
relax

Version 5.0.0

Molecular dynamics by

NMR data analysis

August 25, 2020

Copyright © 2001-2020 the relax development team

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU General Public License (GPL), Version 3 or any later version published by the
Free Software Foundation.

The Oxygen Icons used herein are licensed under the terms of the GNU Lesser General
Public License (GPL), Version 3 or any later version published by the Free Software
Foundation.

Contents

Preface - citing relax xxvii

I The basics 1

1 Introduction 3
1.1 Program features . 4

1.1.1 Literature . 4
1.1.2 Supported NMR theories . 4
1.1.3 Data analysis tools . 5
1.1.4 Data visualisation . 5
1.1.5 Interfacing with other programs 6
1.1.6 The user interfaces (UI) . 6

1.2 How to use relax . 6
1.2.1 The prompt . 6
1.2.2 Python . 7
1.2.3 User functions . 8
1.2.4 The help system . 9
1.2.5 Tab completion . 9
1.2.6 The data pipe . 10
1.2.7 The spin and interatomic data containers 11
1.2.8 Scripting . 12
1.2.9 The test suite . 14
1.2.10 The GUI . 14
1.2.11 Access to the internals of relax . 16

1.3 The multi-processor framework . 17
1.3.1 Introduction to the multi-processor 17
1.3.2 Usage of the multi-processor . 19
1.3.3 Further details . 22

1.4 Usage of the name relax . 22

2 Installation instructions 23
2.1 Dependencies . 23
2.2 Installation . 23

2.2.1 The source releases . 23
2.2.2 Installation on GNU/Linux . 24
2.2.3 Installation on MS Windows . 24
2.2.4 Installation on Mac OS X . 25
2.2.5 Installation on your OS . 26
2.2.6 Running a non-compiled version 26

iii

iv CONTENTS

2.3 Optional programs . 26
2.3.1 Grace . 26
2.3.2 OpenDX . 26
2.3.3 Molmol . 27
2.3.4 PyMOL . 27
2.3.5 Dasha . 27
2.3.6 Modelfree4 . 27

3 Free software infrastructure 29
3.1 History . 29
3.2 The relax web sites . 30
3.3 The mailing lists . 30

3.3.1 relax-announce . 30
3.3.2 relax-users . 31
3.3.3 relax-devel . 31
3.3.4 relax-commits . 31
3.3.5 Replying to a message . 31

3.4 Reporting bugs . 31
3.5 Latest sources – the relax repositories . 32
3.6 The relax distribution archives . 32

4 The relax data model 35
4.1 The concept of the relax data model . 35
4.2 The data model . 35

4.2.1 The relax data store . 35
4.2.2 Molecule, residue, and spin containers 36

4.3 Interatomic data containers . 39
4.4 Setup in the prompt/script UI . 39

4.4.1 Script mode – spins from structural data 39
4.4.2 Script mode – spins from a sequence file 40
4.4.3 Script mode – manual construction 41

4.5 Setup in the GUI . 41
4.5.1 GUI mode – setting up the data pipe 41
4.5.2 GUI mode – spins from structural data 42
4.5.3 GUI mode – spins from a sequence file 45
4.5.4 GUI mode – manual construction 46
4.5.5 GUI mode – deselect spins . 46

4.6 The next steps . 48

II The specific analyses 49

5 Relaxation curve-fitting 51
5.1 Introduction to relaxation curve-fitting . 51
5.2 The exponential curve models . 51
5.3 From spectra to peak intensities for the relaxation rates 52

5.3.1 Temperature control and calibration 52
5.3.2 Spectral processing . 53
5.3.3 Measuring peak intensities . 55

5.4 Relaxation curve-fitting in the prompt/script UI mode 56

CONTENTS v

5.4.1 Relax-fit script mode – the sample script 56
5.4.2 Relax-fit script mode – initialisation of the data pipe 58
5.4.3 Relax-fit script mode – setting up the spin systems 58
5.4.4 Relax-fit script mode – loading the data 59
5.4.5 Relax-fit script mode – the rest of the setup 60
5.4.6 Relax-fit script mode – optimisation of exponential curves 61
5.4.7 Relax-fit script mode – error analysis 61
5.4.8 Relax-fit script mode – finishing off 62

5.5 The relaxation curve-fitting auto-analysis in the GUI 63
5.5.1 Relax-fit GUI mode – initialisation of the data pipe 63
5.5.2 Relax-fit GUI mode – general setup 64
5.5.3 Relax-fit GUI mode – setting up the spin systems 65
5.5.4 Relax-fit GUI mode – unresolved spins 65
5.5.5 Relax-fit GUI mode – loading the data 65
5.5.6 Relax-fit GUI mode – optimisation and error analysis 68

5.6 Final checks of the curve-fitting . 70

6 Calculating the NOE 71
6.1 Introduction to the steady-state NOE . 71
6.2 From spectra to peak intensities for the NOE 71
6.3 Calculation of the NOE in the prompt/script UI mode 72

6.3.1 NOE script mode – the sample script 72
6.3.2 NOE script mode – initialisation of the data pipe 73
6.3.3 NOE script mode – setting up the spin systems 73
6.3.4 NOE script mode – loading the data 73
6.3.5 NOE script mode – setting the errors 74
6.3.6 NOE script mode – unresolved spins 74
6.3.7 NOE script mode – the NOE calculation 75
6.3.8 NOE script mode – viewing the results 75

6.4 The NOE auto-analysis in the GUI . 77
6.4.1 NOE GUI mode – initialisation of the data pipe 77
6.4.2 NOE GUI mode – general setup 78
6.4.3 NOE GUI mode – setting up the spin systems 79
6.4.4 NOE GUI mode – unresolved spins 79
6.4.5 NOE GUI mode – loading the data 79
6.4.6 NOE GUI mode – the NOE calculation 82

7 Model-free analysis 85
7.1 Model-free theory . 85

7.1.1 The chi-squared function – χ2(θ) 85
7.1.2 The transformed relaxation equations – Ri(θ) 86
7.1.3 The relaxation equations – R′

i(θ) 86
7.1.4 The spectral density functions – J(ω) 87
7.1.5 Brownian rotational diffusion . 87
7.1.6 The model-free models . 89
7.1.7 Model-free optimisation theory . 90

7.2 Optimisation of a single model-free model 94
7.2.1 Single model-free model script mode – the sample script 94
7.2.2 Single model-free model script mode – explanation 95

vi CONTENTS

7.3 Optimisation of all model-free models . 96
7.3.1 All model-free models script mode – the sample script 96
7.3.2 All model-free models script mode – explanation 97

7.4 Model-free model selection . 97
7.4.1 Model-free model selection script mode – the sample script 97
7.4.2 Model-free model selection script mode – explanation 98

7.5 The methodology of Mandel et al., 1995 . 98
7.6 The diffusion seeded paradigm . 100
7.7 The new model-free optimisation protocol 100

7.7.1 The new protocol – model-free models 100
7.7.2 The new protocol – the diffusion tensor 102
7.7.3 The universal solution U . 103
7.7.4 Model-free analysis in reverse . 103

7.8 The new protocol in the prompt/script UI mode 107
7.8.1 d’Auvergne protocol script mode – the sample script 107
7.8.2 d’Auvergne protocol script mode – analysis variables 112
7.8.3 d’Auvergne protocol script mode – data pipe initialisation 112
7.8.4 d’Auvergne protocol script mode – setting up the spin systems . . 113
7.8.5 d’Auvergne protocol script mode – loading the data 114
7.8.6 d’Auvergne protocol script mode – deselection 114
7.8.7 d’Auvergne protocol script mode – relaxation interactions 114
7.8.8 d’Auvergne protocol script mode – execution 115

7.9 The new protocol in the GUI . 116
7.9.1 d’Auvergne protocol GUI mode – data pipe initialisation 117
7.9.2 d’Auvergne protocol GUI mode – general setup 117
7.9.3 d’Auvergne protocol GUI mode – setting up the spin systems . . . 118
7.9.4 d’Auvergne protocol GUI mode – unresolved spins 119
7.9.5 d’Auvergne protocol GUI mode – loading the data 119
7.9.6 d’Auvergne protocol GUI mode – relaxation interactions 122
7.9.7 d’Auvergne protocol GUI mode – spin isotopes 124
7.9.8 d’Auvergne protocol GUI mode – the rest of the setup 125
7.9.9 d’Auvergne protocol GUI mode – execution 125
7.9.10 d’Auvergne protocol GUI mode – completion 127
7.9.11 d’Auvergne protocol GUI mode – BMRB deposition 127

8 Reduced spectral density mapping 129
8.1 Introduction to reduced spectral density mapping 129
8.2 J(w) mapping script mode – the sample script 129
8.3 J(w) mapping script mode – data pipe and spin system setup 130
8.4 J(w) mapping script mode – relaxation data loading 131
8.5 J(w) mapping script mode – relaxation interactions 131
8.6 J(w) mapping script mode – calculation and error propagation 132
8.7 J(w) mapping script mode – visualisation and data output 132

9 Consistency testing 133
9.1 Introduction to the consistency testing of relaxation data 133
9.2 Consistency testing in the prompt/script UI mode 134

9.2.1 Consistency testing script mode – the sample script 134
9.3 Consistency testing script mode – data pipe and spin system setup 136

CONTENTS vii

9.4 Consistency testing script mode – relaxation data loading 137
9.5 Consistency testing script mode – relaxation interactions 137
9.6 Consistency testing script mode – calculation and error propagation 138
9.7 Consistency testing script mode – visualisation and data output 138

10 The N-state model or ensemble analysis 141
10.1 Introduction to the N-state model . 141
10.2 Experimental data support for the N-state model 142

10.2.1 RDCs in the N-state model . 142
10.2.2 PCSs in the N-state model . 142
10.2.3 NOEs in the N-state model . 143

10.3 Determining stereochemistry in dynamic molecules 143
10.3.1 Stereochemistry – the auto-analysis 143
10.3.2 Stereochemistry – the sample script 144

11 Relaxation dispersion 147
11.1 Introduction to relaxation dispersion . 147

11.1.1 The modelling of dispersion data 148
11.1.2 Implemented models . 148
11.1.3 Dispersion model summary . 151

11.2 The base dispersion models . 156
11.2.1 The R2eff model . 156
11.2.2 The model for no chemical exchange relaxation 158

11.3 The analytic CPMG models . 159
11.3.1 The LM63 2-site fast exchange CPMG model 159
11.3.2 The LM63 3-site fast exchange CPMG model 160
11.3.3 The full CR72 2-site CPMG model 161
11.3.4 The reduced CR72 2-site CPMG model 162
11.3.5 The IT99 2-site CPMG model . 162
11.3.6 The TSMFK01 2-site CPMG model 163
11.3.7 The full B14 2-site CPMG model 164
11.3.8 The reduced B14 2-site CPMG model 166

11.4 The numeric CPMG models . 166
11.4.1 The NS 2-site expanded CPMG model 166
11.4.2 The full NS 2-site 3D CPMG model 169
11.4.3 The reduced NS 2-site 3D CPMG model 169
11.4.4 The full NS 2-site star CPMG model 169
11.4.5 The reduced NS 2-site star CPMG model 170

11.5 The analytic MMQ CPMG models . 170
11.5.1 The MMQ CR72 model . 170

11.6 The numeric MMQ CPMG models . 172
11.6.1 The NS MMQ 2-site model . 172
11.6.2 The NS MMQ 3-site linear model 174
11.6.3 The NS MMQ 3-site model . 175

11.7 The analytic R1ρ models . 176
11.7.1 The M61 2-site fast exchange R1ρ model 177
11.7.2 The M61 skew 2-site fast exchange R1ρ model 177
11.7.3 The DPL94 2-site fast exchange R1ρ model 178
11.7.4 The TP02 2-site exchange R1ρ model 178

viii CONTENTS

11.7.5 The TAP03 2-site exchange R1ρ model 179
11.7.6 The MP05 2-site exchange R1ρ model 180

11.8 The numeric R1ρ models . 180
11.8.1 The NS 2-site R1ρ model . 181
11.8.2 The NS 3-site R1ρ model . 181
11.8.3 The NS 3-site linear R1ρ model . 183

11.9 Relaxation dispersion optimisation theory 185
11.9.1 The relaxation dispersion auto-analysis 185
11.9.2 Dispersion curve insignificance . 190
11.9.3 The relaxation dispersion space . 190
11.9.4 The clustered relaxation dispersion analysis 190
11.9.5 Dispersion parameter grid search 191
11.9.6 Dispersion parameter optimisation 192
11.9.7 Relaxation dispersion parameter constraints 192
11.9.8 Relaxation dispersion diagonal scaling 194
11.9.9 Relaxation dispersion model elimination 195
11.9.10 Monte Carlo simulation elimination 195
11.9.11 Relaxation dispersion on a computer cluster using OpenMPI . . . 196

11.10 To do – dispersion features yet to be implemented 196
11.11 Tutorial for adding relaxation dispersion models 197
11.12 Comparison of dispersion analysis software 197
11.13 Analysing dispersion in the prompt/script UI mode 201

11.13.1 Dispersion script mode – the sample script 201
11.13.2 Dispersion script mode – imports 203
11.13.3 Dispersion script mode – analysis variables 204
11.13.4 Dispersion script mode – initialisation of the data pipe 205
11.13.5 Dispersion script mode – setting up the spin systems 206
11.13.6 Dispersion script mode – loading the data 206
11.13.7 Dispersion script mode – the rest of the setup 208
11.13.8 Dispersion script mode – execution 209

11.14 The relaxation dispersion auto-analysis in the GUI 210
11.14.1 Dispersion GUI mode – two analyses 210
11.14.2 Dispersion GUI mode – computation time 211
11.14.3 Dispersion GUI mode – initialisation of the data pipe 211
11.14.4 Dispersion GUI mode – general setup 212
11.14.5 Dispersion GUI mode – setting up the spin systems 213
11.14.6 Dispersion GUI mode – unresolved spins 214
11.14.7 Dispersion GUI mode – dispersion setup 214
11.14.8 Dispersion GUI mode – loading the data 215
11.14.9 Dispersion GUI mode – choosing the models to optimise 224
11.14.10 Dispersion GUI mode – optimisation settings 225
11.14.11 Dispersion GUI mode – execution of the non-clustered analysis . . 226
11.14.12 Dispersion GUI mode – inspection of the results 227
11.14.13 Dispersion GUI mode – comparing models 231
11.14.14 Dispersion GUI mode – the clustered analysis 232
11.14.15 Dispersion GUI mode – comparison of the analyses 234

12 Frame order 237
12.1 Introduction of frame ordering . 237

CONTENTS ix

12.1.1 Tensors of frame ordering . 237
12.1.2 Ln3+ aligned RDC and PCS data 237

12.2 Frame order theory . 238
12.2.1 Frame order introduction . 238
12.2.2 Frame order and the alignment tensor 244
12.2.3 Single pivoted motions . 247
12.2.4 Double pivoted motions . 248
12.2.5 Frame order in rotational Brownian diffusion and NMR relaxation 251

12.3 Frame order modelling . 252
12.3.1 Rigid body motions for a two domain system 252
12.3.2 Frame order axis permutations . 254
12.3.3 Linear constraints for the frame order models 257

12.4 Computation time and the numerical integration of the PCS 258
12.4.1 Numerical integration techniques 258
12.4.2 Parallelization and running on a cluster 260
12.4.3 Frame order model nesting . 260
12.4.4 PCS subset . 263
12.4.5 Optimisation of the frame order models 263
12.4.6 Error analysis . 264

12.5 The frame order data analysis . 264
12.5.1 Introduction to frame order data analysis 264
12.5.2 The N-state model analysis scripts 265
12.5.3 The frame order analysis scripts 268
12.5.4 Computation times . 273

III Power users 275

13 relax development 277
13.1 The relax source code repositories . 277

13.1.1 relax repositories . 277
13.1.2 Primary relax repository . 278
13.1.3 Mirrors of the relax repository . 278

13.2 Coding conventions . 279
13.2.1 Indentation . 280
13.2.2 Doc strings . 280
13.2.3 Variable, function, and class names 281
13.2.4 Whitespace . 283
13.2.5 Comments . 284

13.3 Committers . 284
13.3.1 Becoming a committer . 284
13.3.2 Register for a relax infrastructure account 285
13.3.3 Joining the relax project . 285
13.3.4 Format of the commit logs . 285
13.3.5 Discussing major changes . 287

13.4 Submitting changes to the relax project . 287
13.4.1 Development branches . 287
13.4.2 Keeping the branch up to date . 287
13.4.3 Submitting patches . 288

x CONTENTS

13.4.4 Repository forks . 289
13.4.5 Merging the branch back into the main line 289

13.5 The SCons build system . 290
13.5.1 SCons help . 290
13.5.2 C module compilation . 290
13.5.3 Compilation of the user manual (PDF version) 290
13.5.4 Compilation of the user manual (HTML version) 291
13.5.5 Compilation of the API documentation (HTML version) 291
13.5.6 Making distribution archives . 291
13.5.7 Cleaning up . 291

13.6 The core design of relax . 292
13.6.1 The divisions of relax’s source code 292
13.6.2 The major components of relax . 293

13.7 The mailing lists for development . 295
13.7.1 Private vs. public messages . 295

13.8 The bug, task, and support request trackers 296
13.8.1 Submitting a bug report . 296
13.8.2 Assigning an issue to yourself . 296
13.8.3 Closing an issue . 297

13.9 Links, links, and more links . 297
13.9.1 Navigation . 297
13.9.2 Search engine indexing . 298

IV Advanced topics 299

14 Optimisation 301
14.1 Implementation . 301

14.1.1 The interface . 301
14.1.2 The minfx package . 301

14.2 The optimisation space . 303
14.3 Topology of the space . 303

14.3.1 The function value . 303
14.3.2 The gradient . 304
14.3.3 The Hessian . 304

14.4 Optimisation algorithms . 305
14.4.1 Line search methods . 305
14.4.2 Trust region methods . 307
14.4.3 Conjugate gradient methods . 308
14.4.4 Hessian modifications . 309
14.4.5 Other methods . 309

14.5 Constraint algorithms . 310
14.5.1 Method of Multipliers algorithm 311
14.5.2 Logarithmic barrier constraint algorithm 312

14.6 Diagonal scaling . 312

15 Optimisation of relaxation data – values, gradients, and Hessians 315
15.1 Introduction to the mathematics behind the optimisation of relaxation data 315
15.2 The four parameter combinations . 315

15.2.1 Optimisation of the model-free models 315

CONTENTS xi

15.2.2 Optimisation of the local τm models 316
15.2.3 Optimisation of the diffusion tensor parameters 316
15.2.4 Optimisation of the global model S 317

15.3 Construction of the values, gradients, and Hessians 317
15.3.1 The sum of chi-squared values . 317
15.3.2 Construction of the gradient . 317
15.3.3 Construction of the Hessian . 319

15.4 The value, gradient, and Hessian dependency chain 319
15.5 The χ2 value, gradient, and Hessian . 321

15.5.1 The χ2 value . 321
15.5.2 The χ2 gradient . 321
15.5.3 The χ2 Hessian . 321

15.6 The Ri(θ) values, gradients, and Hessians 322
15.6.1 The Ri(θ) values . 322
15.6.2 The Ri(θ) gradients . 322
15.6.3 The Ri(θ) Hessians . 322

15.7 R′
i(θ) values, gradients, and Hessians . 323

15.7.1 Components of the R′
i(θ) equations 323

15.7.2 R′
i(θ) values . 326

15.7.3 R′
i(θ) gradients . 326

15.7.4 R′
i(θ) Hessians . 327

15.8 Optimisation equations for the model-free analysis 331
15.8.1 The model-free equations . 331
15.8.2 The original model-free gradient 332
15.8.3 The original model-free Hessian 333
15.8.4 The extended model-free gradient 336
15.8.5 The extended model-free Hessian 338
15.8.6 The alternative extended model-free gradient 343
15.8.7 The alternative extended model-free Hessian 345

15.9 Ellipsoidal diffusion tensor . 350
15.9.1 The diffusion equation of the ellipsoid 350
15.9.2 The weights of the ellipsoid . 350
15.9.3 The weight gradients of the ellipsoid 351
15.9.4 The weight Hessians of the ellipsoid 353
15.9.5 The correlation times of the ellipsoid 359
15.9.6 The correlation time gradients of the ellipsoid 359
15.9.7 The correlation time Hessians of the ellipsoid 361

15.10 Spheroidal diffusion tensor . 363
15.10.1 The diffusion equation of the spheroid 363
15.10.2 The weights of the spheroid . 363
15.10.3 The weight gradients of the spheroid 364
15.10.4 The weight Hessians of the spheroid 364
15.10.5 The correlation times of the spheroid 365
15.10.6 The correlation time gradients of the spheroid 365
15.10.7 The correlation time Hessians of the spheroid 365

15.11 Spherical diffusion tensor . 367
15.11.1 The diffusion equation of the sphere 367
15.11.2 The weight of the sphere . 367
15.11.3 The weight gradient of the sphere 367

xii CONTENTS

15.11.4 The weight Hessian of the sphere 368
15.11.5 The correlation time of the sphere 368
15.11.6 The correlation time gradient of the sphere 368
15.11.7 The correlation time Hessian of the sphere 368

15.12 Ellipsoidal dot product derivatives . 369
15.12.1 The dot product of the ellipsoid 369
15.12.2 The dot product gradient of the ellipsoid 369
15.12.3 The dot product Hessian of the ellipsoid 371

15.13 Spheroidal dot product derivatives . 373
15.13.1 The dot product of the spheroid 373
15.13.2 The dot product gradient of the spheroid 373
15.13.3 The dot product Hessian of the spheroid 373

16 The frame order models 375
16.1 The current frame order models . 375
16.2 Simulation of the frame order models . 375
16.3 Rigid frame order model . 385

16.3.1 Rigid model parameterisation . 385
16.3.2 Rigid model equations . 385

16.4 Rotor frame order model . 386
16.4.1 Rotor parameterisation . 386
16.4.2 Rotor equations . 387

16.5 Free rotor frame order model . 391
16.5.1 Free rotor parameterisation . 391
16.5.2 Free rotor equations . 391

16.6 Isotropic cone frame order model . 394
16.6.1 Isotropic cone parameterisation . 394
16.6.2 Isotropic cone equations . 395

16.7 Torsionless isotropic cone frame order model 400
16.7.1 Torsionless isotropic cone parameterisation 400
16.7.2 Torsionless isotropic cone equations 400

16.8 Free rotor isotropic cone frame order model 405
16.8.1 Free rotor isotropic cone parameterisation 405
16.8.2 Free rotor isotropic cone equations 407

16.9 Pseudo-ellipse frame order model . 408
16.9.1 Pseudo-ellipse parameterisation . 408
16.9.2 Derivation of a 2D trigonometric function - the pseudo-elliptic cosine409
16.9.3 Pseudo-ellipse equations . 411

16.10 Torsionless pseudo-ellipse frame order model 419
16.10.1 Torsionless pseudo-ellipse parameterisation 420
16.10.2 Torsionless pseudo-ellipse equations 420

16.11 Free rotor pseudo-ellipse frame order model 427
16.11.1 Free rotor pseudo-ellipse parameterisation 427
16.11.2 Free rotor pseudo-ellipse equations 427

16.12 Double rotor frame order model . 433
16.12.1 Double rotor parameterisation . 434
16.12.2 Double rotor equations . 434

