Smile delivers the state-of-art performance. Compared to this third-party benchmark, Smile outperforms R, Python, Spark, H2O, xgboost significantly. Smile is a couple of times faster than the closest competitor. The memory usage is also very efficient. If we can train advanced machine learning models on a PC, why buy a cluster? Write applications quickly in Java, Scala, or any JVM...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Clustering by Shared Subspaces

    Clustering by Shared Subspaces

    Grouping Points by Shared Subspaces for Effective Subspace Clustering

    These functions implement a subspace clustering algorithm, proposed by Ye Zhu, Kai Ming Ting, and Mark J. Carman: "Grouping Points by Shared Subspaces for Effective Subspace Clustering", Published in Pattern Recognition Journal at https://doi.org/10.1016/j.patcog.2018.05.027
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7

    popt4jlib

    Parallel Optimization Library for Java

    popt4jlib is an open-source parallel optimization library for the Java programming language supporting both shared memory and distributed message passing models. Implements a number of meta-heuristic algorithms for Non-Linear Programming, including Genetic Algorithms, Differential Evolution, Evolutionary Algorithms, Simulated Annealing, Particle Swarm Optimization, Firefly Algorithm, Monte-Carlo Search, Local Search algorithms, Gradient-Descent-based algorithms, as well as some well-known...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8

    DGRLVQ

    Dynamic Generalized Relevance Learning Vector Quantization

    Some of the usual problems for Learning vector quantization (LVQ) based methods are that one cannot optimally guess about the number of prototypes required for initialization for multimodal data structures i.e.these algorithms are very sensitive to initialization of prototypes and one has to pre define the optimal number of prototypes before running the algorithm. If a prototype, for some reasons, is ‘outside’ the cluster which it should represent and if there are points of a different...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Density-ratio based clustering

    Density-ratio based clustering

    Discovering clusters with varying densities

    This site provides the source code of two approaches for density-ratio based clustering, used for discovering clusters with varying densities. One approach is to modify a density-based clustering algorithm to do density-ratio based clustering by using its density estimator to compute density-ratio. The other approach involves rescaling the given dataset only. An existing density-based clustering algorithm, which is applied to the rescaled dataset, can find all clusters with varying densities that would otherwise impossible had the same algorithm been applied to the unscaled dataset. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Inventors: Validate Your Idea, Protect It and Gain Market Advantages Icon
    Inventors: Validate Your Idea, Protect It and Gain Market Advantages

    SenseIP is ideal for individual inventors, startups, and businesses

    senseIP is an AI innovation platform for inventors, automating any aspect of IP from the moment you have an idea. You can have it researched for uniqueness and protected; quickly and effortlessly, without expensive attorneys. Built for business success while securing your competitive edge.
    Learn More
  • 10

    Unsupervised Random Forest

    On-line Unsupervised Random Forest

    ...It supports on-line prediction of new observations (no need to retrain); and supports datasets that contain both continuous (e.g. CPU load) and categorical (e.g. VM instance type) features. In particular, we use an unsupervised formulation of the Random Forest algorithm to calculate similarities and provide them as input to a clustering algorithm. For the sake of efficiency and meeting the dynamism requirement of autonomic clouds, our methodology consists of two steps: (i) off-line clustering and (ii) on-line prediction. RF+PAM can: Cluster observations (Unsupervised Learning) Calculate the dissimilarity between 2 or more observations (how different two observations are)
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11

    ClusterMX

    The ClusterMX program implements various clustering algorithms

    The ClusterMX program implements various clustering algorithms including 1) K-Means clustering optimized by random walks; 2) Weighted K-Means (applying force filed to the multidimensional clustering space); 3) EM Clustering Algorithm; 4) Multi-Model Mean Shift Clustering with Random Sampling; 5) Unsupervised K-Wishart clustering.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Unsupervised TXT classifier

    Unsupervised TXT classifier

    Classify any two TXT documents, no training required - JAVA

    ...First, over-training and second, shortage of data for a training of categories. Instead, each TXT file is a category on its own, rather than an assigned category. In a way, this is similar to clustering but not really a clustering algorithm since there is some training involved. The summarizer from Classifier4J has been adjusted to accept two inputs (lets call them A and B). Then, the summarizer gets trained with A to summarize a document B, and vice versa. This extracts a relevant structure for both documents (and thus avoids the over-training) which are then compared using the Vector-Space analysis to give a range of belonging of one document to another (and thus avoids the shortage of information). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13

    NeuralGas

    Self-organized learning

    A collection of algorithms based on the topology preserving Neural Gas algorithm for density estimation/quantization/clustering/self-organized learning. I moved this project to GitHub: https://github.com/sergioroa/neuralgas
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Stanford Machine Learning Course

    Stanford Machine Learning Course

    machine learning course programming exercise

    ...It includes implementations of a variety of fundamental algorithms using Python and MATLAB/Octave. The repository covers a broad set of topics such as linear regression, logistic regression, neural networks, clustering, support vector machines, and recommender systems. Each folder corresponds to a specific algorithm or concept, making it easy for learners to navigate and practice. The exercises serve as practical, hands-on reinforcement of theoretical concepts taught in the course. This collection is valuable for students and practitioners who want to strengthen their skills in machine learning through coding exercises.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 15

    EGA

    A novel and effictive GA algorithm to solve optimization problem

    Classical genetic algorithm suffers heavy pressure of fitness evaluation for time-consuming optimization problems. To address this problem, we present an efficient genetic algorithm by the combination with clustering methods. The high efficiency of the proposed method results from the fitness estimation and the schema discovery of partial individuals in current population and.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Leark is a Data Mining library developed in C#.NET. It contains several methods for ranking web documents described with a set of normalized features, and a feature selection algorithm. The methods are based on perceptron and clustering.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    BorderFlow
    BorderFlow implements a general-purpose graph clustering algorithm. It maximizes the inner to outer flow ratio from the border of each cluster to the rest of the graph.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Java package to study a clustering model described in the paper \"Novel Clustering Algorithm Based Upon Games on Evolving Network\" by Q. Li, Z. Chen, Y. He and J-P. Jiang (in arxiv: http://arxiv.org/pdf/0812.5064v1), generalizations and similar issues.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    IslandEv distributes a Genetic Algorithm (like <a href="/projects/jaga">JaGa</a>) across a network (see <a href="/projects/distrit">DistrIT</a>) using an island based coevolutionary model in which neighbouring islands swap migrating individuals every
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next