CONTENTS xiii

V Reference 441

17 Alphabetical listing of user functions 443
17.1 A warning about the formatting . 443
17.2 The list of functions . 443

17.2.1 The synopsis . 443
17.2.2 Defaults . 443
17.2.3 Docstring sectioning . 444
17.2.4 align tensor.copy . 445
17.2.5 align tensor.delete . 446
17.2.6 align tensor.display . 446
17.2.7 align tensor.fix . 447
17.2.8 align tensor.init . 447
17.2.9 align tensor.matrix angles . 448
17.2.10 align tensor.reduction . 449
17.2.11 align tensor.set domain . 450
17.2.12 align tensor.svd . 450
17.2.13 angles.diff frame . 452
17.2.14 bmrb.citation . 452
17.2.15 bmrb.display . 454
17.2.16 bmrb.read . 454
17.2.17 bmrb.script . 455
17.2.18 bmrb.software . 456
17.2.19 bmrb.software select . 457
17.2.20 bmrb.thiol state . 458
17.2.21 bmrb.write . 458
17.2.22 bruker.read . 459
17.2.23 chemical shift.read . 459
17.2.24 consistency tests.set frq . 460
17.2.25 dasha.create . 460
17.2.26 dasha.execute . 461
17.2.27 dasha.extract . 461
17.2.28 deselect.all . 462
17.2.29 deselect.interatom . 462
17.2.30 deselect.read . 463
17.2.31 deselect.reverse . 464
17.2.32 deselect.sn ratio . 465
17.2.33 deselect.spin . 465
17.2.34 diffusion tensor.copy . 466
17.2.35 diffusion tensor.delete . 466
17.2.36 diffusion tensor.display . 467
17.2.37 diffusion tensor.init . 467
17.2.38 domain . 470
17.2.39 dx.execute . 471
17.2.40 dx.map . 471
17.2.41 eliminate . 475
17.2.42 error analysis.covariance matrix 476
17.2.43 fix . 476
17.2.44 frame order.count sobol points . 477

xiv CONTENTS

17.2.45 frame order.decompose . 477
17.2.46 frame order.distribute . 478
17.2.47 frame order.pdb model . 479
17.2.48 frame order.permute axes . 480
17.2.49 frame order.pivot . 480
17.2.50 frame order.quad int . 481
17.2.51 frame order.ref domain . 481
17.2.52 frame order.select model . 482
17.2.53 frame order.simulate . 483
17.2.54 frame order.sobol setup . 484
17.2.55 grace.view . 485
17.2.56 grace.write . 485
17.2.57 interatom.copy . 489
17.2.58 interatom.define . 489
17.2.59 interatom.read dist . 490
17.2.60 interatom.set dist . 491
17.2.61 interatom.unit vectors . 492
17.2.62 j coupling.copy . 493
17.2.63 j coupling.delete . 493
17.2.64 j coupling.display . 494
17.2.65 j coupling.read . 494
17.2.66 j coupling.write . 495
17.2.67 jw mapping.set frq . 496
17.2.68 minimise.calculate . 496
17.2.69 minimise.execute . 497
17.2.70 minimise.grid search . 500
17.2.71 minimise.grid zoom . 501
17.2.72 model free.create model . 502
17.2.73 model free.delete . 503
17.2.74 model free.remove tm . 504
17.2.75 model free.select model . 504
17.2.76 model selection . 506
17.2.77 molecule.copy . 507
17.2.78 molecule.create . 508
17.2.79 molecule.delete . 509
17.2.80 molecule.display . 509
17.2.81 molecule.name . 510
17.2.82 molecule.type . 511
17.2.83 molmol.clear history . 512
17.2.84 molmol.command . 512
17.2.85 molmol.macro apply . 513
17.2.86 molmol.macro run . 525
17.2.87 molmol.macro write . 526
17.2.88 molmol.ribbon . 527
17.2.89 molmol.tensor pdb . 528
17.2.90 molmol.view . 529
17.2.91 monte carlo.create data . 529
17.2.92 monte carlo.error analysis . 531
17.2.93 monte carlo.initial values . 532

CONTENTS xv

17.2.94 monte carlo.off . 533
17.2.95 monte carlo.on . 534
17.2.96 monte carlo.setup . 535
17.2.97 n state model.CoM . 536
17.2.98 n state model.cone pdb . 537
17.2.99 n state model.elim no prob . 538
17.2.100 n state model.number of states . 539
17.2.101 n state model.ref domain . 539
17.2.102 n state model.select model . 540
17.2.103 noe.read restraints . 540
17.2.104 noe.spectrum type . 541
17.2.105 palmer.create . 541
17.2.106 palmer.execute . 542
17.2.107 palmer.extract . 543
17.2.108 paramag.centre . 543
17.2.109 pcs.back calc . 544
17.2.110 pcs.calc q factors . 545
17.2.111 pcs.copy . 545
17.2.112 pcs.corr plot . 546
17.2.113 pcs.delete . 546
17.2.114 pcs.display . 547
17.2.115 pcs.read . 547
17.2.116 pcs.set errors . 548
17.2.117 pcs.structural noise . 549
17.2.118 pcs.weight . 550
17.2.119 pcs.write . 550
17.2.120 pipe.bundle . 551
17.2.121 pipe.change type . 551
17.2.122 pipe.copy . 552
17.2.123 pipe.create . 552
17.2.124 pipe.current . 553
17.2.125 pipe.delete . 554
17.2.126 pipe.display . 554
17.2.127 pipe.hybridise . 555
17.2.128 pipe.switch . 555
17.2.129 pymol.cartoon . 556
17.2.130 pymol.clear history . 556
17.2.131 pymol.command . 557
17.2.132 pymol.cone pdb . 557
17.2.133 pymol.frame order . 558
17.2.134 pymol.macro apply . 559
17.2.135 pymol.macro run . 560
17.2.136 pymol.macro write . 561
17.2.137 pymol.tensor pdb . 562
17.2.138 pymol.vector dist . 563
17.2.139 pymol.view . 564
17.2.140 rdc.back calc . 564
17.2.141 rdc.calc q factors . 565
17.2.142 rdc.copy . 565

xvi CONTENTS

17.2.143 rdc.corr plot . 566
17.2.144 rdc.delete . 566
17.2.145 rdc.display . 567
17.2.146 rdc.read . 567
17.2.147 rdc.set errors . 568
17.2.148 rdc.weight . 569
17.2.149 rdc.write . 569
17.2.150 relax data.back calc . 570
17.2.151 relax data.copy . 570
17.2.152 relax data.delete . 571
17.2.153 relax data.display . 571
17.2.154 relax data.peak intensity type . 572
17.2.155 relax data.read . 572
17.2.156 relax data.temp calibration . 573
17.2.157 relax data.temp control . 574
17.2.158 relax data.type . 575
17.2.159 relax data.write . 575
17.2.160 relax disp.catia execute . 576
17.2.161 relax disp.catia input . 576
17.2.162 relax disp.cluster . 577
17.2.163 relax disp.cpmg setup . 577
17.2.164 relax disp.cpmgfit execute . 578
17.2.165 relax disp.cpmgfit input . 578
17.2.166 relax disp.exp type . 579
17.2.167 relax disp.insignificance . 580
17.2.168 relax disp.nessy input . 580
17.2.169 relax disp.parameter copy . 581
17.2.170 relax disp.plot disp curves . 581
17.2.171 relax disp.plot exp curves . 582
17.2.172 relax disp.r1 fit . 583
17.2.173 relax disp.r20 from min r2eff . 583
17.2.174 relax disp.r2eff err estimate . 584
17.2.175 relax disp.r2eff read . 584
17.2.176 relax disp.r2eff read spin . 585
17.2.177 relax disp.relax time . 586
17.2.178 relax disp.select model . 586
17.2.179 relax disp.sherekhan input . 588
17.2.180 relax disp.spin lock field . 589
17.2.181 relax disp.spin lock offset . 589
17.2.182 relax disp.write disp curves . 590
17.2.183 relax fit.relax time . 590
17.2.184 relax fit.select model . 591
17.2.185 reset . 591
17.2.186 residue.copy . 592
17.2.187 residue.create . 592
17.2.188 residue.delete . 593
17.2.189 residue.display . 593
17.2.190 residue.name . 594
17.2.191 residue.number . 595

CONTENTS xvii

17.2.192 results.display . 596
17.2.193 results.read . 596
17.2.194 results.write . 597
17.2.195 script . 597
17.2.196 select.all . 598
17.2.197 select.display . 598
17.2.198 select.domain . 599
17.2.199 select.interatom . 600
17.2.200 select.read . 601
17.2.201 select.reverse . 602
17.2.202 select.sn ratio . 602
17.2.203 select.spin . 603
17.2.204 sequence.attach protons . 603
17.2.205 sequence.copy . 604
17.2.206 sequence.display . 604
17.2.207 sequence.read . 605
17.2.208 sequence.write . 606
17.2.209 spectrometer.frequency . 606
17.2.210 spectrometer.temperature . 607
17.2.211 spectrum.baseplane rmsd . 607
17.2.212 spectrum.delete . 608
17.2.213 spectrum.error analysis . 608
17.2.214 spectrum.error analysis per field 610
17.2.215 spectrum.integration points . 611
17.2.216 spectrum.read intensities . 611
17.2.217 spectrum.read spins . 613
17.2.218 spectrum.replicated . 614
17.2.219 spectrum.sn ratio . 614
17.2.220 spin.copy . 615
17.2.221 spin.create . 615
17.2.222 spin.create pseudo . 616
17.2.223 spin.delete . 617
17.2.224 spin.display . 617
17.2.225 spin.element . 618
17.2.226 spin.isotope . 619
17.2.227 spin.name . 620
17.2.228 spin.number . 621
17.2.229 state.load . 622
17.2.230 state.save . 622
17.2.231 statistics.aic . 623
17.2.232 statistics.model . 624
17.2.233 structure.add atom . 624
17.2.234 structure.add helix . 625
17.2.235 structure.add model . 625
17.2.236 structure.add sheet . 626
17.2.237 structure.atomic fluctuations . 626
17.2.238 structure.com . 628
17.2.239 structure.connect atom . 628
17.2.240 structure.create diff tensor pdb . 629

xviii CONTENTS

17.2.241 structure.create rotor pdb . 630
17.2.242 structure.create vector dist . 631
17.2.243 structure.delete . 631
17.2.244 structure.delete ss . 632
17.2.245 structure.displacement . 632
17.2.246 structure.find pivot . 633
17.2.247 structure.get pos . 634
17.2.248 structure.load spins . 635
17.2.249 structure.mean . 636
17.2.250 structure.pca . 636
17.2.251 structure.read gaussian . 637
17.2.252 structure.read pdb . 638
17.2.253 structure.read xyz . 640
17.2.254 structure.rmsd . 641
17.2.255 structure.rotate . 642
17.2.256 structure.sequence alignment . 642
17.2.257 structure.superimpose . 643
17.2.258 structure.translate . 645
17.2.259 structure.web of motion . 645
17.2.260 structure.write pdb . 646
17.2.261 system.cd . 647
17.2.262 system.pwd . 648
17.2.263 system.sys info . 648
17.2.264 system.time . 649
17.2.265 value.copy . 649
17.2.266 value.display . 653
17.2.267 value.read . 654
17.2.268 value.set . 656
17.2.269 value.write . 660
17.2.270 vmd.view . 661

18 Licence 663
18.1 Copying, modification, sublicencing, and distribution of relax 663
18.2 The GPL . 663

List of Figures

1.1 Prompt screenshot . 7
1.2 Scripting screenshot . 8
1.3 GUI screenshot . 10
1.4 GUI screenshot – Analysis wizard screenshot 12
1.5 GUI screenshot – NOE analysis . 15
1.6 GUI screenshot – R1 analysis . 16
1.7 GUI screenshot – R2 analysis . 17
1.8 GUI screenshot – Model-free analysis . 18
1.9 relax controller screenshot . 19
1.10 Spin viewer window screenshot . 20
1.11 Results viewer window screenshot . 21
1.12 Pipe editor window screenshot . 21
1.13 Prompt window screenshot . 22

5.1 Peak intensity 2D plot xmgrace screenshot 70

6.1 NOE plot . 76

7.1 A schematic of the model-free optimisation protocol of Mandel et al., 1995 99
7.2 Model-free analysis using the diffusion seeded paradigm 101
7.3 A schematic of the new model-free optimisation protocol 104

9.1 Example of consistency testing visual analysis 139

11.1 Comparison of relaxation dispersion errors 158

12.1 Frame order in the double pivot system. 249
12.2 Pseudo-ellipse axis permutations. 255
12.3 Isotropic cone axis permutations. 256
12.4 Structural noise and the PCS error. 267

13.1 The core design of relax. 294

15.1 The construction of the model-free gradient. 318
15.2 The model-free Hessian kite. 320
15.3 χ2 dependencies of the values, gradients, and Hessians. 321

16.1 Rotor simulated and calculated in-frame Daeg(1) and Daeg(2) elements. . 388
16.2 Rotor simulated and calculated out-of-frame Daeg(1) and Daeg(2) elements.389
16.3 Free rotor simulated and calculated in-frame Daeg(1) and Daeg(2) elements.392
16.4 Free rotor simulated and calculated out-of-frame Daeg(1) and Daeg(2) elements.393
16.5 Isotropic cone simulated and calculated in-frame Daeg(1) elements. 395
16.6 Isotropic cone simulated and calculated in-frame Daeg(2) elements. 396

xix

xx LIST OF FIGURES

16.7 Isotropic cone simulated and calculated out-of-frame Daeg(1) elements. . . 397
16.8 Isotropic cone simulated and calculated out-of-frame Daeg(2) elements. . . 398
16.9 Torsionless isotropic cone simulated and calculated in-frame Daeg(1) and Daeg(2) elements.401
16.10 Torsionless isotropic cone simulated and calculated out-of-frame Daeg(1) and Daeg(2) elements.402
16.11 Free-rotor isotropic cone simulated and calculated in-frame Daeg(1) and Daeg(2) elements.405
16.12 Free-rotor isotropic cone simulated and calculated out-of-frame Daeg(1) and Daeg(2) elements.406
16.13 The pseudo-elliptic cone. 409
16.14 Pseudo-ellipse cosine 2D trigonometric function. 412
16.15 Pseudo-ellipse simulated and calculated in-frame Daeg(1) elements. 413
16.16 Pseudo-ellipse simulated and calculated in-frame Daeg(2) elements. 414
16.17 Pseudo-ellipse simulated and calculated out-of-frame Daeg(1) elements. . . 415
16.18 Pseudo-ellipse simulated and calculated out-of-frame Daeg(2) elements. . . 416
16.19 Torsionless pseudo-ellipse simulated and calculated in-frame Daeg(1) elements.421
16.20 Torsionless pseudo-ellipse simulated and calculated in-frame Daeg(2) elements.422
16.21 Torsionless pseudo-ellipse simulated and calculated out-of-frame Daeg(1) elements.423
16.22 Torsionless pseudo-ellipse simulated and calculated out-of-frame Daeg(2) elements.424
16.23 Free rotor pseudo-ellipse simulated and calculated in-frame Daeg(1) elements.428
16.24 Free rotor pseudo-ellipse simulated and calculated in-frame Daeg(2) elements.429
16.25 Free rotor pseudo-ellipse simulated and calculated out-of-frame Daeg(1) elements.430
16.26 Free rotor pseudo-ellipse simulated and calculated out-of-frame Daeg(2) elements.431
16.27 Double rotor simulated and calculated in-frame Daeg(1) elements. 435
16.28 Double rotor simulated and calculated in-frame Daeg(2) elements. 436
16.29 Double rotor simulated and calculated out-of-frame Daeg(1) elements. . . 437
16.30 Double rotor simulated and calculated out-of-frame Daeg(2) elements. . . 438

List of Tables

5.1 Summary, First Point Scaling and Phase Correction 54

11.1 The dispersion models. 152
11.1 The dispersion models. 153
11.2 The parameters of relaxation dispersion. 154
11.2 The parameters of relaxation dispersion. 155
11.3 Model nesting for the relaxation dispersion auto-analysis. 188
11.3 Model nesting for the relaxation dispersion auto-analysis. 189
11.4 Dispersion software comparison. 199
11.4 Dispersion software comparison. 200

12.1 The pseudo-ellipse axis and half-angle permutations. 257
12.2 Frame order parameter nesting. 262

17.1 Boolean operators and their effects on selections 463
17.2 OpenDx mapping types. 473
17.3 Model-free parameters. 473
17.4 N-state model parameters. 473
17.5 Relaxation dispersion parameters. 474
17.6 Frame order parameters. 474
17.7 The frame order axis permutations. 481
17.8 Relaxation curve fitting parameters and minimisation statistics. 487
17.9 Steady-state NOE parameters. 487
17.10 Model-free parameters and minimisation statistics. 487
17.11 Reduced spectral density mapping parameters. 487
17.12 Consistency testing parameters. 488
17.13 Relaxation dispersion parameters and minimisation statistics. 488
17.14 Minimisation algorithms – unconstrained line search methods. 498
17.15 Minimisation algorithms – unconstrained trust-region methods. 498
17.16 Minimisation algorithms – unconstrained conjugate gradient methods. . . 499
17.17 Minimisation algorithms – miscellaneous unconstrained methods. 499
17.18 Minimisation algorithms – global minimisation methods. 499
17.19 Minimisation sub-algorithms – line search algorithms. 499
17.20 Minimisation sub-algorithms – Hessian modifications. 499
17.21 Minimisation sub-algorithms – Hessian type. 499
17.22 The model-free classic style for PyMOL and Molmol data mapping. . . . 514
17.23 Molmol colour names and corresponding RGB colour values (from 0 to 1) 515
17.24 X11 colour names and corresponding RGB colour values 516
17.24 X11 colour names and corresponding RGB colour values 517
17.24 X11 colour names and corresponding RGB colour values 518
17.24 X11 colour names and corresponding RGB colour values 519

xxi

xxii LIST OF TABLES

17.24 X11 colour names and corresponding RGB colour values 520
17.24 X11 colour names and corresponding RGB colour values 521
17.24 X11 colour names and corresponding RGB colour values 522
17.24 X11 colour names and corresponding RGB colour values 523
17.24 X11 colour names and corresponding RGB colour values 524
17.25 The six peak intensity error analysis types. 609
17.26 Diffusion tensor PDB scaling. 630
17.27 Relaxation curve fitting parameters. 650
17.28 Model-free parameters. 650
17.29 Reduced spectral density mapping parameters. 651
17.30 Consistency testing parameters. 651
17.31 N-state model parameters. 651
17.32 Relaxation dispersion parameters. 652
17.33 Relaxation curve fitting parameters. 654
17.34 Model-free parameters. 654
17.35 The value and parameter combinations for the value.set user function. . . 657
17.36 Relaxation curve fitting parameter value setting. 657
17.37 Model-free parameter value setting. 657
17.38 Reduced spectral density mapping parameter value setting. 657
17.39 Consistency testing parameter value setting. 658
17.40 N-state model parameter value setting. 658
17.41 Relaxation dispersion parameter value setting. 659

Abbreviations

AIC: Akaike’s Information Criteria (model selection method)

AICc: small sample size corrected AIC (model selection method)

API: application programming interface

ANOVA: analysis of variance (field of statistics)

BC: back calculation

BIC: Bayesian Information Criteria (model selection method)

BFGS: Broyden-Fletcher-Goldfarb-Shanno (optimisation method)

C(τ): correlation function

χ2: chi-squared function

CG: conjugate gradient (optimisation)

CPMG: the Carr-Purcell-Meiboom-Gill pulse sequence

CR72: the Carver and Richards (1972) relaxation dispersion model

CSA: chemical shift anisotropy

CV: cross validation

CVS: Concurrent Versions System (free software version control system)

D: the set of diffusion tensor parameters

D‖: the eigenvalue of the spheroid diffusion tensor corresponding to the unique axis of the
tensor

D⊥: the eigenvalue of the spheroid diffusion tensor corresponding to the two axes perpen-
dicular to the unique axis

Da: the anisotropic component of the Brownian rotational diffusion tensor

Diso: the isotropic component of the Brownian rotational diffusion tensor

Dr: the rhombic component of the Brownian rotational diffusion tensor

Dratio: the ratio of D‖ to D⊥

Dx: the eigenvalue of the Brownian rotational diffusion tensor in which the corresponding
eigenvector defines the x-axis of the tensor

xxiii

xxiv LIST OF TABLES

Dy: the eigenvalue of the Brownian rotational diffusion tensor in which the corresponding
eigenvector defines the y-axis of the tensor

Dz: the eigenvalue of the Brownian rotational diffusion tensor in which the corresponding
eigenvector defines the z-axis of the tensor

DPL94: the Davis et al. (1994) relaxation dispersion model

DQ: double quantum

ǫi: elimination value

FSF: Free Software Foundation

GNU: GNU’s Not Unix!

GPG: GNU Privacy Guard (software)

GPL: GNU general public licence

GUI: graphical user interface

ID string: identification string

IT99: the Ishima and Torchia (1999) relaxation dispersion model

J(ω): spectral density function

LM63: the Luz and Meiboom (1963) relaxation dispersion model

M61: the Meiboom (1961) relaxation dispersion model

MC: Monte Carlo (simulations)

MD: molecular dynamics (simulations)

MMQ: proton-heteronuclear SQ, ZQ, DQ, and MQ data (multi-multiple quantum)

MP05: the Miloushev and Palmer (2005) relaxation dispersion model

MPI: message passing interface

MQ: multiple quantum

NMR: if you do not know this one, do not read further

NNTP: network news transfer protocol

NOE: nuclear Overhauser effect

NS: numeric solution

ORD: optical rotatory dispersion

OS: operating system

PCS: pseudocontact shift

PDB: Protein Data Bank

LIST OF TABLES xxv

pdf: probability distribution function

PRE: paramagnetic relaxation enhancement

r: bond length

R1: spin-lattice relaxation rate

R2: spin-spin relaxation rate

Rex: chemical exchange relaxation rate

RDC: residual dipolar coupling

RMSD: root-mean-square deviation

ROE: rotating-frame Overhauser effect

RSDM: reduced spectral density mapping

RSS: rich site summary (web feed format)

S2, S2
f , and S2

s : model-free generalised order parameters

SVN: Apache Subversion (free software version control system)

τe, τf , and τs: model-free effective internal correlation times

τm: global rotational correlation time

TP02: the Trott and Palmer (2002) relaxation dispersion model

TAP03: the Trott et al. (2003) relaxation dispersion model

TSMFK01: the Tollinger et al. (2001) relaxation dispersion model

UI: user interface

XML: extensible markup language

ZQ: zero quantum

xxvi LIST OF TABLES

Preface - citing relax

The relax project is a large collection of work created by diverse authors. It is a community
driven project created by NMR spectroscopists which supports a broad range of dynamics
analyses. Care must be taken to properly cite the parts of relax that you use so that the
correct authors receive the citations and credit they deserve. The following is a breakdown
of all of the citations relating to relax, including the basic citations for the various analysis
types. Including a link to the relax website http://www.nmr-relax.com in publications
and other forums would also be greatly appreciated.

The software relax

relax references

The primary citations for relax are:

• d’Auvergne, E. J. and Gooley, P. R. (2008b). Optimisation of NMR dynamic
models I. Minimisation algorithms and their performance within the model-free
and Brownian rotational diffusion spaces. J. Biomol. NMR, 40(2), 107–119.
(10.1007/s10858-007-9214-2)

• d’Auvergne, E. J. and Gooley, P. R. (2008c). Optimisation of NMR dynamic mod-
els II. A new methodology for the dual optimisation of the model-free parameters
and the Brownian rotational diffusion tensor. J. Biomol. NMR, 40(2), 121–133.
(10.1007/s10858-007-9213-3)

If space is at a premium, the standard rules for concatenating back-to-back papers can be
used:

• d’Auvergne, E. J. and Gooley, P. R. (2008a). Optimisation of NMR dynamic models.
J. Biomol. NMR, 40(2), 107–133

Graphical user interface reference

The primary citation for the GUI is:

xxvii

http://www.nmr-relax.com
http://dx.doi.org/10.1007/s10858-007-9214-2
http://dx.doi.org/10.1007/s10858-007-9213-3

xxviii PREFACE - CITING RELAX

• Bieri, M., d’Auvergne, E., and Gooley, P. (2011). relaxGUI: a new software for fast
and simple NMR relaxation data analysis and calculation of ps-ns and µs motion of
proteins. J. Biomol. NMR, 50, 147–155. (10.1007/s10858-011-9509-1)

The multi-processor reference

Although not published, if the multi-processor framework is used to run relax on multi-
core systems, grids, or clusters, then please acknowledge the author of that code – Gary
Thompson.

Specific analyses

The following subsections list the citations for the individual analysis specific parts of
relax.

Model-free analysis references

If the automated analysis of the dauvergne protocol.py sample script or the GUI model-
free analysis which uses the same protocol has been used, then the following citations are
all implicit:

• d’Auvergne, E. J. and Gooley, P. R. (2003). The use of model selection in
the model-free analysis of protein dynamics. J. Biomol. NMR, 25(1), 25–39.
(10.1023/a:1021902006114)

• d’Auvergne, E. J. and Gooley, P. R. (2006). Model-free model elimination: A new
step in the model-free dynamic analysis of NMR relaxation data. J. Biomol. NMR,
35(2), 117–135. (10.1007/s10858-006-9007-z)

• d’Auvergne, E. J. and Gooley, P. R. (2007). Set theory formulation of the model-free
problem and the diffusion seeded model-free paradigm. Mol. BioSyst., 3(7), 483–494.
(10.1039/b702202f)

• d’Auvergne, E. J. and Gooley, P. R. (2008b). Optimisation of NMR dynamic
models I. Minimisation algorithms and their performance within the model-free
and Brownian rotational diffusion spaces. J. Biomol. NMR, 40(2), 107–119.
(10.1007/s10858-007-9214-2)

• d’Auvergne, E. J. and Gooley, P. R. (2008c). Optimisation of NMR dynamic mod-
els II. A new methodology for the dual optimisation of the model-free parameters
and the Brownian rotational diffusion tensor. J. Biomol. NMR, 40(2), 121–133.
(10.1007/s10858-007-9213-3)

Otherwise, if model-free analysis is used in relax but not via the inbuilt automated protocol,
the first reference is for model selection, the second is for eliminating failed model-free
models, and the forth is for the optimisation improvements (the third and fifth are for the
automated protocol). All of the model-free implementation details of relax are covered by
the PhD thesis (available as a PDF or as a printed version on Amazon.com) of:

http://dx.doi.org/10.1007/s10858-011-9509-1
http://dx.doi.org/10.1023/a:1021902006114
http://dx.doi.org/10.1007/s10858-006-9007-z
http://dx.doi.org/10.1039/b702202f
http://dx.doi.org/10.1007/s10858-007-9214-2
http://dx.doi.org/10.1007/s10858-007-9213-3

xxix

• d’Auvergne, E. J. (2006). Protein dynamics: a study of the model-free analysis of
NMR relaxation data. PhD thesis, Biochemistry and Molecular Biology, University of
Melbourne. http://eprints.infodiv.unimelb.edu.au/archive/00002799/. (10187/2281)

The reference for the hybridisation of different global diffusion models to analyse the
residual inter-domain dynamics – a not very well documented feature of relax – is:

• Horne, J., d’Auvergne, E. J., Coles, M., Velkov, T., Chin, Y., Charman, W. N.,
Prankerd, R., Gooley, P. R., and Scanlon, M. J. (2007). Probing the flexibility
of the DsbA oxidoreductase from Vibrio cholerae–a 15N - 1H heteronuclear NMR
relaxation analysis of oxidized and reduced forms of DsbA. J. Mol. Biol., 371(3),
703–716. (10.1016/j.jmb.2007.05.067)

The base citations for model-free theory are Lipari and Szabo (1982a,b); Clore et al.
(1990).

Consistency testing analysis references

The first is the main citation, whereas the next are the individual tests. The citation for
the consistency testing of NMR relaxation as implemented in relax is:

• Morin, S. and Gagné, S. (2009a). Simple tests for the validation of multiple field
spin relaxation data. J. Biomol. NMR, 45, 361–372. (10.1007/s10858-009-9381-4)

The base citations for the consistency testing of NMR relaxation are Fushman et al. (1999);
Farrow et al. (1995); Fushman et al. (1998)

N-state model analysis references

Some citations demonstrating as well as presenting the use of the N-state model for diverse
analyses types are:

• Sun, H., d’Auvergne, E. J., Reinscheid, U. M., Dias, L. C., Andrade, C. K. Z.,
Rocha, R. O., and Griesinger, C. (2011). Bijvoet in solution reveals unex-
pected stereoselectivity in a michael addition. Chem. Eur. J., 17(6), 1811–1817.
(10.1002/chem.201002520)

• Erdelyi, M., d’Auvergne, E., Navarro-Vazquez, A., Leonov, A., and Griesinger, C.
(2011). Dynamics of the glycosidic bond: conformational space of lactose. Chem.
Eur. J., 17(34), 9368–9376. (10.1002/chem.201100854)

Reduced spectral density mapping references

The base citations for reduced spectral density mapping are Farrow et al. (1995);
Lefevre et al. (1996).

http://dx.doi.org/10187/2281
http://dx.doi.org/10.1016/j.jmb.2007.05.067
http://dx.doi.org/10.1007/s10858-009-9381-4
http://dx.doi.org/10.1002/chem.201002520
http://dx.doi.org/10.1002/chem.201100854

xxx PREFACE - CITING RELAX

Relaxation dispersion references

For the base citations for relaxation dispersion, please see chapter 11 on page 147 for a
listing of the individual models. The main citation is:

• Morin, S., Linnet, T. E., Lescanne, M., Schanda, P., Thompson, G. S., Tollinger, M.,
Teilum, K., Gagne, S., Marion, D., Griesinger, C., Blackledge, M., and d’Auvergne,
E. J. (2014). relax: the analysis of biomolecular kinetics and thermodynam-
ics using NMR relaxation dispersion data. Bioinformatics, 30(15), 2219–2220.
(10.1093/bioinformatics/btu166)

Frame order references

The citation for the frame order analysis of rigid-body motions in relax is:

• d’Auvergne, E. J. and Griesinger, C. (2019). The theory of frame ordering: observing
motions in calmodulin complexes. Q. Rev. Biophys., 52, e3. (10.1017/S0033583519000015)

Generic parts of relax

The following subsections will list the citations for the parts of relax independent of the
specific analyses.

Model selection references

The citation for the model selection component of relax is:

• d’Auvergne, E. J. and Gooley, P. R. (2003). The use of model selection in
the model-free analysis of protein dynamics. J. Biomol. NMR, 25(1), 25–39.
(10.1023/a:1021902006114)

The base citations for the specific model selection techniques of AIC, AICc, and BIC are
respectively Akaike (1973); Hurvich and Tsai (1989); Schwarz (1978)

• Akaike, H. (1973). Information theory and an extension of the maximum likelihood
principle. In: Petrov, B. N. and Csaki, F. (eds.): Proceedings of the Second Inter-
national Symposium on Information Theory. Budapest, pages 267–281, Akademia
Kiado

• Hurvich, C. M. and Tsai, C. L. (1989). Regression and time-series model selection
in small samples. Biometrika, 76(2), 297–307. (10.1093/biomet/76.2.297)

• Schwarz, G. (1978). Estimating dimension of a model. Ann. Stat., 6(2), 461–464.
(10.1214/aos/1176344136)

http://dx.doi.org/10.1093/bioinformatics/btu166
http://dx.doi.org/10.1017/S0033583519000015
http://dx.doi.org/10.1023/a:1021902006114
http://dx.doi.org/10.1093/biomet/76.2.297
http://dx.doi.org/10.1214/aos/1176344136

xxxi

Other citations

If you believe that other citations should be included in this chapter, please contact the
relax users mailing list (nmr-relax-users at lists.sourceforge.net).

xxxii PREFACE - CITING RELAX

Part I

The basics

1

Chapter 1

Introduction

The program relax is designed for the study of molecular dynamics through the analysis
of experimental NMR data. Organic molecules, proteins, RNA, DNA, sugars, and other
biomolecules are all supported. It was originally written for the model-free analysis of
protein dynamics, though its scope has been significantly expanded. It is a community
driven project created by NMR spectroscopists for NMR spectroscopists. It supports many
analysis types including:

Model-free analysis - the Lipari and Szabo model-free analysis of NMR relaxation data

R1 and R2 - the exponential curve fitting for the calculation of the Rx NMR relaxation
rates.

NOE - the calculation of the steady-state NOE NMR relaxation data.

Data consistency - the consistency testing of multiple field NMR relaxation data.

RSDM - Reduced Spectral Density Mapping.

Frame order and N-state model - study of domain motions via the N-state model and
frame order dynamics theories using anisotropic NMR parameters such as RDCs and
PCSs.

Stereochemistry - investigations of absolute stereochemistry of flexible molecules.

Relaxation dispersion - the study of processes on the chemical exchange timescale.

The aim of relax is to provide a seamless and extremely flexible environment able to accept
input in any format produced by other NMR software, able to faultlessly create input files,
control, and read output from various programs including Modelfree and Dasha, output
results in many formats, and visualise the data by controlling programs such as Grace,
OpenDX, MOLMOL, and PyMOL. All data analysis tools from optimisation to model
selection to Monte Carlo simulations are inbuilt into relax. Therefore the use of additional
programs is optional.

The flexibility of relax arises from the choice of relax’s scripting capabilities, its Python
prompt interface, or its graphical user interface (GUI). Extremely complex scripts can be

3

4 CHAPTER 1. INTRODUCTION

created from simple building blocks to fully automate data analysis. A number of sample
scripts have been provided to help understand script construction. In addition, any of
Python’s powerful features or functions can be incorporated as the script is executed as
an arbitrary Python source file within relax’s environment. The modules of relax can also
used as a vast library of dynamics related functions by your own software.

relax is free software (free as in freedom) which is licenced under the GNU General Public
Licence (GPL). You are free to copy, modify, or redistribute relax under the terms of the
GPL.

1.1 Program features

1.1.1 Literature

The primary references for the program relax are d’Auvergne and Gooley (2008b) and
d’Auvergne and Gooley (2008c). To properly cite the various parts of relax used in your
analysis, please see Chapter on page xxvii.

1.1.2 Supported NMR theories

The following relaxation data analysis techniques are currently supported by relax:

• Model-free analysis (Lipari and Szabo (1982a,b); Clore et al. (1990) and the spe-
cific implementation of d’Auvergne and Gooley (2003, 2006, 2007, 2008b,c)). This
includes the hybridisation of global diffusion models to study residual domain dy-
namics (Horne et al., 2007).

• Reduced spectral density mapping (Farrow et al., 1995; Lefevre et al., 1996).

• Consistency testing – the validation of multiple field NMR relaxation data (Morin and Gagné,
2009a; Fushman et al., 1999).

• Exponential curve fitting (to find the R1 and R2 relaxation rates).

• Steady-state NOE calculation.

• Determination of absolute stereochemistry of flexible molecules via the N-state model
using isotropic and anisotropic NMR parameters such as NOE, ROE, and RDC
combined with MD simulation or simulated annealing, and ORD (Sun et al., 2011).

• The N-state model for investigating domain motions.

• The frame order theory for analysing rigid-body motions (d’Auvergne and Griesinger,
2019).

• Conformational analysis of paramagnetically tagged molecules via the N-state model
(Erdelyi et al., 2011).

• Analysis and comparison of ensembles of structures using RDCs, PCSs, NOEs, etc.
(the N-state model of dynamics).

• The analysis of relaxation dispersion.

1.1. PROGRAM FEATURES 5

The future

Because relax is free software, if you would like to contribute addition features, functions,
or modules which you have written for your own publications for the benefit of the field,
almost anything relating to molecular dynamics may be accepted. Please see the Free
Software chapter on page 29 for more details.

1.1.3 Data analysis tools

The following tools are implemented as modular components to be used by any data
analysis technique:

• Numerous high-precision optimisation algorithms.

• Model selection (d’Auvergne and Gooley, 2003; Chen et al., 2004):

– Akaike’s Information Criteria (AIC).

– Small sample size corrected AIC (AICc).

– Bayesian or Schwarz Information Criteria (BIC).

– Bootstrap model selection.

– Single-item-out cross-validation (CV).

– Hypothesis testing ANOVA model selection (only the model-free specific tech-
nique of Mandel et al. (1995) is supported).

• Monte Carlo simulations (error analysis for all data analysis techniques).

• Model elimination – the removal of failed models prior to model selection (d’Auvergne and Gooley,
2006).

1.1.4 Data visualisation

The results of an analysis, or any data input into relax, can be visualised using a number
of programs:

MOLMOL 1D data can be mapped onto a structure either by the creation of MOLMOL
macros or by direct control of the program.

PyMOL 3D objects such as the diffusion tensor representation can be displayed with the
structure.

Grace any 2D data can be plotted.

OpenDX The chi-squared space of models with three parameters can be mapped and 3D
images of the space produced.

http://sourceforge.net/projects/molmol/
http://www.pymol.org/
http://plasma-gate.weizmann.ac.il/Grace/
http://www.opendx.org

6 CHAPTER 1. INTRODUCTION

1.1.5 Interfacing with other programs

relax can create the input files, execute in-line, and then read the output of the following
programs. These programs can be used as optimisation engines replacing the minimisation
algorithms built into relax:

• Dasha (model-free analysis).

• Modelfree (model-free analysis).

Partial support for relaxation dispersion software has been implemented as well, including
Catia, CPMGFit, NESSY, and ShereKhan.

1.1.6 The user interfaces (UI)

relax can be used through the following UIs:

The prompt rather than reinventing a new command language, relax’s prompt interface
is the powerful Python prompt. This gives the power user full access to a proven
programming language. See Figure 1.1 for a screenshot.

Scripting this provides a more powerful and flexible framework for controlling the pro-
gram. The script will be executed as Python code enabling advanced programming
for automating data analysis. All the features available within the prompt environ-
ment are accessible to the script. See Figure 1.2 for a screenshot.

GUI the graphical user interface provides a sub-set of relax’s features - the automatic
R1 and R2 relaxation rate curve-fitting, the NOE calculations, the automatic model-
free analysis provided by the dauvergne protocolmodule (d’Auvergne and Gooley,
2008c), and relaxation dispersion. See Figure 1.3 for a screenshot.

1.2 How to use relax

1.2.1 The prompt

After typing “relax” within a terminal you will be presented with

relax>

This is the Python prompt which has been tailored specifically for relax. You will hence
have full access, if desired, to the power of the Python programming language to manip-
ulate your data. You can for instance type

relax> print("Hello World")

the result being

https://web.archive.org/web/http://www.nmr.ru/dasha.html
http://www.palmer.hs.columbia.edu/software/modelfree.html
http://www.biochem.ucl.ac.uk/hansen/catia/
http://www.palmer.hs.columbia.edu/software/cpmgfit.html
https://sourceforge.net/projects/nessy/
http://sherekhan.bionmr.org/

1.2. HOW TO USE RELAX 7

Figure 1.1: A screenshot of relax being run in prompt UI mode.

relax> print("Hello World")

Hello World

relax>

Or using relax as a calculator

relax> (1.0 + (2 * 3))/10

0.69999999999999996

relax>

1.2.2 Python

relax has been designed such that knowledge about Python is not required to be able to
fully use the program. A few basics though will aid in understanding relax.

A number of simple programming axioms includes that of strings, integers, floating point
numbers, and lists. A string is text and within Python (as well as relax) this is delimited
by either single or double quotes. An integer is a number with no decimal point whereas
a float is a number with a decimal point. A list in Python (called an array in other
languages) is a list of anything separated by commas and delimited by square brackets,
an example is [0, 1, 2, ‘a’, 1.2143235].

Probably the most important detail is that functions in Python require brackets around
their arguments. For example

relax> minimise.execute()

8 CHAPTER 1. INTRODUCTION

Figure 1.2: A screenshot of relax being run in scripting mode.

will commence minimisation however

relax> minimise.execute

will do nothing.

The arguments to a function are simply a comma separated list within the brackets of the
function. For example to save the program’s current state type

relax> state.save('save', force=True)

Two types of arguments exist in Python – standard arguments and keyword arguments.
The majority of arguments you will encounter within relax are keyword arguments however
you may, in rare cases, encounter a non-keyword argument. For these standard arguments
just type the values in, although they must be in the correct order. Keyword arguments
consist of two parts – the key and the value. For example the key may be file and
the value you would like to supply is “R1.out”. Various methods exist for supplying
this argument. Firstly you could simply type “R1.out” into the correct position in the
argument list. Secondly you can type file=‘R1.out’. The power of this second option
is that argument order is unimportant. Therefore if you would like to change the default
value of the very last argument, you don’t have to supply values for all other arguments.
The only catch is that standard arguments must come before the keyword arguments.

1.2.3 User functions

For standard data analysis a large number of specially tailored functions called “user
functions” have been implemented. These are accessible from the relax prompt by simply

1.2. HOW TO USE RELAX 9

typing the name of the function. An example is help(). An alphabetical listing of all
accessible user functions together with full descriptions is presented later in this manual.

A few special objects which are available within the prompt are not actually functions.
These objects do not require brackets at their end for them to function. For example to
exit relax type

relax> exit

Another special object is that of the function class. This object is simply a container
which holds a number of user functions. You can access the user function within the class
by typing the name of the class, then a dot “.”, followed by the name of the user function.
An example is the user function for reading relaxation data out of a file and loading the
data into relax. The function is called “read” and the class is called “relax data”. To
execute the function, type something like

relax> relax_data.read(ri_id='R1_600', ri_type='R1', frq=600.0*1e6, file='r1.600.out',

res_num_col=1, data_col=3, error_col=4)

On first usage the relax prompt can be quite daunting. Two features exist to increase the
usability of the prompt – the help system and tab completion.

1.2.4 The help system

For assistance in using a function simply type

relax> help(function)

In addition to functions if

relax> help(object)

is typed the help for the python object is returned. This system is similar to the help
function built into the python interpreter, which has been renamed to help python, with
the interactive component removed. For the standard interactive python help system type

relax> help_python()

1.2.5 Tab completion

Tab completion is implemented to prevent insanity as the function names can be quite
long – a deliberate feature to improve usability. The behaviour of the tab completion is
very similar to that of the bash prompt.

Not only is tab completion useful for preventing RSI but it can also be used for listing all
available functions. To begin with if you hit the [TAB] key without typing any text all
available functions will be listed (along with function classes and other python objects).
This extends to the exploration of user functions within a function class. For example to
list the user functions within the function class model free type

relax> model_free.

10 CHAPTER 1. INTRODUCTION

Figure 1.3: Screenshot of the relax GUI interface – the starting interface. To start one of
the automated analyses, either the menu “File→New analysis” or the new analysis button
in the toolbar should be selected.

The dot character at the end is essential. After hitting the [TAB] key you should see
something like

relax| model_free.

model_free.__class__

model_free.__doc__

model_free.__init__

model_free.__module__

model_free.__relax__

model_free.__relax_help__

model_free.create_model

model_free.delete

model_free.remove_tm

model_free.select_model

relax> model_free.

All the objects beginning with an underscore are “hidden”, they contain information about
the function class and should be ignored. From the listing the user functions copy, create
model, delete, remove tm, and select model contained within model free are all visible.

1.2.6 The data pipe

Within relax all user functions operate on data stored within the current data pipe. This
pipe stores data is input, processed, or output as user functions are called. There are
different types of data pipe for different analyses, e.g. a reduced spectral density mapping
pipe, a model-free pipe, an exponential curve-fitting pipe, etc. Multiple data pipes can be

1.2. HOW TO USE RELAX 11

created within relax and various operations performed in sequence on these pipes. This is
useful for operations such as model selection whereby the function model selection can
operate on a number of pipes corresponding to different models and then assign the results
to a newly created pipe. When running relax you choose which pipe you are currently in
by using the pipe.switch user function to jump between pipes.

The flow of data through relax can be thought of as travelling through these pipes. User
functions exist to transfer data between these pipes and other functions combine data
from multiple pipes into one or vice versa. The simplest invocation of relax would be the
creation of a single data pipe and with the data being processed as it is passing through
this pipe.

The primary method for creating a data pipe is through the user function pipe.create.
For example

relax> pipe.create('m1', 'mf')

will create a model-free data pipe labelled “m1”. The following is a table of all the types
which can be assigned to a data pipe.

Data pipe type Description

“ct” Consistency testing of relaxation data
“frame order” The Frame Order analyses of domain motions
“jw” Reduced spectral density mapping
“hybrid” A special hybridised data pipe
“mf” Model-free data analysis
“N-state” N-state model of domain motions
“noe” Steady state NOE calculation
“relax disp” Relaxation dispersion curve fitting
“relax fit” Relaxation curve-fitting

1.2.7 The spin and interatomic data containers

Any data which is not considered global for the molecule, such as diffusion tensors, align-
ment tensors, global minimisation statistics, etc., are stored within two special structures
of the data pipes. Any NMR data or information which is specific to an isolated spin
system is stored within special spin containers. This includes for example relaxation data,
CSA information, nuclear isotope type, chemical element type, model-free parameters, re-
duced spectral density mapping values, spin specific minimisation statistics and PCS data.
NMR data or information which is defined as being between two spin systems, such as
the magnetic dipole-dipole interaction involved in both NMR relaxation and RDC data,
interatomic vectors and NOESY data, is stored within the interatomic data containers.
The spin and interatomic data containers and their associated data can be manipulated
using a multitude of the relax user functions.

12 CHAPTER 1. INTRODUCTION

Figure 1.4: Screenshot of the relax GUI interface – the analysis selection wizard. From
here, the steady-state NOE analysis, the R1 and R2 relaxation rates via exponential curve-
fitting, and the automated model-free analysis can be selected.

1.2.8 Scripting

All operations that can be performed within the prompt UI are also accessible through
scripting (Figure 1.2). First type your commands into a text file ending in *.py – a relax
script is a Python script (loaded and executed as a Python module). Note that scripts
can also be run through the GUI.

To use this mode of relax, you will need to open up a terminal in your respective operating
system:

GNU/Linux: Here you have an incredible number of choices. If you don’t have a pre-
ferred shell already, you could try one of Konsole, GNOME Terminal or even XTerm

if you are a masochist.

Mac OS X: This is as simple as in GNU/Linux – just launch Terminal.app from the
Utilities folder.

MS Windows: If your system supports it, you should install and use Windows PowerShell.
The alternative is the nasty cmd command line terminal program which comes in-
stalled by default on all Windows versions. The PowerShell, although no where
near as powerful as the GNU/Linux and Mac terminals, is a huge improvement on
the ancient cmd program and will make relax much better to use on MS Windows.

Once your terminal is running, go to the directory containing your script using the cd

command (if you do not know what this is, please see the documentation for your terminal

1.2. HOW TO USE RELAX 13

program to understand some of its basic usage). Once you are in the correct directory,
within the terminal type:

$ relax your script.py

You will need to replace your script.py with the name of your script. In most cases
you would probably like to keep a log of all of the messages, warnings and errors relax
produces for future reference. To active logging within relax, type:

$ relax --log log your script.py

This will place all output (both STDOUT and STDERR) into the log file (you can choose
any name for this log file). Alternatively you can both log the output and simultaneously
see the messages in your terminal by typing:

$ relax --tee log your script.py

These command line arguments could be replaced by IO redirection if this is a familiar
concept to you, but note that these arguments are active also in the GUI mode whereby
IO redirection in the terminal will have no effect. An example of a simple script which
will minimise the model-free model “m4” after loading six relaxation data sets is

1 # Create the data pipe.

2 name = 'm4'

3 pipe.create(name, 'mf')

4

5 # Load the PDB file.

6 structure.read_pdb('1f3y.pdb')

7

8 # Set up the 15N and 1H spins.

9 structure.load_spins('@N', ave_pos=True)

10 structure.load_spins('@H', ave_pos=True)

11 spin.isotope('15N', spin_id='@N')

12 spin.isotope('1H', spin_id='@H')

13

14 # Load the relaxation data.

15 relax_data.read(ri_id='R1_600', ri_type='R1', frq=600.0*1e6, file='r1.600.out',

res_num_col=1, data_col=3, error_col=4)

16 relax_data.read(ri_id='R2_600', ri_type='R2', frq=600.0*1e6, file='r2.600.out',

res_num_col=1, data_col=3, error_col=4)

17 relax_data.read(ri_id='NOE_600', ri_type='NOE', frq=600.0*1e6, file='noe.600.out',

res_num_col=1, data_col=3, error_col=4)

18 relax_data.read(ri_id='R1_500', ri_type='R1', frq=500.0*1e6, file='r1.500.out',

res_num_col=1, data_col=3, error_col=4)

19 relax_data.read(ri_id='R2_500', ri_type='R2', frq=500.0*1e6, file='r2.500.out',

res_num_col=1, data_col=3, error_col=4)

20 relax_data.read(ri_id='NOE_500', ri_type='NOE', frq=500.0*1e6, file='noe.500.out',

res_num_col=1, data_col=3, error_col=4)

21

22 # Initialise the diffusion tensor.

23 diffusion_tensor.init((2e-8, 1.3, 60, 290), spheroid_type='prolate', param_types=2, fixed=

True)

24

25 # Create all attached protons.

26 sequence.attach_protons()

27

28 # Define the magnetic dipole-dipole relaxation interaction.

29 interatom.define(spin_id1='@N', spin_id2='@H', direct_bond=True)

30 interatom.set_dist(spin_id1='@N', spin_id2='@H', ave_dist=1.02 * 1e-10)

31 interatom.unit_vectors()

14 CHAPTER 1. INTRODUCTION

32

33 # Define the CSA relaxation interaction.

34 value.set(-172 * 1e-6, 'csa')

35

36 # Select a preset model-free model.

37 model_free.select_model(model=name)

38

39 # Grid search.

40 minimise.grid_search(inc=11)

41

42 # Minimise.

43 minimise.execute('newton')

44

45 # Finish.

46 results.write(file='results', force=True)

47 state.save('save', force=True)

Scripting is much more powerful than the prompt as advanced Python programming can
be employed (see the file relax curve diff.py in the sample scripts directory for an
example).

Sample scripts

A few sample scripts have been provided in the directory sample scripts. These can be
copied and modified for different types of data analysis.

1.2.9 The test suite

To test that the program functions correctly, relax possesses an inbuilt test suite. The
suite is a collection of simple tests which execute or probe different parts of the program
checking that the software runs without problem. The test suite is executed by running
relax using the command

$ relax --test-suite

Alternatively the three components of the test suite – system tests, unit tests, and GUI
tests – can be run separately with

$ relax --system-tests

$ relax --unit-tests

$ relax --gui-tests

1.2.10 The GUI

If the wxPython module is installed on your system, you will have access to the GUI
interface of relax. To launch relax in GUI mode, type either

$ relax -g

or

$ relax --gui

1.2. HOW TO USE RELAX 15

Figure 1.5: Screenshot of the relax GUI interface – the steady-state NOE analysis.

In most cases you will probably like to have a permanent copy of all the messages, warnings,
and errors relax produces for future reference. In such a case you could run the GUI with:

$ relax --gui --log log

This will place all of the output into the log file.

The GUI is currently an interface to the automated analyses, providing an easy way to
perform quick analyses. The interface consists of a tab for each analysis. By clicking on the
“File→New analysis” menu entry or the “New analysis” toolbar button, the analysis wizard
will appear (see Figure 1.4). The following analyses can be set up using this wizard:

Steady-state NOE: this provides access to the steady-state NOE calculation with
pseudo Monte Carlo simulations for error analysis (this falls back to bootstrapping
as this is a calculation rather than optimisation). See Figure 1.5 on page 15.

R1 and R2 : these provide easy access to optimisations and error analysis for the R1 and
R2 relaxation rates via exponential curve-fitting (see Figures 1.6 and 1.7 on pages 16
and 17).

Model-free analysis : A fully automatic model-free protocol is provided in another tab.
This operates via the dauvergne protocol module which implements the protocol
of d’Auvergne and Gooley (2008c) (see Figure 1.8 on page 18).

A number of windows in the GUI provide user feedback or allow for the viewing and editing
of data. These include:

16 CHAPTER 1. INTRODUCTION

Figure 1.6: Screenshot of the relax GUI interface – the R1 analysis.

The relax controller : This window shows the progress of relax’s execution and displays
relax’s text output for checking if the analysis has been performed correctly and has
completed successfully (see Figure 1.9).

Spin viewer window : This is used to load spins system information into the relax data
store and to see the contents of the spin containers (see Figure 1.10).

Results viewer window : This presents a list of the results files which can be opened
by double clicking for visualisation using a text editor, Grace, PyMOL, MOLMOL,
etc (see Figure 1.11).

Data pipe editor : This window allows for easy manipulation of the data pipes of the
relax data store (see Figure 1.12).

The relax prompt : This window gives access to the relax prompt (see Figure 1.13).

1.2.11 Access to the internals of relax

To enable advanced Python scripting and control, many parts of relax have been designed
in an object oriented fashion. If you would like to play with internals of the program the
entirety of relax is accessible by importation. For example all data is contained within
the object called the relax data store which, to be able to access it, needs be imported by
typing:

relax> from data_store import Relax_data_store; ds = Relax_data_store()

1.3. THE MULTI-PROCESSOR FRAMEWORK 17

Figure 1.7: Screenshot of the relax GUI interface – the R2 analysis.

The ds object is a dictionary type which contains the multiple data pipes. All of relax’s
packages, modules, functions, and classes are also accessible by import statements. For
example to create a rotation matrix from three Euler angles in the z-y-z notation, type:

relax> alpha = 0.1342

relax> beta = 1.0134

relax> gamma = 2.4747

relax> from lib.geometry.rotations import euler_to_R_zyz

relax> from numpy import float64, zeros

relax> R = zeros((3,3), float64)

relax> euler_to_R_zyz(alpha, beta, gamma, R)

relax> print(R)

[[-0.494666415429033 -0.557373756841289 -0.666813041737502]

[0.219125193028791 -0.822460914570202 0.524921131013452]

[-0.84100492699311 0.113545317776532 0.528978424497956]]

relax>

1.3 The multi-processor framework

1.3.1 Introduction to the multi-processor

Thanks to Gary Thompson’s multi-processor framework, relax can be run on multi-
core/multi-CPU systems or on clusters to speed up calculations. As most analyses are

18 CHAPTER 1. INTRODUCTION

Figure 1.8: Screenshot of the relax GUI interface – the automated model-free analysis.
The analysis is fully automated via a new model-free protocol as described in detail in
Chapter 7. Clicking on the “About” button in the bottom left hand corner will give a
full description of the protocol. For using this interface or any of the modern-day model-
free protocols, data from at least two magnetic field strengths must be without question
collected.

1.3. THE MULTI-PROCESSOR FRAMEWORK 19

Figure 1.9: Screenshot of the relax GUI interface – the relax controller window. The
purpose of the controller is for feedback. It shows the current analysis and current data
pipe, a number of progress gauges, and the relax text output.

relatively quick and would not benefit from the multi-processor framework, only the model-
free and frame order analyses have currently been parallelised to run within this framework.
To use the multi-processor framework, the following should be installed:

OpenMPI: This is the most commonly used Message Passing Interface (MPI) protocol
software. The rest of this manual will assume that this is the implementation in use.
If another implementation is used, please see the specific documentation for that
software for how to set up a program to run via MPI.

mpi4py: This dependency is essential for running in MPI mode in relax. If you would like
to use another Python implementation to access the MPI protocol, please consider
becoming a relax developer.

1.3.2 Usage of the multi-processor

If you have access to a 256 node cluster and can run calculations on all nodes, assuming
that the dauvergne protocol.py automated model-free analysis sample script will be
used (after modification for the system under study), relax can be executed by typing:

$ mpirun -np 257 /usr/local/bin/relax --multi=‘mpi4py’ --tee log dauvergne protocol.py

Note that the argument -np value is one more than the number of slaves you would like
to run. You should then see the following text in the initial relax printout:

http://www.open-mpi.org/
http://mpi4py.scipy.org/

20 CHAPTER 1. INTRODUCTION

Figure 1.10: Screenshot of the relax GUI interface – the spin viewer window. This viewer
is designed for easy addition and manipulation of spin systems within the relax data store.
The window is accessible via the “View→Spin viewer” menu entry, typing “[Ctrl-T]”, the spin
viewer button in the toolbar, or the “spin editor” button within the auto-analysis tabs.

1.3. THE MULTI-PROCESSOR FRAMEWORK 21

Figure 1.11: Screenshot of the relax GUI interface – the results viewer window. At the
end of one of the automated analyses, a number of results files will be created. This
can include text files containing the results, 2D Grace plots of the results, PyMOL and
MOLMOL macros plotting the results onto the structure, diffusion tensor objects for
viewing in PyMOL, etc. This window allows for easy opening of these results files.

Figure 1.12: Screenshot of the relax GUI interface – the pipe editor window. One analysis
may consist of one or more data pipes. And each analysis has its own unique set of data
pipes. This editor allows for the easy manipulation of data pipes for advanced users.

22 CHAPTER 1. INTRODUCTION

Figure 1.13: Screenshot of the relax GUI interface – the prompt window. This win-
dow mimics relax in the prompt user interface mode, and provides the full power of the
prompt/script UI modes within the GUI.

Processor fabric: MPI 2.1 running via mpi4py with 256 slave processors & 1 master. Using

Open MPI 1.4.3.

1.3.3 Further details

For a full description of the multi-processor framework and how to use it, please see Gary
Thompson’s official archived announcement to the relax-devel mailing list.

1.4 Usage of the name relax

The program relax is so relaxed that the first letter should always be in lower case!

http://www.nmr-relax.com/mail.gna.org/public/relax-devel/2007-05/msg00000.html

Chapter 2

Installation instructions

2.1 Dependencies

The following packages need to be installed before using relax:

Python: Version 2.5 or higher.

NumPy: Version 1.6 or higher. This package is used for most of the numerical calculations
within relax.

SciPy: Version 0.7.1 or higher. This package is optional. It is required only for the frame
order theory analyses.

wxPython: Version 2.9 or higher. This package is also optional. It is required for the
operation of the graphical user interface (GUI).

mpi4py: Version 1.2 or higher. This optional dependency is essential for running relax
in MPI multi-processor mode.

Older versions of these packages may work, use them at your own risk. If, for older
dependency versions, errors do occur please submit a bug report to the bug tracker. That
way a solution may be created for the next relax release.

Note that only the official Python distribution from http://python.org is supported. If you
use the Enthought Python Distribution (EPD) or other non-official distributions you may
encounter problems with the relax C modules, the graphical user interface, or other issues.
These alternative distributions are to be used at your own risk. Any issues encountered
will not be considered as relax bugs.

2.2 Installation

2.2.1 The source releases

Two types of software packages are available for download – the precompiled and source
distribution. Currently only relaxation curve-fitting requires compilation to function and

23

http://python.org/
http://numpy.scipy.org/
http://www.scipy.org/
http://wxpython.org/
http://mpi4py.scipy.org/
https://sourceforge.net/p/nmr-relax/tickets/
http://python.org

24 CHAPTER 2. INSTALLATION INSTRUCTIONS

all other features of relax will be fully functional without compilation. If relaxation curve-
fitting is required but no precompiled version of relax exists for your operating system or
architecture then, if a C compiler is present, the C code can be compiled into the shared
objects files *.so, *.pyd or *.dylib which are loaded as modules into relax. To build
these modules the Scons system from http://scons.org/ is required. This software requires
the Python and numpy header files installed. Once Scons is installed type

$ scons

in the base directory where relax has been installed and the C modules should, hopefully,
compile without any problems. Otherwise please submit a bug report to the bug tracker.

2.2.2 Installation on GNU/Linux

To install the program relax on a GNU/Linux system download either the precompiled
distribution labelled relax-x.x.x.GNU-Linux.arch.tar.bz2 matching your machine ar-
chitecture or the source distribution relax-x.x.x.src.tar.bz2. A number of installation
methods are possible. The simplest way is to switch to the user “root”, unpack and de-
compress the archive within the /usr/local directory by typing, for instance

$ tar jxvf relax-x.x.x.GNU-Linux.i686.tar.bz2

then create a symbolic link in /usr/local/bin by moving to that directory and typing

$ ln -s ../relax/relax .

and finally possibly creating the byte-compiled Python *.pyc files to speed up the start
time of relax by typing

$ python -m compileall .

in the relax base directory. Alternatively if the Scons system is installed, by typing as the
root user

$ scons install

in the relax base directory, a directory in /usr/local/ called relax will be created,
all the uncompressed and untarred files will be copied into this directory, a symbolic
link in /usr/local/bin to the file /usr/local/relax/relax will be created, and then
finally the Python *.pyc files will be byte-compiled. To change the installation path to a
non-standard location the Scons script sconstruct in the base relax directory should be
modified by changing the variable INSTALL PATH to point to the desired location.

2.2.3 Installation on MS Windows

In addition to the above dependencies, running relax on MS Windows requires a number
of additional programs. These include:

pyreadline: Any version.

ctypes: The pyreadline package requires ctypes.

http://scons.org/
https://sourceforge.net/p/nmr-relax/tickets/new/
https://pypi.python.org/pypi/pyreadline
http://starship.python.net/crew/theller/ctypes/

2.2. INSTALLATION 25

To install, simply download the pre-compiled binary distribution relax-x.x.x.Win32.zip

or the source distribution relax-x.x.x.src.zip and extract the files to C:\Program
Files\relax-x.x.x. Then add this directory to the system environment path (in Win-
dows XP, right click on “My Computer”, go to “Properties”, click on the “Advanced” tab,
and click on the “Environment Variables” button. Then double click on the “Path” system
variable and add the text “;C:\Program Files\relax-x.x.x” to the end of variable value field.
The Python installation must also be located on the path (add the text “;C:\Python27”,
changing the text to point to the correct directory, to the field). To run the program from
any directory inside the Windows command prompt (or dos prompt) type:

C:\> relax

Note that the pre-compiled binary distribution was built using a specific Python version
and that that version may need to be installed for the modules to be loaded. More details
are given on the download webpage.

2.2.4 Installation on Mac OS X

There are three ways of installing relax on a Mac. These are described at
http://www.nmr-relax.com/download.html and are the pre-compiled relax application,
the Fink or the source releases.

The relax application

The stand-alone relax application requires none of the dependencies listed above to be
installed. It is a universal binary compiled for the i386, x86-64 and PPC CPU architectures
(fat3) using the Mac OS X 10.5 framework. It should therefore run on Leopard, Snow
Leopard, and Lion. This very large bundle does not require system administrator access
to run.

Fink

Certain relax versions are available for Mac OS X within the Fink project. These can be
installed for Python 2.7 with the command:

> fink install relax-py27

The relax releases packaged within Fink can been browsed at
http://pdb.finkproject.org/pdb/browse.php?name=relax. If the desired version is
not available, please download the relevant source package below or contact the fink
project using the “Maintainer” email address given in the relax fink pages.

Note that when installing via fink, all the dependencies will be automatically selected and
installed as well. Although automatic, when starting from scratch that there could be well
over 250 source packages that need to be compiled (to set up the full GNU compilation
chain and other libraries which are then required to build Python, numpy, scipy, etc.).
This may take anywhere between 2 days to over a week (don’t forget to mention this fact
to your poor sys-admin).

http://www.nmr-relax.com/download.html
http://www.nmr-relax.com/download.html
http://pdb.finkproject.org/pdb/browse.php?name=relax

26 CHAPTER 2. INSTALLATION INSTRUCTIONS

The fink relax packages for different Python versions are relax-py27, relax-py26, relax-py25
and relax-py24.

Source release

See Section 2.2.1 on page 23.

2.2.5 Installation on your OS

For all others systems, please use the source distribution files and the Scons software to
build the C modules.

2.2.6 Running a non-compiled version

Compilation of the C code is not essential for running relax, however certain features of
the program will be disabled. Currently only the exponential curve-fitting for determining
the R1 and R2 relaxation rates requires compilation. To run relax without compilation
install the dependencies detailed above, download the source distribution which should be
named relax-x.x.x.src.tar.bz2, extract the files, and then run the file called relax in
the base directory.

2.3 Optional programs

The following is a list of programs which can be used by relax although they are not
essential for normal use.

2.3.1 Grace

Grace is a program for plotting two dimensional data sets in a professional look-
ing manner. It is used to visualise parameter values. It can be downloaded from
http://plasma-gate.weizmann.ac.il/Grace/.

2.3.2 OpenDX

Version 4.1.3 or compatible. OpenDX is used for viewing the output of the space mapping
function and is executed by passing the command dx to the command line with various
options. The program is designed for visualising multidimensional data and can be found
at http://www.opendx.org/.

http://pdb.finkproject.org/pdb/package.php/relax-py27
http://pdb.finkproject.org/pdb/package.php/relax-py26
http://pdb.finkproject.org/pdb/package.php/relax-py25
http://pdb.finkproject.org/pdb/package.php/relax-py24
http://plasma-gate.weizmann.ac.il/Grace/
http://www.opendx.org/

2.3. OPTIONAL PROGRAMS 27

2.3.3 Molmol

Molmol is used for viewing the PDB structures loaded into the program and to display
parameter values mapped onto the structure.

2.3.4 PyMOL

PDB structures can also be viewed using PyMOL. This program can also be used to
display geometric objects generated by relax for representing physical concepts such as
the diffusion tensor and certain cone diffusion models.

2.3.5 Dasha

Dasha is a program used for model-free analysis of NMR relaxation data. It can be used as
an optimisation engine to replace the minimisation algorithms implemented within relax.

2.3.6 Modelfree4

Art Palmer’s Modelfree4 program is also designed for model-free analysis and can be used
as an optimisation engine to replace relax’s high precision minimisation algorithms.

28 CHAPTER 2. INSTALLATION INSTRUCTIONS

Chapter 3

Free software infrastructure

3.1 History

Starting with the initial code in November 2001, the relax sources were not stored within
a version control repository. Instead version control was performed by creating a log-less
*.tar.gz file backup after each change. In June 2005, these backup files were imported
into a new Subversion (SVN) repository.

Corresponding with the switch to the SVN version control repository, relax was made
public by shifting development onto the Gna! free software infrastructure. This allowed
for the following new infrastructure to be set up:

• Hosting for the relax website.

• File download services for the relax distribution files (and PDF manual).

• The relax mailing lists.

• Access to the relax source code.

• Bug, support request, task, and patch trackers.

• News feed.

An archive of relax’s old Gna! website can be found on the Internet Archive.

In May 2017, without much warning, the Gna! infrastructure that relax relied upon was
permanently shut down. This lead to a long period with no open source infrastructure.
During this time, the relax SVN repository was painstakingly converted into a git version
control repository with all branches and history preserved. To ensure that relax would be
accessible for a long time into the future, this new git repository was mirrored to a number
of free software/open source infrastructures:

• relax at Bitbucket

• relax at GitHub

29

https://en.wikipedia.org/wiki/Gna!
https://web.archive.org/web/20170301004608/https://gna.org/projects/relax/
https://en.wikipedia.org/wiki/Gna!
https://bitbucket.org/nmr-relax/
https://github.com/nmr-relax

30 CHAPTER 3. FREE SOFTWARE INFRASTRUCTURE

• relax at GitLab

• relax at SourceForge

The webpages were also migrated with history from the SVN repository where they were
located alongside the relax source code to a separate git repository.

From January 2019, relax moved to the SourceForge open source infrastructure. This
provides the following relax infrastructure.

• Hosting for the relax website.

• File download services for the relax distribution files (and PDF manual).

• The relax mailing lists.

• Access to the relax source code, web pages, and relax demo files.

• Bug, support request, and task trackers.

• SVN support for hosting the old and archived SVN repository.

• Backend shell log in (shell services).

• MySQL and PHP support (possibly allowing for the relax Mediawiki to be migrated
here in the future).

3.2 The relax web sites

The main web site for relax is http://www.nmr-relax.com. From these pages general
information about the program, links to the latest documentation, links to the most current
software releases, and information about the mailing lists are available. There are also
Google search capabilities built into the pages for searching both the HTML version of the
manual and the archives of the mailing lists.

3.3 The mailing lists

A number of mailing lists have been created covering different aspects of relax. These
include the announcement list, the relax users list, the relax development list, and the
relax committers list.

3.3.1 relax-announce

The relax announcement list “nmr-relax-announce at lists.sourceforge.net” is reserved for
important announcements about the program including the release of new program ver-
sions. The amount of traffic on this list is relatively low. The mailing list links are:
Subscribe, Archive, Search.

https://gitlab.com/nmr-relax
https://sourceforge.net/projects/nmr-relax/
https://sourceforge.net/projects/nmr-relax/
http://www.nmr-relax.com
https://sourceforge.net/projects/nmr-relax/lists/nmr-relax-announce
https://sourceforge.net/p/nmr-relax/mailman/nmr-relax-announce
https://sourceforge.net/p/nmr-relax/mailman/search/?mail_list=nmr-relax-announce

3.4. REPORTING BUGS 31

3.3.2 relax-users

If you would like to ask questions about relax, discuss certain features, receive help, or
to communicate on any other subject related to relax the mailing list “nmr-relax-users
at lists.sourceforge.net” is the place to post your message. The mailing list links are:
Subscribe, Archive, Search.

3.3.3 relax-devel

A second mailing list exists for posts relating to the development of relax. Feature requests,
program design, or any other posts relating to relax’s structure or code should be sent to
this list instead. The list is “nmr-relax-devel at lists.sourceforge.net” and the relevant
links are: Subscribe, Archive, Search.

3.3.4 relax-commits

One last mailing list is the relax commits list. This list is reserved for automatically
generated posts created by the version control software which looks after the relax source
code and these web pages. If you would like to become a developer, please subscribe to
this list. The mailing list links are: Subscribe, Archive, Search.

3.3.5 Replying to a message

When replying to a message on these lists remember to hit ‘respond to all’ so that the
mailing list is included in the CC field. Otherwise your message will only be sent to the
original poster and not return back to the list. Only messages to relax-users and relax-
devel will be accepted. If you are using Gmail’s web based interface, please do not click
on ‘Edit Subject’ as this currently mangles the email headers, creates a new thread on the
mailing list, and makes it difficult to follow the thread.

3.4 Reporting bugs

One of the philosophies in the construction of relax is that if there is something which is
not immediately obvious then that is considered a design bug. If any flaws in relax are
uncovered including general design flaws, bugs in the code, or documentation issues these
can be reported within relax’s bug tracker system. Please submit a relax bug here rather
than reporting bugs to personal email addresses or to the mailing lists.

When reporting a bug please include as much information as possible so that the problem
can be reproduced. Include information such as the release version or the revision number
if the repository sources are being used. Also include all the steps performed in order to
trigger the bug. Attachment of files is allowed so scripts and subsets of the input data can
be included. However please do not attach large files to the report. Prior to reporting the
bug try to make sure that the problem is indeed a bug and if you have any doubts please

https://sourceforge.net/projects/nmr-relax/lists/nmr-relax-users
https://sourceforge.net/p/nmr-relax/mailman/nmr-relax-users
https://sourceforge.net/p/nmr-relax/mailman/search/?mail_list=nmr-relax-users
https://sourceforge.net/projects/nmr-relax/lists/nmr-relax-devel
https://sourceforge.net/p/nmr-relax/mailman/nmr-relax-devel
https://sourceforge.net/p/nmr-relax/mailman/search/?mail_list=nmr-relax-devel
https://sourceforge.net/projects/nmr-relax/lists/nmr-relax-commits
https://sourceforge.net/p/nmr-relax/mailman/nmr-relax-commits
https://sourceforge.net/p/nmr-relax/mailman/search/?mail_list=nmr-relax-commits
https://sourceforge.net/p/nmr-relax/tickets/
https://sourceforge.net/p/nmr-relax/tickets/new/

32 CHAPTER 3. FREE SOFTWARE INFRASTRUCTURE

feel free to ask on the relax-users mailing list. To avoid duplicates be sure that the bug has
not already been submitted to the bug tracker. You can search through the bugs here.

Once the bug has been confirmed by one of the relax developers you may speed up the
resolution of the problem by trying to fixing the bug yourself. If you do wish to play with
the source code and try to fix the issue see the relax development chapter of this manual
on how to check out the latest sources (Chapter 13 on page 277), how to generate a patch
(which is just the output of diff in the ‘unified’ format), and the guidelines for the format
of the code.

3.5 Latest sources – the relax repositories

relax’s source code is kept within a version control system called git. This system allows for
fine control over the development of the program. The repository contains all information
about every change ever made to the program. To learn more about the system, the
git Reference Manual is a good place to start. The contents of the relax repository can
be viewed online at https://sourceforge.net/p/nmr-relax/code/ci/master/tree/.
The current sources can be downloaded using the git protocol by typing

$ git clone git://git.code.sf.net/p/nmr-relax/code relax

In addition there is a git repository for the relax website and a git repository for the relax
demonstration files.

3.6 The relax distribution archives

The relax distribution archives are the files to download to install relax. If a compiled
binary distribution for your architecture does not exist, you are welcome to create this
distribution yourself and submit it for inclusion in the relax project. To do this a number
of steps are required. Firstly, the code to each relax release or version resides in a git
repository ‘tag’. To check out version 4.0.3, for example, within an existing git repository
clone type

$ git checkout 4.0.3

The binary distribution can then be created for your architecture by typing

$ scons binary dist

At the end SCons will attempt to make a GPG signature for the newly created archive.
However this will fail as the current relax private GPG key is not available for security rea-
sons. If the SCons command fails, excluding the GPG signing, please submit a bug report
with as much information possible (the Python and SCons version numbers may also be
useful). Once the file has been created post a message to the relax development mailing
list describing the compilation and the creation of the archive, the relax version number,
the machine architecture, operating system, and the name of the new file. Do not attach
the file though. You will then receive a response explaining where to send the file to. For
security the archive will be thoroughly checked and if the source code is identical to that

https://sourceforge.net/p/nmr-relax/tickets/search/
https://git-scm.com/
https://git-scm.com/docs
https://sourceforge.net/p/nmr-relax/code/ci/master/tree/
https://sourceforge.net/p/nmr-relax/relax-demo/ci/master/tree/
https://sourceforge.net/projects/nmr-relax/files/
https://sourceforge.net/p/nmr-relax/tickets/new/

3.6. THE RELAX DISTRIBUTION ARCHIVES 33

in the repository and the C modules are okay, the file will be GPG signed and uploaded
to https://sourceforge.net/projects/nmr-relax/files/.

https://sourceforge.net/projects/nmr-relax/files/

34 CHAPTER 3. FREE SOFTWARE INFRASTRUCTURE

Chapter 4

The relax data model

4.1 The concept of the relax data model

To begin to understand how to use relax, a basic comprehension of the relax data model
is needed. The data model includes the concepts of the relax data store, the data pipes,
the molecule, residue and spin data structures and the interatomic data containers. These
concepts are independent of the specific analyses presented in the next chapters and are
important for setting up relax.

4.2 The data model

4.2.1 The relax data store

All permanent data handled by relax is kept in a structure known as the relax data store.
This structure is initialised when relax is launched. The data store is primarily organised
into a series of objects known as data pipes, and all usage of relax revolves around the
flow of information in these data pipes.

Data pipes

The first thing one must do when relax is launched is to create a data pipe. When using
the GUI, a base data pipe will be created when opening one of the automatic analyses via
the analysis selection window (see figure 1.4 on page 12). This will also create a data pipe
bundle for the analysis (vide infra). Alternatively the data pipe editor window can be

35

36 CHAPTER 4. THE RELAX DATA MODEL

used to create data pipes (see figure 1.12 on page 21). For the prompt/scripting modes, or
the “User functions→pipe→create” menu entry, a data pipe can be initialised by specifying
the unique name of the data pipe and the data pipe type:

1 pipe.create(pipe_name='NOE 1200 MHz', pipe_type='noe')

A number of relax operations will also create data pipes by merging a group of pipes or
branching pre-existing pipes. See section 1.2.6 on page 10 for additional details.

All data not associated with spin systems will be stored in the base data pipe. This
includes information such as global optimisation statistics, diffusion tensors, alignment
tensors, 3D structural data, the molecule, residue and spin container data structure and
the interatomic data containers. One data pipe from the set will be defined as being the
current data pipe, and all operations in relax will effect data from this pipe. The pipe.

switch user function in all UI modes can be used to change which pipe is the current data
pipe. In the GUI, switching between analysis tabs will automatically switch the current
data pipe to match the analysis being displayed.

Data pipe bundles

Related data pipes can be grouped into a ‘bundle’. For example if the data pipes “sphere”,
“oblate spheroid”, “prolate spheroid”, and “ellipsoid” preexist, these can be grouped into
a bundle called “diffusion tensors” with the following series of user function calls:

1 pipe.bundle(bundle='diffusion tensors', pipe='sphere')

2 pipe.bundle(bundle='diffusion tensors', pipe='oblate spheroid')

3 pipe.bundle(bundle='diffusion tensors', pipe='prolate spheroid')

4 pipe.bundle(bundle='diffusion tensors', pipe='ellipsoid')

The data pipe editor window of the GUI can also be used to bundle pipes together (see
figure 1.12 on page 21).

4.2.2 Molecule, residue, and spin containers

Within a data pipe is the molecule, residue, and spin container data structure. Data
which is specific to a given nucleus is stored in a special spin container structure. This
includes relaxation data, model-free parameters, reduced spectral density mapping values,
spin specific optimisation parameters, chemical shift tensor information, pseudo-contact
shift values, etc. The spin containers can be created from 3D structural data or a sequence
file, as described in the next two sections, or manually built.

4.2. THE DATA MODEL 37

Molecule containers

The spin containers are part of a nested set of containers, and are graphically depicted in
the spin viewer window of the GUI in figure 1.10 on page 20. As can be seen from the
figure, the top level holds a single molecular container. Multiple molecular containers can
be present if the study is of a molecular complex. Using the GUI menus or the promp-
t/scripting mode, molecule containers can be manually created with the user function:

1 molecule.create(mol_name='glycerol', mol_type='organic molecule')

In the spin viewer window of the GUI, right clicking on the “Spin system information” element
will pop up a menu with an entry for adding molecule containers. Right clicking on
molecule containers will show a pop up menu with an entry for permanently deleting the
container.

Residue containers

Nested within the molecule containers are residue containers. These are graphically de-
picted in the spin viewer window (see figure 1.10 on page 20). Each molecule container can
possess multiple residues. These require either a unique residue number or unique residue
name. For organic molecules where the residue concept is meaningless, all spin containers
can be held within a single unnamed and unnumbered residue container. Using the GUI
menus or the prompt/scripting mode, residue containers can be manually created with the
user function:

1 residue.create(res_num='-5', res_name='ASP')

Alternatively residues can be added in the spin viewer window from the pop up menu
when right clicking on molecule containers, and can be deleted via the pop up menu when
right clicking on the residue to delete.

38 CHAPTER 4. THE RELAX DATA MODEL

Spin containers

Spin containers are nested within a residue container (again graphically depicted in the spin
viewer window in figure 1.10 on page 20). Multiple spin containers can exist per residue.
This allows, for example, a single model-free analysis simultaneously on the backbone
nitrogen spins, side-chain tryptophan indole nitrogen spins and alpha carbon spins. Or,
for example, studying the pseudocontact shifts for all nitrogen, carbon and proton spins
in the molecule simultaneously.

Spin containers can be manually added via the spin.create user function in the GUI or
prompt/scripting mode:

1 spin.create(spin_num='200', spin_name='NE1')

The spin viewer window can also be used by right clicking on residue containers.

Spin ID strings

Spins are often identified in relax using their ID strings. The spin ID strings follow the basic
construct found in a number of other NMR software such as MOLMOL. The identification
string is composed of three components:

• The molecule ID token beginning with the “#” character,

• The residue ID token beginning with the “:” character,

• The atom or spin system ID token beginning with the “@” character.

Each token can be composed of multiple elements – one per spin – separated by
the “,” character and each individual element can either be a number (which must
be an integer, in string format), a name, or a range of numbers separated by
the “-” character. Negative numbers are supported. The full ID string spec-
ification is “#<mol name> :<res id>[, <res id>[, <res id>, ...]] @<atom id>[,

<atom id>[, <atom id>, ...]]”, where the token elements are “<mol name>”, the name
of the molecule, “<res id>”, the residue identifier which can be a number, name, or range
of numbers, “<atom id>”, the atom or spin system identifier which can be a number, name,
or range of numbers.

If one of the tokens is left out then all elements will be assumed to match. For example if
the string does not contain the “#” character then all molecules will match the string. If
only the molecule ID component is specified, then all spins of the molecule will match.

Regular expression can, in some instances, be used to select spins. For example the string
“@H*” will select the protons ‘H’, ‘H2’ and ‘H98’.

4.3. INTERATOMIC DATA CONTAINERS 39

4.3 Interatomic data containers

Separate from the spin containers, yet strongly linked to them, are the interatomic data
containers. These containers are grouped together within the same data pipe as the spins
they point to. These define interactions between two spins located anywhere within the
molecule, residue and spin nested data structure. These are automatically created when
reading in data defined between two spins such as RDCs and NOE distance constraints.
They can also be created using the interatom.define user function:

1 interatom.define(spin_id1=':2@N', spin_id2=':2@H')

As the interatomic data container concept is relatively new, how they are created and
handled is likely to evolve and change in the future.

4.4 Setup in the prompt/script UI

Below are three different examples showing how to set up the relax data model for any
analysis type requiring spin specific data.

4.4.1 Script mode – spins from structural data

3D structural data is stored at the level of the current data pipe. This data is completely
separate from the molecule, residue and spin data structure. However the structural data
can be used to generate the spin containers. For example for the nitrogen relaxation in a
model-free analysis where both the nitrogen and proton are needed to define the magnetic
dipole-dipole relaxation:

1 # Create a data pipe.

2 pipe.create(pipe_name='ellipsoid', pipe_type='mf')

3

4 # Load the PDB file.

5 structure.read_pdb('1f3y.pdb')

6

7 # Set up the 15N and 1H backbone spins.

40 CHAPTER 4. THE RELAX DATA MODEL

8 structure.load_spins('@N', ave_pos=True)

9 structure.load_spins('@H', ave_pos=True)

10

11 # Set up the 15N and 1H for the tryptophan indole ring.

12 structure.load_spins('@NE1', ave_pos=True)

13 structure.load_spins('@HE1', ave_pos=True)

14

15 # Define the spin isotopes.

16 spin.isotope('15N', spin_id='@N*')

17 spin.isotope('1H', spin_id='@H*')

The structure.read pdb user function will load the structural data into the current data
pipe, and the structure.load spins user function will create the molecule, residue, and
spin containers as needed. This will also load atomic position information into the match-
ing spin containers. The spin.isotope user function is required to define the magnetic
dipole-dipole interaction and is information not present in the PDB file.

Note that if structural data from the PDB is used to generate the spin containers, then all
subsequent data loaded into relax must follow the exact naming convention from the PDB
file. Automatic residue name matching (i.e. ‘GLY’ = ‘Gly’ = ‘gly’ = ‘G’) is currently not
supported.

4.4.2 Script mode – spins from a sequence file

Alternatively to setting up the molecule, residue, and spin containers via 3D structural
data, a plain text columnar formatted file can be used. This is useful for when no 3D
structure exists for the molecule. It also has the advantage that the residue and atom
names need not conform to the PDB standard. An example for reading sequence data is:

1 # Create a data pipe.

2 pipe.create(pipe_name='R1 1200', pipe_type='relax_fit')

3

4 # Set up the 15N spins.

5 sequence.read(file='noe.500.out', mol_name_col=1, res_num_col=2, res_name_col=3,

spin_num_col=4, spin_name_col=5)

6 spin.element(element='N', spin_id='@N*')

7 spin.isotope('15N', spin_id='@N')

Here the molecule, residue, and spin information is extracted from the “noe.500.out” file
which could look like:

mol_name res_num res_name spin_num spin_name value error

Ap4Aase_new_3_mol1 1 GLY 1 N None None

Ap4Aase_new_3_mol1 2 PRO 11 N None None

Ap4Aase_new_3_mol1 3 LEU 28 N None None

Ap4Aase_new_3_mol1 4 GLY 51 N 0.03892194698453 0.01903177024613

4.5. SETUP IN THE GUI 41

Ap4Aase_new_3_mol1 5 SER 59 N 0.31240422567912 0.01859693729836

Ap4Aase_new_3_mol1 6 MET 71 N 0.42850831873249 0.0252585632304

Ap4Aase_new_3_mol1 7 ASP 91 N 0.53054928103134 0.02799062314416

Ap4Aase_new_3_mol1 8 SER 104 N 0.56528429775819 0.02170612146773

Ap4Aase_new_3_mol1 9 PRO 116 N None None

Ap4Aase_new_3_mol1 40 TRP 685 N 0.65394813490548 0.03830061886537

Ap4Aase_new_3_mol1 40 TRP 698 NE1 0.67073879732046 0.01426066343831

The file can contain columns for the molecule name, the residue name and number, and
the spin name and number in any order though not all are needed. For example for a single
protein system, the molecule name, residue name and spin number are nonessential. Or
for an organic molecule, the molecule name, residue name and number and spin number
could be nonessential. The subsequent user functions in the above example are used to
set up the spin containers appropriately for a model-free analysis. These are not required
in the automatic analysis of GUI as these user functions will be presented to you when
adding relaxation data, or when clicking on the heteronucleus and proton buttons (“X
isotope” and “H isotope”).

In the GUI, the creation of molecule, residue, and spin containers from a sequence file is
also available via the “Load spins” wizard within the spin viewer window (vide supra).

4.4.3 Script mode – manual construction

For the masochists out there, the full molecule, residue and spin data structure can be
manually constructed. For example:

1 # Manually create the molecule, residue, and spin containers.

2 molecule.create(mol_name='Ap4Aase', mol_type='protein')

3 residue.create(res_num=1, res_name='GLY')

4 residue.create(res_num=3, res_name='LEU')

5 residue.create(res_num=96, res_name='TRP')

6 spin.create(res_num=1, spin_name='N')

7 spin.create(res_num=3, spin_name='N')

8 spin.create(res_num=96, spin_name='N')

9 spin.create(res_num=96, spin_name='NE1')

These user functions can be repeated until the full sequence has been constructed.

4.5 Setup in the GUI

4.5.1 GUI mode – setting up the data pipe

In the GUI, the most common way to create the data pipe is to initialise one of the auto-
analyses via the analysis selection wizard (see Figure 1.4 on page 12). The initialisation
will create the appropriate starting data pipe. Alternatively the data pipe editor can be
used (see Figure 1.12 on page 21). Or the “User functions→pipe→create” menu item can be
selected for graphical access to the pipe.create user function.

42 CHAPTER 4. THE RELAX DATA MODEL

4.5.2 GUI mode – spins from structural data

For this section, the example of protein 15N relaxation data will be used to illustrate how
to set up the data structures. To manipulate the molecule, residue and spin data structures
in the GUI, the most convenient option is to use the spin viewer window (see Figure 1.10
on page 20). This window can be opened in four ways:

• The “View→Spin viewer” menu item,

• The “[Ctrl+T]” key combination,

• The spin viewer icon in the toolbar (represented by the blue spin icon),

• The “Spin editor” button part of the “Spin systems” GUI element in the specific analysis
tabs.

You will then see:

At this point, click on the “Load spins” button (or the “Load spins” menu entry from the
right click pop up menu) to launch the spin loading wizard. A number of options will be
presented to you:

4.5. SETUP IN THE GUI 43

Here the spins will be loaded from a PDB file. If you do not have a 3D structure file,
please see the next section. After selecting “From a new PDB structure file” and clicking on
“Next”, you will see:

Now select the PDB file you wish to use. The other options in this screen allow you
to handle NMR models and multiple molecules within a single PDB file. These options
are explained in the window. Hovering the mouse over the options will give additional
hints. In this example, the 3rd model from the 1F3Y PDB file will be read and the single
molecule will be named “Ap4Aase” to override the default naming of “1f3y mol1”. Now click
on “Next” to bring up the spin loading page:

44 CHAPTER 4. THE RELAX DATA MODEL

This is a bit more complicated. In this example we are studying the backbone dynamics
of 15N spins of a protein. Therefore first set the spin ID string to “@N” (which can be
selected from the pull down) and click on “Apply” to set up the backbone spins. Do not
click on “Next” yet. If the current study requires the specification of the dipole-dipole
interaction (for example if it involves relaxation data – model-free analyses, consistency
testing, reduced spectral density mapping; or the dipolar coupling – the N-state model or
ensemble analyses, the Frame Order theory) you will also need to load the 1H spins as
well. Therefore set the spin ID string to “@H” and click on “Apply” again.

Now change the spin ID string to “@NE1” and then click on “Next” (or “Apply” if the
Trp protons “@HE1” need to be loaded as well). This will add spin containers for the
tryptophan indole 15N spins. Finally click on “Finish” to exit the wizard:

4.5. SETUP IN THE GUI 45

You should now see something such as:

If the 1H spins have been loaded as well, then you should see exactly twice as many spin
containers as shown above.

4.5.3 GUI mode – spins from a sequence file

Starting from the empty spin viewer window on page 42), click on the “Load spins” button.
You will then see the spin loading wizard (see page 43). Select the option for reading data
from a sequence file. You should then see:

46 CHAPTER 4. THE RELAX DATA MODEL

Select the file to load and change the “Free format file settings” as needed. An example of
a suitable format is given on page 41. Click on “Next” to reach the wizard ending page
(see 45). Finally click on “Finish” to exit the wizard.

4.5.4 GUI mode – manual construction

Just as in the prompt/script UI mode, the molecules, residues and spins can be manually
added. First add a molecule by right clicking on the “Spin system information” element and
selecting the relevant entry in the popup menu. Then right click on the newly created
molecule container to add residues, and right click on residue containers to add spins.

4.5.5 GUI mode – deselect spins

To deselect spins (for example if they are unresolved, overlapping peaks), click on the
“User functions→deselect→read” menu item from the main relax window or the spin viewer
window:

4.5. SETUP IN THE GUI 47

Select the file listing the unresolved spins and change the column numbers in the “Free
format file settings” GUI element as needed:

Alternatively the spin editor window can be reopened and the spins manually deselected
by right clicking on them and selecting “Deselect”. Returning to the spin editor window,
you should now see certain spins coloured grey:

48 CHAPTER 4. THE RELAX DATA MODEL

4.6 The next steps

This chapter presented the basics of setting up the relax data store, concepts which are
needed for all analysis types built into relax. The next chapters will introduce specific
analyses types – the steady-state NOE, R1 and R2 relaxation curve-fitting, and the auto-
mated full model-free analysis protocol of d’Auvergne and Gooley (2007, 2008c) – which
build on the ideas introduced here.

Part II

The specific analyses

49

Chapter 5

The R1 and R2 relaxation rates –
relaxation curve-fitting

5.1 Introduction to relaxation curve-fitting

The fitting of exponentials to relaxation curves (relaxation curve-fitting or as used through-
out this chapter abbreviated simply as relax-fit) involves a number of steps including the
loading of data, the calculation of both the average peak intensity across replicated spectra
and the standard deviations of those peak intensities, selection of the experiment type,
optimisation of the parameters of the exponential curves during the fit for each observed
spin, Monte Carlo simulations to find the parameter errors, and saving and viewing the
results. To simplify the process a sample script will be followed step by step as was done
with the NOE calculation.

5.2 The exponential curve models

A number of different models are supported in this analysis. These include the two pa-
rameter exponential decay to zero, the inversion recovery experiment, and the saturation
recovery experiment. These can be selected using the relax fit.select model user func-
tion.

51

52 CHAPTER 5. RELAXATION CURVE-FITTING

The default is the two parameter exponential decay whereby the magnetisation starts at
I0 and decays to zero. It has the parameters {Rx, I0}. The formula of this function is

I(t) = I0e
−Rx·t, (5.1)

where I(t) is the peak intensity at any time point t, I0 is the initial intensity, and Rx is
the relaxation rate (either the R1 or R2).

In the inversion recovery experiment, the magnetisation starts at a negative value at −I0
and relaxes to a positive I∞ value. This curve consists of three parameters {Rx, I0, I∞}.
The formula is

I(t) = I∞ − I0e
−Rx·t. (5.2)

In the saturation recovery experiment, the magnetisation starts at zero and relaxes to a
positive I∞ value. The model consists of the two parameters {Rx, I∞} and has the formula

I(t) = I∞
(
1− e−Rx·t

)
. (5.3)

5.3 From spectra to peak intensities for the relaxation rates

The following subsections simply contain advice on how to go from the recorded FIDs to
the peak lists ready to be input into relax. This need not be followed – it is simply a set
of recommendations for obtaining the highest quality relaxation rates.

5.3.1 Temperature control and calibration

Before starting with the spectral processing, it should be noted that proper temperature
control and calibration are essential for relaxation data. Small temperature changes can
have an effect on the viscosity and hence global tumbling of the molecule being studied
and, as the molecular diffusion tensor is the major contributor to relaxation, any non-
consistent data will likely lead to artificial motions appearing in subsequent model-free
analyses.

Per-experiment temperature calibration is essential and the technique used will need to
be specified for BMRB data deposition. Note that the standard MeOH/ethylene glycol
calibration of a spectrometer is of no use when you are running experiments which pump in
large amounts of power into the probe head. Although the R1 experiment should be about
the same temperature as a HSQC and hence be close to the standard MeOH/ethylene glycol
spectrometer calibration, the R2 CPMG or spin lock and, to a lesser extent, the NOE pre-
saturation pump a lot more power into the probe head. The power differences can either
cause the temperature in the sample to be too high or too low. This is unpredictable as
the thermometer used by the VT unit is next to the coils in the probe head and not inside
the NMR sample. So the VT unit tries to control the temperature inside the probe head
rather than in the NMR sample. However between the thermometer and the sample is the
water of the sample, the glass of the NMR tube, the air gap where the VT unit controls

5.3. FROM SPECTRA TO PEAK INTENSITIES FOR THE RELAXATION RATES53

air flow and the outside components of the probe head protecting the electronics. If the
sample, the probe head or the VT unit is changed, this will have a different affect on the
per-experiment temperature. The VT unit responds differently under different conditions
and may sometimes over or under compensate by a couple of degrees. Therefore each
relaxation data set from each spectrometer requires a per-experiment calibration.

Explicit temperature control techniques are also essential for relaxation data collection.
Again the technique used will be asked for by relax for BMRB data deposition. A num-
ber of factors can cause significant temperature fluctuations between individual relaxation
experiments. This includes the daily temperature cycle of the room housing the spectrom-
eter, different amounts of power for the individual experiments, etc. The best methods
for eliminating such problems are single scan interleaving and temperature compensation
block. Single scan interleaving is the most powerful technique for averaging the tempera-
ture fluctuations not only across different experiments, but also across the entire measure-
ment time. The application of off-resonance temperature compensation blocks at the start
of the experiment is useful for the R2 and will normalise the temperature between the
individual experiments, but single scan or single fid interleaving is nevertheless required
for normalising the temperature across the entire measurement.

5.3.2 Spectral processing

For the best measurement of peak heights across the myriad of NMR spectral analysis
software, it is recommend to zero fill a lot – 8k to 16k would give the best results. This
does not increase the information content of the spectrum or decrease the errors, it simply
interpolates. Even if the NMR spectral software performs 3-point quadratic interpolation
between the highest points to determine the peak height, the additional free interpolation
will make the estimation more accurate.

Additionally, care must be taken to properly scale the first point as this can cause a
baseline roll which will affect peak heights. A very useful description comes directly from
the NMRPipe manual:

Depending on the delay, the first point of the FID should be adjusted before
Fourier Transform. The first point scaling factor is selected by the window
function argument -c.

If the required first order phase P1 for the given dimension is 0.0, the first
point scaling factor should be 0.5. This is because the discrete Fourier trans-
form does the equivalent of counting the point at t=0 twice. If the first point
is not scaled properly in this case, ridge-line baseline offsets in the spectrum
will result.

In all other cases (P1 is not zero), this scale factor should be 1.0. This
is because the first point of the FID no longer corresponds to t=0, and so it
shouldn’t be scaled. If the scale factor is not set correctly, it will introduce a
baseline distortion which is either zero-order or sinusoidal, depending on what
first-order phase is required. When possible, it is best to set up experiments
with either exactly 0, 1/2, or 1-point delay. There are several reasons:

• Phase correction values can be determined easily.

http://spin.niddk.nih.gov/NMRPipe/doc1/

54 CHAPTER 5. RELAXATION CURVE-FITTING

Table 5.1: Summary, First Point Scaling and Phase Correction

Delay P1 FID Spectrum

0 point 0 Scale -c 0.5
1/2 point 180 Scale -c 1.0 Folded peaks have opposite sign
1 point 360 Scale -c 1.0 Use “POLY -auto -ord 0”

• If the delay is not a multiple of 1/2 point, the phase of folded peaks will
be distorted.

• The Hilbert transform (HT) is used, sometimes automatically, to recon-
struct previously deleted imaginary data for interactive rephasing or in-
verse processing. But, the HT can only reconstruct imaginary data per-
fectly if the phase is a multiple of 1/2 point.

• Data with P1 = 360 have the first point t=0 missing (i.e. 1 point delay).
Since the first point of the FID corresponds to the sum of points in the
corresponding spectrum, this missing first point can be “restored” by
adding a constant to the phased spectrum. This can be done conveniently
by automated zero-order baseline correction, as shown in table 5.1.

Here is an example NMRPipe script designed for optimal relaxation rate extraction:

1 #!/bin/csh

2

3 setenv FILEROOT $1

4 set PHASE=81.4

5

6 echo "\n# Fourier Transform (nmrPipe fid/*.fid to ft/*.dat)"

7 echo "# t2 phase is set to $PHASE"

8 echo "# t1 phase is set to 0.0\n"

9

10 nmrPipe -in fid/$FILEROOT.fid \

11 | nmrPipe -fn SOL \

12 | nmrPipe -fn GM -g1 15 -g2 20 -c 0.5 \

13 | nmrPipe -fn ZF -size 8192 \

14 | nmrPipe -fn FT -auto \

15 | nmrPipe -fn PS -p0 $PHASE -p1 0.0 -di -verb \

16 | nmrPipe -fn TP \

17 | nmrPipe -fn SP -off 0.5 -end 0.98 -pow 2 -c 0.5 \

18 | nmrPipe -fn ZF -size 8192 \

19 | nmrPipe -fn FT -auto \

20 | nmrPipe -fn PS -p0 0.0 -p1 0.0 -di -verb \

21 | nmrPipe -fn TP \

22 | nmrPipe -fn POLY -auto \

23 | nmrPipe -fn EXT -left -sw \

24 | nmrPipe -out ft/$FILEROOT.dat -ov

The script is run by suppling the FILEROOT value as a command line option so if the
script is called nmrpipe.sh and the var2pipe or bruk2pipe processed file R1 ncyc4.fid

is in the fid directory, you would run:

$./nmrpipe.sh R1_ncyc4

5.3. FROM SPECTRA TO PEAK INTENSITIES FOR THE RELAXATION RATES55

The ft directory must exist for this script to execute. Different experiment specific options
may be needed such as:

| nmrPipe -fn REV \

| nmrPipe -fn FT -neg \

| nmrPipe -fn PS -rs 2.5 \

The script should be changed for different phasing, first point scaling, a polynomial base-
line correction added in the direct dimension or removed from the indirect dimension,
solvent suppression removed or changed, and the window functions modified for optimal
spectral quality. Each system and spectrum is different, so it is recommended that to find
the optimal processing that each part of the script be removed and re-added one-by-one
between processing and checking of the resultant spectrum. Note that the extraction at
the end after the polynomial baseline correction in the indirect dimension is important as
the baseline correction often displays a much better performance when the empty part of
the spectrum is used in the calculation.

5.3.3 Measuring peak intensities

For the measurement of peak intensities, again care must be taken. A read of the paper:

• Viles, J., Duggan, B., Zaborowski, E., Schwarzinger, S., Huntley, J., Kroon, G.,
Dyson, H. J., and Wright, P. (2001). Potential bias in NMR relaxation data intro-
duced by peak intensity analysis and curve fitting methods. J. Biomol. NMR, 21,
1–9. (10.1023/A:1011966718826)

is highly recommended. Despite the recommendations in the discussion of this paper, a
different methodology using peak heights can be used to solve the same problems. This
will be discussed in a paper which is currently in preparation from the Gooley group. The
steps involved are:

• For the first spectrum in the time series, shift the peak list to the tops of the peaks
(for example using “pc” in Sparky on subsets of peaks).

• Copy this 1st spectrum list onto all spectra, shifting the peaks to the top as in the
previous step.

• When the peak disappears into the noise, leave it at its current position and do not
type “pc” or equivalent. This will add weight to the first point in the subsequent
step.

• Once all spectra are shifted, calculate an average peak list.

• Copy this average peak list onto fresh copies of all spectra.

• Measure peak heights using this averaged peak list.

This will produce the most accurate peak intensity measurements until better, more robust
peak shape integration comes along. This is a special technique which is designed to
minimise the white-noise bias talked about in the Viles et al. (2001) paper. As the noise

http://dx.doi.org/10.1023/A:1011966718826

56 CHAPTER 5. RELAXATION CURVE-FITTING

often decreases with the decrease in total spectral power, using the tops of the peaks means
that you are actually measuring the real peak height plus positive noise in all cases. This
non-constant additional positive noise contribution can result in a double exponential in
the measured data. The technique above eliminates this as you then measure close to
real peak height with the addition of white noise centred at zero – it is both negative and
positive to equal amounts – rather than the peak high with noise contribution strongly
biased towards the positive. Where the peaks disappear, you then are measuring the pure
baseplane noise. This is fine as these white-noise data points centred at zero will help in
the subsequent exponential fit in relax.

If using Sparky then, to be sure that the peak heights are properly updated, for each
spectrum type “pa” to select all peaks, “ph” to update all selected peak heights, “lt” to
show the spectrum peaks window, make sure “data height” is selected in the options, and
then save the peak list.

5.4 Relaxation curve-fitting in the prompt/script UI mode

5.4.1 Relax-fit script mode – the sample script

The following is a verbatim copy of the contents of the sample scripts/relax fit.py

file. If your copy of the sample script is different than that below, please send an email to
the relax-devel mailing list to tell the relax developers that the manual is out of date (see
section 3.3.3 on page 31). You will need to first copy this script to a dedicated analysis
directory containing peak lists, a PDB file and a file listing unresolved spin systems, and
then modify its contents to suit your specific analysis. The script contents are:

1 # Script for relaxation curve-fitting.

2

3 # Create the 'rx' data pipe.

4 pipe.create('rx', 'relax_fit')

5

6 # Load the backbone amide 15N spins from a PDB file.

7 structure.read_pdb('Ap4Aase_new_3.pdb')

8 structure.load_spins(spin_id='@N')

9 structure.load_spins(spin_id='@NE1')

10

11 # Spectrum names.

12 names = [

13 'T2_ncyc1_ave',

14 'T2_ncyc1b_ave',

15 'T2_ncyc2_ave',

16 'T2_ncyc4_ave',

17 'T2_ncyc4b_ave',

18 'T2_ncyc6_ave',

19 'T2_ncyc9_ave',

20 'T2_ncyc9b_ave',

21 'T2_ncyc11_ave',

22 'T2_ncyc11b_ave'

23]

24

25 # Relaxation times (in seconds).

26 times = [

27 0.0176,

28 0.0176,

5.4. RELAXATION CURVE-FITTING IN THE PROMPT/SCRIPT UI MODE 57

29 0.0352,

30 0.0704,

31 0.0704,

32 0.1056,

33 0.1584,

34 0.1584,

35 0.1936,

36 0.1936

37]

38

39 # Loop over the spectra.

40 for i in range(len(names)):

41 # Load the peak intensities.

42 spectrum.read_intensities(file=names[i]+'.list', dir=data_path, spectrum_id=names[i],

int_method='height')

43

44 # Set the relaxation times.

45 relax_fit.relax_time(time=times[i], spectrum_id=names[i])

46

47 # Specify the duplicated spectra.

48 spectrum.replicated(spectrum_ids=['T2_ncyc1_ave', 'T2_ncyc1b_ave'])

49 spectrum.replicated(spectrum_ids=['T2_ncyc4_ave', 'T2_ncyc4b_ave'])

50 spectrum.replicated(spectrum_ids=['T2_ncyc9_ave', 'T2_ncyc9b_ave'])

51 spectrum.replicated(spectrum_ids=['T2_ncyc11_ave', 'T2_ncyc11b_ave'])

52

53 # Peak intensity error analysis.

54 spectrum.error_analysis()

55

56 # Deselect unresolved spins.

57 deselect.read(file='unresolved', mol_name_col=1, res_num_col=2, res_name_col=3,

spin_num_col=4, spin_name_col=5)

58

59 # Set the relaxation curve type.

60 relax_fit.select_model('exp')

61

62 # Grid search.

63 minimise.grid_search(inc=11)

64

65 # Minimise.

66 minimise.execute('newton', constraints=False)

67

68 # Monte Carlo simulations.

69 monte_carlo.setup(number=500)

70 monte_carlo.create_data()

71 monte_carlo.initial_values()

72 minimise.execute('newton', constraints=False)

73 monte_carlo.error_analysis()

74

75 # Save the relaxation rates.

76 value.write(param='rx', file='rx.out', force=True)

77

78 # Save the results.

79 results.write(file='results', force=True)

80

81 # Create Grace plots of the data.

82 grace.write(y_data_type='chi2', file='chi2.agr', force=True) # Minimised chi-squared

value.

83 grace.write(y_data_type='i0', file='i0.agr', force=True) # Initial peak intensity.

84 grace.write(y_data_type='rx', file='rx.agr', force=True) # Relaxation rate.

85 grace.write(x_data_type='relax_times', y_data_type='peak_intensity', file='intensities.agr

', force=True) # Average peak intensities.

58 CHAPTER 5. RELAXATION CURVE-FITTING

86 grace.write(x_data_type='relax_times', y_data_type='peak_intensity', norm=True, file='

intensities_norm.agr', force=True) # Average peak intensities (normalised).

87

88 # Display the Grace plots.

89 grace.view(file='chi2.agr')

90 grace.view(file='i0.agr')

91 grace.view(file='rx.agr')

92 grace.view(file='intensities.agr')

93 grace.view(file='intensities_norm.agr')

94

95 # Save the program state.

96 state.save('rx.save', force=True)

The next sections will break this script down into its logical components and explain how
these parts will be interpreted by relax. To execute this script, please see section 1.2.8 on
page 12 for details.

5.4.2 Relax-fit script mode – initialisation of the data pipe

The data pipe is simply created by the command

3 # Create the 'rx' data pipe.

4 pipe.create('rx', 'relax_fit')

This user function will then create a relaxation exponential curve-fitting specific data
pipe labelled “rx”. The second argument sets the pipe type to that of the relaxation
curve-fitting. Setting the pipe type is important so that the program knows which user
functions are compatible with the data pipe, for example in the steady-state NOE analysis
the function minimise.execute (see page 497) is meaningless as the NOE values are
calculated directly rather than optimised.

5.4.3 Relax-fit script mode – setting up the spin systems

The first thing which needs to be completed prior to any spin specific command is to
generate the molecule, residue and spin data structures for storing the spin specific data.
In the sample script above this is generated from a PDB file, however a plain text file with
the sequence information can be used instead (see the sequence.read user function on
page 605 for more details). In the case of the sample script, the command

6 # Load the backbone amide 15N spins from a PDB file.

7 structure.read_pdb(name, 'Ap4Aase_new_3.pdb')

will load the PDB file Ap4Aase new 3.pdb into relax. Then

8 structure.load_spins(spin_id='@N')

9 structure.load_spins(spin_id='@NE1')

will generate the molecule, residue, and spin sequence for the current data pipe. In this
situation there will be a single spin system per residue generated corresponding to the
backbone amide nitrogens as well as 15N spins set up for the tryptophan indole nitrogens.
Although the 3D coordinates have been loaded into the program from the PDB file, this
structural information serves no purpose when calculating R1 and R2 values.

5.4. RELAXATION CURVE-FITTING IN THE PROMPT/SCRIPT UI MODE 59

5.4.4 Relax-fit script mode – loading the data

To load the peak intensities into relax the spectrum.read intensities and relax fit.

relax times user functions are executed. Important keyword arguments for these user
functions are the file name and directory, the spectrum identification string and the re-
laxation time period of the experiment in seconds. By default the file format will be
automatically detected. Currently Sparky, XEasy, NMRView, and generic columnar for-
matted peak lists are supported. To be able to import any other type of format please
send an email to the relax development mailing list with the details of the format. Adding
support for new formats is trivial. The following series of commands – an expansion of
the for loop in the sample script – will load peak intensities from six different relaxation
periods, four of which have been duplicated, from Sparky peak lists with the peak heights
in the 10th column.

spectrum.read_intensities('T2_ncyc1.list', spectrum_id='1', int_col=10)

relax_fit.relax_time(spectrum_id='1', time=0.0176)

spectrum.read_intensities('T2_ncyc1b.list', spectrum_id='1b', int_col=10)

relax_fit.relax_time(spectrum_id='1b', time=0.0176)

spectrum.read_intensities('T2_ncyc2.list', spectrum_id='2', int_col=10)

relax_fit.relax_time(spectrum_id='2', time=0.0352)

spectrum.read_intensities('T2_ncyc4.list', spectrum_id='4', int_col=10)

relax_fit.relax_time(spectrum_id='4', time=0.0704)

spectrum.read_intensities('T2_ncyc4b.list', spectrum_id='4b', int_col=10)

relax_fit.relax_time(spectrum_id='4b', time=0.0704)

spectrum.read_intensities('T2_ncyc6.list', spectrum_id='6', int_col=10)

relax_fit.relax_time(spectrum_id='6', time=0.1056)

spectrum.read_intensities('T2_ncyc9.list', spectrum_id='9', int_col=10)

relax_fit.relax_time(spectrum_id='9', time=0.1584)

spectrum.read_intensities('T2_ncyc9b.list', spectrum_id='9b', int_col=10)

relax_fit.relax_time(spectrum_id='9b', time=0.1584)

spectrum.read_intensities('T2_ncyc11.list', spectrum_id='11', int_col=10)

relax_fit.relax_time(spectrum_id='11', time=0.1936)

spectrum.read_intensities('T2_ncyc11b.list', spectrum_id='11b', int_col=10)

relax_fit.relax_time(spectrum_id='11b', time=0.1936)

The replicated spectra a set up with the commands

47 # Specify the duplicated spectra.

48 spectrum.replicated(spectrum_ids=['T2_ncyc1_ave', 'T2_ncyc1b_ave'])

49 spectrum.replicated(spectrum_ids=['T2_ncyc4_ave', 'T2_ncyc4b_ave'])

50 spectrum.replicated(spectrum_ids=['T2_ncyc9_ave', 'T2_ncyc9b_ave'])

51 spectrum.replicated(spectrum_ids=['T2_ncyc11_ave', 'T2_ncyc11b_ave'])

Note that the relaxation time period should be calculated directly from the pulse sequence
(as the sum of delays and pulses for the period), as the estimated time may not match the
real time. For the Sparky peak lists, by default relax assumes that the intensity value is
in the 4th column. A typical file looks like:

Assignment w1 w2 Data Height

LEU3N-HN 122.454 8.397 129722

GLY4N-HN 111.999 8.719 422375

SER5N-HN 115.085 8.176 384180

MET6N-HN 120.934 8.812 272100

ASP7N-HN 122.394 8.750 174970

SER8N-HN 113.916 7.836 218762

GLU11N-HN 122.194 8.604 30412

GLY12N-HN 110.525 9.028 90144

60 CHAPTER 5. RELAXATION CURVE-FITTING

By supplying the int col argument to the spectrum.read intensities user function, this
can be changed. A typical XEasy file will look like:

No. Color w1 w2 ass. in w1 ass. in w2 Volume Vol. Err. Method Comment

2 2 10.014 134.221 HN 21 LEU N 21 LEU 7.919e+03 0.00e+00 m

3 2 10.481 132.592 HE1 79 TRP NE1 79 TRP 1.532e+04 0.00e+00 m

17 2 9.882 129.041 HN 110 PHE N 110 PHE 9.962e+03 0.00e+00 m

18 2 8.757 128.278 HN 52 ASP N 52 ASP 2.041e+04 0.00e+00 m

19 2 10.086 128.297 HN 69 SER N 69 SER 9.305e+03 0.00e+00 m

20 3 9.111 127.707 HN 15 ARG N 15 ARG 9.714e+03 0.00e+00 m

where the peak height is in the Volume column. And for an NMRView file:

label dataset sw sf

H1 N15

cNTnC_noe0.nv

2505.63354492 1369.33557129

499.875 50.658000946

H1.L H1.P H1.W H1.B H1.E H1.J H1.U N15.L N15.P N15.W N15.B N15.E N15.J N15.U vol int stat comment flag0

0 {70.HN} 10.75274 0.02954 0.05379 ++ 0.0 {} {70.N} 116.37241 0.23155 0.35387 ++ 0.0 {} -6.88333129883 -0.1694 0 {} 0

1 {72.HN} 9.67752 0.03308 0.05448 ++ 0.0 {} {72.N} 126.41302 0.27417 0.37217 ++ 0.0 {} -5.49038267136 -0.1142 0 {} 0

2 {} 8.4532 0.02331 0.05439 ++ 0.0 {} {} 122.20137 0.38205 0.33221 ++ 0.0 {} -2.58034267191 -0.1320 0 {} 0

5.4.5 Relax-fit script mode – the rest of the setup

Once all the peak intensity data has been loaded a few calculations are required prior to
optimisation. Firstly the peak intensities for individual spins needs to be averaged across
replicated spectra. The peak intensity errors also have to be calculated using the standard
deviation formula. These two operations are executed by the user function

53 # Peak intensity error analysis.

54 spectrum.error_analysis()

Any spins which cannot be resolved due to peak overlap were included in a file called
unresolved. This file can consist of optional columns of the molecule name, the residue
name and number, and the spin name and number. The matching spins are excluded from
the analysis by the user function

56 # Deselect unresolved spins.

57 deselect.read(file='unresolved', mol_name_col=1, res_num_col=2, res_name_col=3,

spin_num_col=4, spin_name_col=5)

Finally the experiment type is specified by the command

59 # Set the relaxation curve type.

60 relax_fit.select_model('exp')

The argument “exp” sets the relaxation curve to a two parameter {Rx, I0} exponential
which decays to zero. Changing the user function argument to “inv” will select the
inversion recovery experiment, and changing it to “sat” will select the saturation recovery
experiment (see section 5.2 on page 51).

5.4. RELAXATION CURVE-FITTING IN THE PROMPT/SCRIPT UI MODE 61

5.4.6 Relax-fit script mode – optimisation of exponential curves

Now that everything has been setup minimisation can be used to optimise the parameter
values. Firstly a grid search is applied to find a rough starting position for the subsequent
optimisation algorithm. Eleven increments per dimension of the model (in this case the
two dimensions {Rx, I0}) is sufficient. The user function for executing the grid search is

62 # Grid search.

63 minimise.grid_search(inc=11)

The next step is to select one of the minimisation algorithms to optimise the model pa-
rameters

65 # Minimise.

66 minimise.execute('newton', constraints=False)

5.4.7 Relax-fit script mode – error analysis

Only one technique adequately estimates parameter errors when the parameter values
where found by optimisation – Monte Carlo simulations. In relax this can be implemented
by using a series of functions from the monte carlo user function class. Firstly the number
of simulations needs to be set

68 # Monte Carlo simulations.

69 monte_carlo.setup(number=500)

For each simulation, randomised relaxation curves will be fit using exactly the same
methodology as the original exponential curves. These randomised curves are created
by back calculation from the fitted model parameter values and then each point on the
curve randomised using the error values set earlier in the script

70 monte_carlo.create_data()

As a grid search for each simulation would be too computationally expensive, the starting
point for optimisation for each simulation can be set to the position of the optimised
parameter values of the model

71 monte_carlo.initial_values()

Then exactly the same optimisation as was used for the model can be performed

72 minimise.execute('newton', constraints=False)

The parameter errors are then determined as the standard deviation of the optimised
parameter values of the simulations

73 monte_carlo.error_analysis()

62 CHAPTER 5. RELAXATION CURVE-FITTING

5.4.8 Relax-fit script mode – finishing off

To finish off, the script first saves the relaxation rates together with their errors in a simple
text file

75 # Save the relaxation rates.

76 value.write(param='rx', file='rx.out', force=True)

Grace plots are created and viewed

81 # Create Grace plots of the data.

82 grace.write(y_data_type='chi2', file='chi2.agr', force=True) # Minimised chi-squared

value.

83 grace.write(y_data_type='i0', file='i0.agr', force=True) # Initial peak intensity.

84 grace.write(y_data_type='rx', file='rx.agr', force=True) # Relaxation rate.

85 grace.write(x_data_type='relax_times', y_data_type='peak_intensity', file='intensities.agr

', force=True) # Average peak intensities.

86

87 grace.write(x_data_type='relax_times', y_data_type='peak_intensity', norm=True, file='

intensities_norm.agr', force=True) # Average peak intensities (normalised).

and viewed

88 # Display the Grace plots.

89 grace.view(file='chi2.agr')

90 grace.view(file='i0.agr')

91 grace.view(file='rx.agr')

92 grace.view(file='intensities.agr')

93 grace.view(file='intensities_norm.agr')

and finally the program state is saved for future reference

95 # Save the program state.

96 state.save(file='rx.save', force=True)

5.5. THE RELAXATION CURVE-FITTING AUTO-ANALYSIS IN THE GUI 63

5.5 The relaxation curve-fitting auto-analysis in the GUI

The R1 and R2 relaxation rates can be calculated using the relax GUI (see Figures 1.6
and 1.7). These auto-analyses can be selected using the analysis selection wizard (Fig-
ure 1.4 on page 12). Just as with the steady-state NOE in the next chapter, these auto-
analyses are very similar in spirit to the sample script described in this chapter, though
the Grace 2D visualisation is more advanced. If you have read this chapter, the usage of
these analyses should be self explanatory.

As in the script/prompt UI section above, the example of protein 15N R1 relaxation analysis
will be performed in the following sections. To keep track of all the messages relax produces
for future reference, you can run the relax GUI with the following command line arguments:

$ relax --log log --gui

The messages will then appear both in the relax controller window (see Figure 1.9 on
page 19) and in the log file.

5.5.1 Relax-fit GUI mode – initialisation of the data pipe

To begin the analysis, launch the analysis selection wizard (see Figure 1.4 on page 12).
Select either the R1 or R2 analyses, and change the name of the analysis if you plan on
running multiple analyses from different field strengths in one relax instance.

Then click on the “Next” button. On the second page click on “Start” to commence the
analysis – this second part of the wizard does not need to be changed. For the R1 and
R2 analyses in the GUI, a data pipe bundle containing only a single data pipe for that
analysis will be created. This data pipe bundle can be safely ignored.

64 CHAPTER 5. RELAXATION CURVE-FITTING

5.5.2 Relax-fit GUI mode – general setup

You will now be presented with a blank analysis tab:

Here there are two things unique to the GUI which need to be preformed:

NMR frequency label: First set the NMR frequency label. This is only used for
the name of the output file. For example if you set the label to “1200”, the file
r1.1200.out will be created at the end of the analysis.

Results directory: All of the automatically created results and Grace files will be placed
into this directory. The “Results directory” can now be changed.

5.5. THE RELAXATION CURVE-FITTING AUTO-ANALYSIS IN THE GUI 65

5.5.3 Relax-fit GUI mode – setting up the spin systems

As the relaxation data is at the level of the spins, the molecule, residue and spin data
structures need to be set up. In the R1 and R2 GUI analysis tabs, there is a special “Spin
systems” GUI element designed for this. This will initially say “0 spins loaded and selected”.
Click on the “Spin editor” button to launch the spin viewer window. The steps for setting
up the spin containers using PDB files are described in section 4.5.2 on page 42 or for
sequence files in section 4.5.3 on page 45.

5.5.4 Relax-fit GUI mode – unresolved spins

As in the prompt/script UI section 5.4.5, the spins can be deselected at this point using
the same unresolved file. This is described in detail in section 4.5.5 on page 46.

5.5.5 Relax-fit GUI mode – loading the data

At this stage, the peak intensity data needs to be loaded. In both the R1 and R2 analysis
tabs is a “Spectra list” GUI element. Click on the “Add” button to launch the peak intensity
loading wizard:

In this example, a Sparky peak list containing the peak heights determined from the
averaged chemical shift positions for all spectra will be loaded. Set the spectrum ID string
to a unique value. Click on “Next”. This will most likely cause a RelaxWarning message
to appear for all peak list elements which do not correspond to any spins loaded into the
relax data store:

66 CHAPTER 5. RELAXATION CURVE-FITTING

These messages must be carefully checked to be sure that the correct data has been loaded.
A RelaxError might be thrown if the peak list is corrupted or if the dimension has been
incorrectly given. In this case check the message, go “Back”, fix the problem, and click on
“Next” again. Then click on “Next”. You should now see the error type page:

The description for this wizard page should be very carefully read – it will tell you about
all of the error analysis options available and how these are implemented in relax. For the
protein relaxation example, replicated spectra have been collected. Therefore the option
“Replicated spectra” will be chosen. The “Baseplane RMSD” option is documented in the
NOE chapter. After clicking on “Next” you will see:

5.5. THE RELAXATION CURVE-FITTING AUTO-ANALYSIS IN THE GUI 67

For the first of the duplicate spectra, or any spectrum without a duplicate, you can click
on the “Skip” button. If this is the second spectrum you have loaded from a duplicated
set, select the two replicated spectra and then click on “Next”:

Finally set the relaxation time period for this experiment in seconds:

68 CHAPTER 5. RELAXATION CURVE-FITTING

All delays and pulse lengths in the pulse sequence should be carefully checked to be sure
that the time is exactly what you would expect – the estimated time may not match the
real time. To set the time and close the wizard, click on the “Finish” button.

This procedure should be repeated for every experiment you have collected (you could, as
an alternative, load all at the same time using the “Apply” button at each stage). In the
end you should see something such as:

5.5.6 Relax-fit GUI mode – optimisation and error analysis

Back in the main R1 analysis tab, the grid search increments and number of Monte Carlo
simulations can be changed. The default values of 21 grid search increments and 500 MC

5.5. THE RELAXATION CURVE-FITTING AUTO-ANALYSIS IN THE GUI 69

simulations are optimal – lower values are not recommended. To perform the optimisation
and error analysis, click on the “Execute relax” button. The relax controller will open to
show you the progress of the optimisation and simulations:

Once finished, the “Results viewer” window will also appear:

This window can be used to open the text files in the default text editor for your operating
system or the 2D Grace plots in xmgrace if available on your system.

70 CHAPTER 5. RELAXATION CURVE-FITTING

Figure 5.1: Screenshot of the 2D peak intensity plots for the exponential relaxation curves
in Xmgrace.

5.6 Final checks of the curve-fitting

To be sure that the data has been properly collected and that no instrumentation
or pulse sequence timing errors have occurred, it is essential to carefully check the
intensities.agr and intensities norm.agr 2D Grace files. These are plots of the
decay curves for each spin system analysed, and any non-exponential behaviour should be
clearly visible (see Figure 5.1). If Xmgrace or a compatible program is not available for
your operating system, the Grace files contain text representations of the curves at the end
which can opened, edited and visualised in any another 2D graphing software package.

Note that errors resulting in systematic bias in the data – for example if temperature con-
trol (single-scan interleaving or temperature compensation blocks) or per-experiment/per-
spectrometer temperature calibration on MeOH or ethylene glycol have not been performed
– will not be detected by looking at the decay curves. See section 5.3.1 or the relax data.

temp calibration user function documentation on page 573 and the relax data.temp

control user function documentation on page 574 for more details.

Chapter 6

Calculating the NOE

6.1 Introduction to the steady-state NOE

The calculation of NOE values is a straight forward and quick procedure which involves
two components – the calculation of the value itself and the calculation of the errors. To
understand the steps involved the execution of a sample NOE calculation script will be
followed in detail. Then the same operations will be presented for the perspective of the
graphical user interface.

6.2 From spectra to peak intensities for the NOE

For a set of recommendations for how to obtain the best quality relaxation rates, please
see section 5.3 on page 52. In summary the following are important – temperature control
(though the standard steady-state NOE single FID interleaved pulse sequences are fine),
per-experiment temperature calibration, spectral processing with massive zero-filling and
no baseplane rolling, and using an averaged peak list for determining the peak heights.

71

72 CHAPTER 6. CALCULATING THE NOE

6.3 Calculation of the NOE in the prompt/script UI mode

6.3.1 NOE script mode – the sample script

This sample script can be found in the sample scripts directory and will be used as the
template for the next sections describing how to use relax.

1 # Script for calculating NOEs.

2

3 # Create the data pipe.

4 pipe.create('NOE', 'noe')

5

6 # Load the sequence from a PDB file.

7 structure.read_pdb('Ap4Aase_new_3.pdb')

8 structure.load_spins(spin_id='@N')

9 structure.load_spins(spin_id='@NE1')

10

11 # Load the reference spectrum and saturated spectrum peak intensities.

12 spectrum.read_intensities(file='ref.list', spectrum_id='ref_ave')

13 spectrum.read_intensities(file='sat.list', spectrum_id='sat_ave')

14

15 # Set the spectrum types.

16 noe.spectrum_type('ref', 'ref_ave')

17 noe.spectrum_type('sat', 'sat_ave')

18

19 # Set the errors.

20 spectrum.baseplane_rmsd(error=3600, spectrum_id='ref_ave')

21 spectrum.baseplane_rmsd(error=3000, spectrum_id='sat_ave')

22

23 # Individual residue errors.

24 spectrum.baseplane_rmsd(error=122000, spectrum_type='ref', res_num=114)

25 spectrum.baseplane_rmsd(error=8500, spectrum_type='sat', res_num=114)

26

27 # Peak intensity error analysis.

28 spectrum.error_analysis()

29

30 # Deselect unresolved spins.

31 deselect.read(file='unresolved', res_num_col=1, spin_name_col=2)

32

33 # Calculate the NOEs.

34 minimise.calculate()

35

36 # Save the NOEs.

37 value.write(param='noe', file='noe.out', force=True)

38

39 # Create Grace files.

40 grace.write(y_data_type='peak_intensity', file='intensities.agr', force=True)

41 grace.write(y_data_type='noe', file='noe.agr', force=True)

42

43 # View the Grace files.

44 grace.view(file='intensities.agr')

45 grace.view(file='noe.agr')

46

47 # Write the results.

48 results.write(file='results', dir=None, force=True)

49

50 # Save the program state.

51 state.save('save', force=True)

6.3. CALCULATION OF THE NOE IN THE PROMPT/SCRIPT UI MODE 73

6.3.2 NOE script mode – initialisation of the data pipe

The start of this sample script is very similar to that of the relaxation curve-fitting calcu-
lation on page 58. The command

3 # Create the data pipe.

4 pipe.create('NOE', 'noe')

initialises the data pipe labelled “NOE”. The data pipe type is set to the NOE calculation
by the argument “noe”.

6.3.3 NOE script mode – setting up the spin systems

The backbone amide nitrogen sequence is extracted from a PDB file using the same com-
mands as the relaxation curve-fitting script (Chapter 5. The command

6 # Load the sequence from a PDB file.

7 structure.read_pdb('Ap4Aase_new_3.pdb')

will load the PDB file Ap4Aase new 3.pdb into relax. Then the following commands will
generate both the backbone amide and tryptophan indole 15N spins

8 structure.load_spins(spin_id='@N')

9 structure.load_spins(spin_id='@NE1')

6.3.4 NOE script mode – loading the data

The commands

11 # Load the reference spectrum and saturated spectrum peak intensities.

12 spectrum.read_intensities(file='ref.list', spectrum_id='ref_ave')

13 spectrum.read_intensities(file='sat.list', spectrum_id='sat_ave')

will load the peak heights of the reference and saturated NOE experiments (although the
volume could be used instead). relax will automatically determine the format of the peak
list. Currently only Sparky, XEasy, NMRView and a generic columnar formatted text file
are supported.

In this example, relax will determine from the file contents that these are Sparky peak
lists (saved after typing “lt”). The first column of the file should be the Sparky assignment
string and it is assumed that the 4th column contains either the peak height or peak volume
(though this can be in any column – the int col argument is used to specify where the
data is). Without specifying the int method argument, peak heights will be assumed. See
page 611 for a description of all the spectrum.read intensities user function arguments.
In this example, the peak list looks like:

Assignment w1 w2 Data Height

LEU3N-HN 122.454 8.397 129722

GLY4N-HN 111.999 8.719 422375

SER5N-HN 115.085 8.176 384180

74 CHAPTER 6. CALCULATING THE NOE

MET6N-HN 120.934 8.812 272100

ASP7N-HN 122.394 8.750 174970

SER8N-HN 113.916 7.836 218762

GLU11N-HN 122.194 8.604 30412

GLY12N-HN 110.525 9.028 90144

For subsequent usage of the data in relax, assuming a 3D structure exists, it is currently
advisable to use the same residue and atom numbering as found in the PDB file.

If you have any other format you would like read by relax please send an email to the relax
development mailing list detailing the software used, the format of the file (specifically
where the residue number and peak intensity are located), and possibly attaching an
example of the file itself.

6.3.5 NOE script mode – setting the errors

In this example the errors where measured from the base plain noise. The Sparky RMSD
function was used to estimate the maximal noise levels across the spectrum in regions
containing no peaks. For the reference spectrum the RMSD was approximately 3600
whereas in the saturated spectrum the RMSD was 3000. These errors are set by the
commands

19 # Set the errors.

20 spectrum.baseplane_rmsd(error=3600, spectrum_id='ref_ave')

21 spectrum.baseplane_rmsd(error=3000, spectrum_id='sat_ave')

For the residue G114, the noise levels are significantly increased compared to the rest of
the protein as the peak is located close to the water signal. The higher errors for this
residue are specified by the commands

23 # Individual residue errors.

24 spectrum.baseplane_rmsd(error=122000, spectrum_type='ref', res_num=114)

25 spectrum.baseplane_rmsd(error=8500, spectrum_type='sat', res_num=114)

There are many other ways of setting the errors, for example via spectrum duplication,
triplication, etc. See the documentation for the spectrum.error analysis user function
on page 608 for all possible options. This user function needs to be executed at this stage
to correctly set up the errors for all spin systems:

27 # Peak intensity error analysis.

28 spectrum.error_analysis()

6.3.6 NOE script mode – unresolved spins

As the peaks of certain spins overlap to such an extent that the heights or volumes cannot
be resolved, a simple text file was created called “unresolved” in which each line consists
of the residue number followed by the atom name. By using the command

30 # Deselect unresolved spins.

31 deselect.read(name, file='unresolved', res_num_col=1, spin_name_col=2)

all spins in the file “unresolved” are excluded from the analysis.

6.3. CALCULATION OF THE NOE IN THE PROMPT/SCRIPT UI MODE 75

6.3.7 NOE script mode – the NOE calculation

At this point the NOE can be calculated. The user function

33 # Calculate the NOEs.

34 minimise.calculate()

will calculate both the NOE and the errors. The NOE value will be calculated using the
formula

NOE =
Isat
Iref

, (6.1)

where Isat is the intensity of the peak in the saturated spectrum and Iref is that of the
reference spectrum. The error is calculated by

σNOE =

√
(σsat · Iref)2 + (σref · Isat)2

Iref
, (6.2)

where σsat and σref are the peak intensity errors in the saturated and reference spectra
respectively. To create a file of the NOEs the command

36 # Save the NOEs.

37 value.write(param='noe', file='noe.out', force=True)

will create a file called noe.out with the NOE values and errors. The force flag will cause
any file with the same name to be overwritten. An example of the format of noe.out is

mol_name res_num res_name spin_num spin_name value error

Ap4Aase_new_3_mol1 1 GLY 1 N None None

Ap4Aase_new_3_mol1 2 PRO 11 N None None

Ap4Aase_new_3_mol1 3 LEU 28 N None None

Ap4Aase_new_3_mol1 4 GLY 51 N -0.038921946984531344 0.019031770246176943

Ap4Aase_new_3_mol1 5 SER 59 N -0.312404225679127 0.018596937298386886

Ap4Aase_new_3_mol1 6 MET 71 N -0.42850831873249773 0.02525856323041225

Ap4Aase_new_3_mol1 7 ASP 91 N -0.5305492810313481 0.027990623144176396

Ap4Aase_new_3_mol1 8 SER 104 N -0.5652842977581912 0.021706121467731133

Ap4Aase_new_3_mol1 9 PRO 116 N None None

Ap4Aase_new_3_mol1 10 PRO 133 N None None

Ap4Aase_new_3_mol1 11 GLU 150 N None None

Ap4Aase_new_3_mol1 12 GLY 167 N -0.7036626368123614 0.04681370194503697

Ap4Aase_new_3_mol1 13 TYR 175 N -0.747464566367261 0.03594640051809186

Ap4Aase_new_3_mol1 14 ARG 200 N -0.7524129557634996 0.04957018638401278

6.3.8 NOE script mode – viewing the results

Any two dimensional data set can be plotted in relax in conjunction with the program
Grace. The program is also known as Xmgrace and was previously known as ACE/gr or
Xmgr. The highly flexible relax user function grace.write is capable of producing 2D
plots of any x-y data sets. The two commands

39 # Create Grace files.

40 grace.write(y_data_type='peak_intensity', file='intensities.agr', force=True)

41 grace.write(y_data_type='noe', file='noe.agr', force=True)

http://plasma-gate.weizmann.ac.il/Grace/

76 CHAPTER 6. CALCULATING THE NOE

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

Residue number

0

0.2

0.4

0.6

0.8

1
N
O
E

N spins.

NE1 spins.

Figure 6.1: A Grace plot of the NOE value and error against the residue number. This
is an example of the output of the user function grace.write.

will create one plot of the peak intensity of the reference and saturated spectra as different
graph sets in the same plot as well as one plot for the NOE and its error. The x-axis in
all three defaults to the residue number. Returning to the sample script three Grace data
files are created intensities.agr and noe.agr and placed in the default directory ./

grace. These can be visualised by opening the file within Grace. However relax will do
that for you with the commands

43 # View the Grace files.

44 grace.view(file='intensities.agr')

45 grace.view(file='noe.agr')

An example of the output after modifying the axes is shown in figure 6.1.

6.4. THE NOE AUTO-ANALYSIS IN THE GUI 77

6.4 The NOE auto-analysis in the GUI

The relax graphical user interface provides access to an automated steady-state NOE
analysis. This auto-analysis operates in the same way as the sample script described
earlier in this chapter. In this example, relax will be launched with:

$ relax --log log --gui

The --log command line argument will cause all of relax’s text printouts to be placed
into the log file which can serve as a record for later reference (the --tee command line
argument could be used as well).

6.4.1 NOE GUI mode – initialisation of the data pipe

First launch the analysis selection wizard (see Figure 1.4 on page 12). Select the NOE
analysis and, if you plan on running steady-state NOE analyses from multiple fields in one
relax instance, change the name of the analysis:

The second part of the wizard need not be modified, just click on “Start” to begin. This
will create a dedicated data pipe for the analysis. A data pipe bundle will also be created,
but for the steady-state NOE will only contain a single data throughout the analysis.

78 CHAPTER 6. CALCULATING THE NOE

6.4.2 NOE GUI mode – general setup

You should then see the blank analysis tab:

The first thing to do now is to set the NMR frequency label. This is only used for the name
of the NOE output file. For example if you set the label to “500”, the file noe.500.out

will be created at the end of the analysis.

You can also choose to change the “Results directory” where all of the automatically created
results files will be placed. These two steps are unique to the GUI mode.

6.4. THE NOE AUTO-ANALYSIS IN THE GUI 79

6.4.3 NOE GUI mode – setting up the spin systems

Just as in the prompt and scripting UI modes, the molecule, residue and spin data struc-
tures need to be set up prior to the loading of any spin specific data. The “Spin systems”
GUI element is used for this purpose. Before any spin systems have been set up, this
should say something like “0 spins loaded and selected”. To fix this, click on the “Spin editor”
button and you should then see the spin viewer window. The next steps are fully described
in section 4.5.2 on page 42 for PDB files or section 4.5.3 on page 45 for a sequence file.
The spin viewer window can now be closed.

6.4.4 NOE GUI mode – unresolved spins

Using the unresolved spins file as described in the prompt/script UI sections, the same
spins can be deselected at this point. See Section 4.5.5 on page 46 for the details of how
to deselect the spins in the GUI.

6.4.5 NOE GUI mode – loading the data

The next step is to load the saturated and reference NOE peak lists. From the main NOE
auto-analysis tab, click on the “Add” button in the “Spectra list” GUI element. This will
launch the NOE peak intensity loading wizard. From the first wizard page, select the peak
list file containing the reference intensities (from the averaged shift list):

Then set the obligatory spectrum ID string to a unique value (in this case “ref”). The
spectral dimension may need to be changed so that the peak intensities are associated
with the correct atom of the pair. In case you have forgotten the spin names or the format
of the peak list next to the file name selection button is a preview button which can be
used to open the peak list in the default text editor. Set the other fields as needed. Click
on “Next” Note that a RelaxWarning will be thrown for all peak list entries which do

80 CHAPTER 6. CALCULATING THE NOE

not match a spin system within the relax data store. This will cause the relax controller
window to appear:

Carefully check these warnings to be sure that the data is correctly loaded and, if every-
thing is fine, the relax controller window can be closed. If the dimension has been wrongly
specified or some other setting is incorrect a RelaxErrormight appear saying that no data
was loaded – you will then need to fix the settings and click on “Apply” again. The error
type page should now appear.

Please read the description in this window very carefully to know what to do next. In this
example, we will choose “Baseplane RMSD”. For this specific example, Sparky’s “Extensions→
Spectrum→Spectrum baseplane RMSD” option in the “F1” selection mode was used to measure
empty regions of the spectrum (mainly in the random coil region) to determine an average

6.4. THE NOE AUTO-ANALYSIS IN THE GUI 81

RMSD of approximately 3600. Set the value and click on “Apply”.

As glycine 114 is located close to the noise signal, its error was much higher at 122000.
Individual spin errors can be set via the spin ID string (see section 4.2.2 on page 38 for
information about spin IDs):

Finally select which type of spectrum this is and click on “Finish”:

82 CHAPTER 6. CALCULATING THE NOE

The entire procedure should be repeated for the saturated spectrum (or you may have
worked out that both can be loaded simultaneously by using the “Apply” button more
often). For this example, the spectrum ID was set to “sat” and the baseplane RMSD to
3000 for all spins (except for G114 which had an error of 8500).

The NOE analysis tab should now look like:

6.4.6 NOE GUI mode – the NOE calculation

Now that everything is set up, simply click on “Execute relax” in the NOE analysis tab.
The relax controller window will appear displaying many messages. These should all be

6.4. THE NOE AUTO-ANALYSIS IN THE GUI 83

checked very carefully to make sure that everything has executed as you expected. The
“Results viewer” window will also appear:

The results viewer window can be used to launch a text editor to see the NOE values and
error or Grace to visualise the results (see Figure 6.1 on page 76).

As a last step, the relax state can be saved (via the “File” menu) and relax closed. Take
one last look at the noe.out log file to be certain that there are no strange warnings or
errors.

84 CHAPTER 6. CALCULATING THE NOE

Chapter 7

Model-free analysis

7.1 Model-free theory

7.1.1 The chi-squared function – χ2(θ)

For the minimisation of the model-free models a chain of calculations, each based on a
different theory, is required. At the highest level the equation which is actually minimised
is the chi-squared function

χ2(θ) =

n∑

i=1

(Ri − Ri(θ))
2

σ2
i

, (7.1)

where the index i is the summation index ranging over all the experimentally collected
relaxation data of all spins used in the analysis; Ri belongs to the relaxation data set
R for an individual spin, a collection of spins, or the entire macromolecule and includes
the R1, R2, and NOE data at all field strengths; Ri(θ) is the back-calculated relaxation
value belonging to the set R(θ); θ is the model parameter vector which when minimised
is denoted by θ̂; and σi is the experimental error.

The significance of the chi-squared equation (7.1) is that the function returns a single value
which is then minimised by the optimisation algorithm to find the model-free parameter
values of the given model.

85

86 CHAPTER 7. MODEL-FREE ANALYSIS

7.1.2 The transformed relaxation equations – Ri(θ)

The chi-squared equation is itself dependent on the relaxation equations through the back-
calculated relaxation data R(θ). Letting the relaxation values of the set R(θ) be the
R1(θ), R2(θ), and NOE(θ) an additional layer of abstraction can be used to simplify the
calculation of the gradients and Hessians. This involves decomposing the NOE equation
into the cross relaxation rate constant σNOE(θ) and the auto relaxation rate R1(θ). Taking
equation (7.6) below the transformed relaxation equations are

R1(θ) = R′
1(θ), (7.2a)

R2(θ) = R′
2(θ), (7.2b)

NOE(θ) = 1 +
γH

γX

σNOE(θ)

R1(θ)
. (7.2c)

whereas the relaxation equations are the R1(θ), R2(θ), σNOE(θ).

7.1.3 The relaxation equations – R′
i(θ)

The relaxation values of the set R′(θ) include the spin-lattice, spin-spin, and cross-
relaxation rates at all field strengths. These rates are respectively (Abragam, 1961)

R1(θ) = d
(
J(ωH − ωX) + 3J(ωX) + 6J(ωH + ωX)

)
+ cJ(ωX), (7.3a)

R2(θ) =
d

2

(
4J(0) + J(ωH − ωX) + 3J(ωX) + 6J(ωH)

+ 6J(ωH + ωX)
)
+

c

6

(
4J(0) + 3J(ωX)

)
+Rex, (7.3b)

σNOE(θ) = d
(
6J(ωH + ωX)− J(ωH − ωX)

)
, (7.3c)

where J(ω) is the power spectral density function and Rex is the relaxation due to chemical
exchange. The dipolar and CSA constants are defined in SI units as

d =
1

4

(µ0

4π

)2 (γHγX~)
2

〈r6〉 , (7.4)

c =
(ωX∆σ)2

3
, (7.5)

where µ0 is the permeability of free space, γH and γX are the gyromagnetic ratios of the
H and X spins respectively, ~ is Plank’s constant divided by 2π, r is the bond length, and
∆σ is the chemical shift anisotropy measured in ppm. The cross-relaxation rate σNOE is
related to the steady state NOE by the equation

NOE(θ) = 1 +
γH

γX

σNOE(θ)

R1(θ)
. (7.6)

7.1. MODEL-FREE THEORY 87

7.1.4 The spectral density functions – J(ω)

The relaxation equations are themselves dependent on the calculation of the spectral
density values J(ω). Within model-free analysis these are modelled by the original model-
free formula (Lipari and Szabo, 1982a,b)

J(ω) =
2

5

k∑

i=−k

ci · τi
(

S2

1 + (ωτi)2
+

(1− S2)(τe + τi)τe
(τe + τi)2 + (ωτeτi)2

)
, (7.7)

where S2 is the square of the Lipari and Szabo generalised order parameter and τe is
the effective correlation time. The order parameter reflects the amplitude of the motion
and the correlation time in an indication of the time scale of that motion. The theory
was extended by Clore et al. (1990) by the modelling of two independent internal motions
using the equation

J(ω) =
2

5

k∑

i=−k

ci · τi
(

S2

1 + (ωτi)2
+

(1− S2
f)(τf + τi)τf

(τf + τi)2 + (ωτfτi)2

+
(S2

f − S2)(τs + τi)τs

(τs + τi)2 + (ωτsτi)2

)
. (7.8)

where S2
f and τf are the amplitude and timescale of the faster of the two motions whereas

S2
s and τs are those of the slower motion. S2

f and S2
s are related by the formula S2 = S2

f ·S2
s .

If these forms of the model-free spectral density functions are unfamiliar, that is because
these are the numerically stabilised forms presented in d’Auvergne and Gooley (2008b).
The original model-free spectral density functions presented in Lipari and Szabo (1982a)
and Clore et al. (1990) are not the most numerically stable form of these equations. An im-
portant problem encountered in optimisation is round-off error in which machine precision
influences the result of mathematical operations. The double reciprocal τ−1 = τ−1

m + τ−1
e

used in the equations are operations which are particularly susceptible to round-off error,
especially when τe ≪ τm. By incorporating these reciprocals into the model-free spectral
density functions and then simplifying the equations this source of round-off error can be
eliminated, giving relax an edge over other model-free optimisation software.

7.1.5 Brownian rotational diffusion

In equations (7.7) and (7.8) the generic Brownian diffusion NMR correlation function
presented in d’Auvergne (2006) has been used. This function is

C(τ) =
1

5

k∑

i=−k

ci · e−τ/τi , (7.9)

where the summation index i ranges over the number of exponential terms within the
correlation function. This equation is generic in that it can describe the diffusion of an
ellipsoid, a spheroid, or a sphere.

88 CHAPTER 7. MODEL-FREE ANALYSIS

Diffusion as an ellipsoid

For the ellipsoid defined by the parameter set {Diso, Da, Dr, α, β, γ} the variable k
is equal to two and therefore the index i ∈ {−2,−1, 0, 1, 2}. The geometric parameters
{Diso, Da, Dr} are defined as

Diso =
1
3(Dx +Dy +Dz), (7.10a)

Da = Dz − 1
2 (Dx +Dy), (7.10b)

Dr =
Dy −Dx

2Da
, (7.10c)

and are constrained by

0 < Diso < ∞, (7.11a)

0 ≤ Da <
Diso

1
3 +Dr

≤ 3Diso, (7.11b)

0 ≤ Dr ≤ 1. (7.11c)

The orientational parameters {α, β, γ} are the Euler angles using the z-y-z rotation
notation.

The five weights ci are defined as

c−2 =
1
4 (d− e), (7.12a)

c−1 = 3δ2yδ
2
z , (7.12b)

c0 = 3δ2xδ
2
z , (7.12c)

c1 = 3δ2xδ
2
y , (7.12d)

c2 =
1
4 (d+ e), (7.12e)

where

d = 3
(
δ4x + δ4y + δ4z

)
− 1, (7.13)

e =
1

R

[
(1 + 3Dr)

(
δ4x + 2δ2yδ

2
z

)
+ (1− 3Dr)

(
δ4y + 2δ2xδ

2
z

)
− 2

(
δ4z + 2δ2xδ

2
y

)]
, (7.14)

and where
R =

√
1 + 3D2

r. (7.15)

The five correlation times τi are

1/τ−2 = 6Diso − 2DaR, (7.16a)

1/τ−1 = 6Diso −Da(1 + 3Dr), (7.16b)

1/τ0 = 6Diso −Da(1− 3Dr), (7.16c)

1/τ1 = 6Diso + 2Da, (7.16d)

1/τ2 = 6Diso + 2DaR. (7.16e)

7.1. MODEL-FREE THEORY 89

Diffusion as a spheroid

The variable k is equal to one in the case of the spheroid defined by the parameter set
{Diso, Da, θ, φ}, hence i ∈ {−1, 0, 1}. The geometric parameters {Diso, Da} are defined
as

Diso =
1
3 (D‖ + 2D⊥), (7.17a)

Da = D‖ −D⊥. (7.17b)

and are constrained by

0 < Diso < ∞, (7.18a)

−3
2Diso < Da < 3Diso. (7.18b)

The orientational parameters {θ, φ} are the spherical angles defining the orientation of
the major axis of the diffusion frame within the lab frame.

The three weights ci are

c−1 =
1
4(3δ

2
z − 1)2, (7.19a)

c0 = 3δ2z(1− δ2z), (7.19b)

c1 =
3
4(δ

2
z − 1)2. (7.19c)

The five correlation times τi are

1/τ−1 = 6Diso − 2Da, (7.20a)

1/τ0 = 6Diso −Da, (7.20b)

1/τ1 = 6Diso + 2Da. (7.20c)

Diffusion as a sphere

In the situation of a molecule diffusing as a sphere either described by the single parameter
τm or Diso, the variable k is equal to zero. Therefore i ∈ {0}. The single weight c0 is
equal to one and the single correlation time τ0 is equivalent to the global tumbling time
τm given by

1/τm = 6Diso. (7.21)

This is diffusion equation presented in Bloembergen et al. (1948).

7.1.6 The model-free models

Extending the list of models given in Mandel et al. (1995); Fushman et al. (1997);
Orekhov et al. (1999a); Korzhnev et al. (2001); Zhuravleva et al. (2004), the models built

90 CHAPTER 7. MODEL-FREE ANALYSIS

into relax include

m0 = {}, (7.22.0)

m1 = {S2}, (7.22.1)

m2 = {S2, τe}, (7.22.2)

m3 = {S2, Rex}, (7.22.3)

m4 = {S2, τe, Rex}, (7.22.4)

m5 = {S2, S2
f , τs}, (7.22.5)

m6 = {S2, τf , S
2
f , τs}, (7.22.6)

m7 = {S2, S2
f , τs, Rex}, (7.22.7)

m8 = {S2, τf , S
2
f , τs, Rex}, (7.22.8)

m9 = {Rex}. (7.22.9)

The parameter Rex is scaled quadratically with field strength in these models as it is
assumed to be fast. In the set theory notation, the model-free model for the spin system
i is represented by the symbol Fi. Through the addition of the local τm to each of these
models, only the component of Brownian rotational diffusion experienced by the spin
system is probed. These models, represented in set notation by the symbol Ti, are

tm0 = {τm}, (7.23.0)

tm1 = {τm, S2}, (7.23.1)

tm2 = {τm, S2, τe}, (7.23.2)

tm3 = {τm, S2, Rex}, (7.23.3)

tm4 = {τm, S2, τe, Rex}, (7.23.4)

tm5 = {τm, S2, S2
f , τs}, (7.23.5)

tm6 = {τm, S2, τf , S
2
f , τs}, (7.23.6)

tm7 = {τm, S2, S2
f , τs, Rex}, (7.23.7)

tm8 = {τm, S2, τf , S
2
f , τs, Rex}, (7.23.8)

tm9 = {τm, Rex}. (7.23.9)

7.1.7 Model-free optimisation theory

The implementation of optimisation in relax is discussed in detail in Chapter 14. To
understand the concepts in this subsection, it is best to look at that chapter first.

The model-free space

In model-free analysis the target function f(θ) is the chi-squared equation

χ2(θ) =
n∑

i=1

(Ri − Ri(θ))
2

σ2
i

, (7.24)

7.1. MODEL-FREE THEORY 91

where i is the summation index, Ri is the experimental relaxation data which belongs to
the data set R and includes the R1, R2, and NOE values at all field strengths, Ri(θ) is the
back calculated relaxation data belonging to the set R(θ), and σi is the experimental error.
For the optimisation of the model-free parameters while the diffusion tensor is held fixed,
the summation index ranges over the relaxation data of an individual spin. If the diffusion
parameters are optimised simultaneously with the model-free parameters the summation
index ranges over all relaxation data of all selected spins of the macromolecule.

Given the current parameter values the model-free function provided to the algorithm will
calculate the value of the model-free spectral density function J(ω) at the five frequencies
which induce NMR relaxation by using Equations (7.7) and (7.8). The theoretical R1, R2,
and NOE values are then back-calculated using Equations (7.3a), (7.3b), (7.3c), and (7.6).
Finally, the chi-squared value is calculated using Equation (7.24).

To produce the gradient and Hessian required for model-free optimisation a large chain of
first and second partial derivatives needs to be calculated. Firstly the partial derivatives
of the spectral density functions (7.7) and (7.8) are necessary. Then the partial derivatives
of the relaxation equations (7.3a) to (7.3c) followed by the NOE equation (7.6) are needed.
Finally the partial derivative of the chi-squared formula (7.24) is required. These first and
second partial derivatives, as well as those of the components of the Brownian diffusion
correlation function for non-isotropic tumbling, are presented as Chapter 15.

Grid search

Due to the complexity of the curvature of the model-free space, the grid point with the
lowest chi-squared value may in fact be on the opposite side of the space to the local min-
imum. Therefore the model-free space renders many optimisation algorithms ineffective
(d’Auvergne and Gooley, 2008b).

Parameter constraints

To understand this section, please see Section 14.5 on page 310. For model-free analysis,
linear constraints are the most useful type of constraint as the correlation time τf can be
restricted to being less than τs by using the inequality τs − τf > 0.

For the parameters specific to individual spins the linear constraints in the notation of

92 CHAPTER 7. MODEL-FREE ANALYSIS

(14.18) are

1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 −1

·

S2

S2
f

S2
s

τe
τf
τs
Rex

r
CSA

>

0
−1
0
−1
0
−1
0
0
0
0
0
0
0

0.9e−10

2e−10

300e−6

0

. (7.25)

Through the isolation of each individual element, the constraints can be seen to be equiv-
alent to

0 6 S2 6 1, (7.26a)

0 6 S2
f 6 1, (7.26b)

0 6 S2
s 6 1, (7.26c)

S2
6 S2

f , (7.26d)

S2 6 S2
s , (7.26e)

τe > 0, (7.26f)

τf > 0, (7.26g)

τs > 0, (7.26h)

τs > 0, (7.26i)

τf 6 τs, (7.26j)

Rex > 0, (7.26k)

0.9e−10 6 r 6 2e−10, (7.26l)

−300e−6
6 CSA 6 0. (7.26m)

To prevent the computationally expensive optimisation of failed models in which the inter-
nal correlation times minimise to infinity (d’Auvergne and Gooley, 2006), the constraint
τe, τf , τs 6 2τm was implemented. When the global correlation time is fixed the constraints
in the matrix notation of (14.18) are

−1 0 0
0 −1 0
0 0 −1

 ·

τe
τf
τs

 >

−2τm
−2τm
−2τm

 . (7.27)

7.1. MODEL-FREE THEORY 93

However when the global correlation time τm is one of the parameters being optimised the
constraints become

2 −1 0 0
2 0 −1 0
2 0 0 −1

 ·

τm
τe
τf
τs

 >

0
0
0

 . (7.28)

For the parameters of the diffusion tensor the constraints utilised are

0 6 τm 6 200.0e−9, (7.29a)

Da > 0, (7.29b)

0 6 Dr 6 1, (7.29c)

which in the matrix notation of (14.18) become

1 0 0
−1 0 0
0 1 0
0 0 1
0 0 −1

·

τm
Da

Dr

 >

0
−200.0e−9

0
0
−1

. (7.30)

The upper limit of 200 ns on τm prevents the parameter from heading towards infinity
when model failure occurs (see d’Auvergne and Gooley (2006)). This can significantly
decrease the computation time. To isolate the prolate spheroid the constraint

(
1
)
·
(
Da

)
>
(
0
)
, (7.31)

is used whereas to isolate the oblate spheroid the constraint used is
(
−1
)
·
(
Da

)
>
(
0
)
. (7.32)

Dependent on the model optimised, the matrix A and vector b are constructed from
combinations of the above linear constraints.

Diagonal scaling

The concept of diagonal scaling is explained in Section 14.6 on page 312.

For the model-free analysis the scaling factor of one is used for the order parameter and
a scaling factor of 1e−12 is used for the correlation times. The Rex parameter is scaled
to be the chemical exchange rate of the first field strength. The scaling matrix for the
parameters {S2, S2

f , S
2
s , τe, τf , τs, Rex, r, CSA} of individual spins is

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1e−12 0 0 0 0 0
0 0 0 0 1e−12 0 0 0 0
0 0 0 0 0 1e−12 0 0 0
0 0 0 0 0 0 (2πωH)−2 0 0
0 0 0 0 0 0 0 1e−10 0
0 0 0 0 0 0 0 0 1e−4

. (7.33)

94 CHAPTER 7. MODEL-FREE ANALYSIS

For the ellipsoidal diffusion parameters {τm, Da, Dr, α, β, γ} the scaling matrix is

1e−12 0 0 0 0 0
0 1e7 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

. (7.34)

For the spheroidal diffusion parameters {τm, Da, θ, φ} the scaling matrix is

1e−12 0 0 0
0 1e7 0 0
0 0 1 0
0 0 0 1

 . (7.35)

7.2 Optimisation of a single model-free model

7.2.1 Single model-free model script mode – the sample script

The sample script which demonstrates the optimisation of model-free model m4 which
consists of the parameters {S2, τe, Rex} is model free/single model.py. The text of the
script is:

1 # Script for model-free analysis.

2

3 # Create the data pipe.

4 name = 'm4'

5 pipe.create(name, 'mf')

6

7 # Set up the 15N spins.

8 sequence.read('noe.500.out', res_num_col=1, res_name_col=2)

9 spin.name('N')

10 spin.element(element='N', spin_id='@N')

11 spin.isotope('15N', spin_id='@N')

12

13 # Load the relaxation data.

14 relax_data.read(ri_id='R1_600', ri_type='R1', frq=600.0*1e6, file='r1.600.out',

res_num_col=1, data_col=3, error_col=4)

15 relax_data.read(ri_id='R2_600', ri_type='R2', frq=600.0*1e6, file='r2.600.out',

res_num_col=1, data_col=3, error_col=4)

16 relax_data.read(ri_id='NOE_600', ri_type='NOE', frq=600.0*1e6, file='noe.600.out',

res_num_col=1, data_col=3, error_col=4)

17 relax_data.read(ri_id='R1_500', ri_type='R1', frq=500.0*1e6, file='r1.500.out',

res_num_col=1, data_col=3, error_col=4)

18 relax_data.read(ri_id='R2_500', ri_type='R2', frq=500.0*1e6, file='r2.500.out',

res_num_col=1, data_col=3, error_col=4)

19 relax_data.read(ri_id='NOE_500', ri_type='NOE', frq=500.0*1e6, file='noe.500.out',

res_num_col=1, data_col=3, error_col=4)

20

21 # Initialise the diffusion tensor.

22 diffusion_tensor.init(10e-9, fixed=True)

23

24 # Create all attached protons.

7.2. OPTIMISATION OF A SINGLE MODEL-FREE MODEL 95

25 sequence.attach_protons()

26

27 # Define the magnetic dipole-dipole relaxation interaction.

28 interatom.define(spinid1='@N', spin_id2='@H', direct_bond=True)

29 interatom.set_dist(spin_id1='@N', spin_id2='@H', ave_dist=1.02 * 1e-10)

30 #interatom.unit_vectors()

31

32 # Define the CSA relaxation interaction.

33 value.set(-172 * 1e-6, 'csa')

34

35 # Select the model-free model.

36 model_free.select_model(model=name)

37

38 # Grid search.

39 minimise.grid_search(inc=11)

40

41 # Minimise.

42 minimise.execute('newton')

43

44 # Monte Carlo simulations.

45 monte_carlo.setup(number=100)

46 monte_carlo.create_data()

47 monte_carlo.initial_values()

48 minimise.execute('newton')

49 eliminate()

50 monte_carlo.error_analysis()

51

52 # Finish.

53 results.write(file='results', force=True)

54 state.save('save', force=True)

7.2.2 Single model-free model script mode – explanation

The above script consists of three major sections:

Loading of data Firstly a data pipe called “m4” is created to hold all of the analysis data.
Then the 15N spin system data consisting of molecule, residue, and spin information
is loaded into relax from the columns of the noe.500.out file, assuming that only
residue numbers and names are present and are in the first and second columns
respectively. The options of this sequence.read user function allow the molecule
name, residue number, residue name, spin number, or spin name columns to be
specified if desired. The 15N spin is then set up using the spin user functions. The
next part is to load all of the relaxation data, to set up the initial diffusion tensor,
create the 1H spins required for the magnetic dipole-dipole interaction, and to set up
the magnetic dipole-dipole and CSA relaxation mechanisms. Finally the model-free
model “m4” is chosen.

Optimisation The optimisation of model-free models requires an initial grid search
to find a position close to the minimum, followed by the high precision New-
ton optimisation together with the Method of Multipliers constraint algorithm
(d’Auvergne and Gooley, 2008b). Errors are propagated from the relaxation data
to the model-free parameters via Monte Carlo simulations which is a multi-step pro-
cess in relax (designed for flexibility and to teach how the simulations are constructed
and carried out).

96 CHAPTER 7. MODEL-FREE ANALYSIS

Data output The last stage consists of writing out the XML formatted results file which
contains all of the data in the current data pipe, as well as the XML formatted save
file which contains not only the current data pipe data but all of the relax data store
data. Both files can be loaded back into relax later on.

7.3 Optimisation of all model-free models

7.3.1 All model-free models script mode – the sample script

The sample script which demonstrates the optimisation of all model-free models from m0
to m9 of individual spins is model free/mf multimodel.py. The important parts of the
script are:

1 # Set the data pipe names (also the names of preset model-free models).

2 pipes = ['m0', 'm1', 'm2', 'm3', 'm4', 'm5', 'm6', 'm7', 'm8', 'm9']

3

4 # Loop over the pipes.

5 for name in pipes:

6 # Create the data pipe.

7 pipe.create(name, 'mf')

8

9 # Set up the 15N spins.

10 sequence.read('noe.500.out', res_num_col=1)

11 spin.name('N')

12 spin.element(element='N', spin_id='@N')

13 spin.isotope('15N', spin_id='@N')

14

15 # Load a PDB file.

16 structure.read_pdb('example.pdb')

17

18 # Load the relaxation data.

19 relax_data.read(ri_id='R1_600', ri_type='R1', frq=600.0*1e6, file='r1.600.out',

res_num_col=1, data_col=3, error_col=4)

20 relax_data.read(ri_id='R2_600', ri_type='R2', frq=600.0*1e6, file='r2.600.out',

res_num_col=1, data_col=3, error_col=4)

21 relax_data.read(ri_id='NOE_600', ri_type='NOE', frq=600.0*1e6, file='noe.600.out',

res_num_col=1, data_col=3, error_col=4)

22 relax_data.read(ri_id='R1_500', ri_type='R1', frq=500.0*1e6, file='r1.500.out',

res_num_col=1, data_col=3, error_col=4)

23 relax_data.read(ri_id='R2_500', ri_type='R2', frq=500.0*1e6, file='r2.500.out',

res_num_col=1, data_col=3, error_col=4)

24 relax_data.read(ri_id='NOE_500', ri_type='NOE', frq=500.0*1e6, file='noe.500.out',

res_num_col=1, data_col=3, error_col=4)

25

26 # Set up the diffusion tensor.

27 diffusion_tensor.init(1e-8, fixed=True)

28

29 # Generate the 1H spins for the magnetic dipole-dipole relaxation interaction.

30 sequence.attach_protons()

31

32 # Define the magnetic dipole-dipole relaxation interaction.

33 interatom.define(spin_id1='@N', spin_id2='@H', direct_bond=True)

34 interatom.set_dist(spin_id1='@N', spin_id2='@H', ave_dist=1.02 * 1e-10)

35 structure.get_pos('@N')

36 structure.get_pos('@H')

37 interatom.unit_vectors()

7.4. MODEL-FREE MODEL SELECTION 97

38

39 # Define the chemical shift relaxation interaction.

40 value.set(-172 * 1e-6, 'csa', spin_id='@N')

41

42 # Select the model-free model.

43 model_free.select_model(model=name)

44

45 # Minimise.

46 minimise.grid_search(inc=11)

47 minimise.execute('newton')

48

49 # Write the results.

50 results.write(file='results', force=True)

51

52 # Save the program state.

53 state.save('save', force=True)

7.3.2 All model-free models script mode – explanation

The above script is very similar in spirit to the previous single model script in section 7.2
on page 94. The major difference is that this script loops over all of the model-free models,
saving all of the results in the save.bz2 file.

7.4 Model-free model selection

7.4.1 Model-free model selection script mode – the sample script

The sample script which demonstrates both model-free model elimination and model-free
model selection between models from m0 to m9 is model free/modsel.py. The text of
the script is:

1 # Set the data pipe names.

2 pipes = ['m0', 'm1', 'm2', 'm3', 'm4', 'm5', 'm6', 'm7', 'm8', 'm9']

3

4 # Loop over the data pipe names.

5 for name in pipes:

6 print("\n\n# " + name + " #")

7

8 # Create the data pipe.

9 pipe.create(name, 'mf')

10

11 # Reload precalculated results from the file 'm1/results', etc.

12 results.read(file='results', dir=name)

13

14 # Model elimination.

15 eliminate()

16

17 # Model selection.

18 model_selection(method='AIC', modsel_pipe='aic')

19

20 # Write the results.

21 state.save('save', force=True)

22 results.write(file='results', force=True)

98 CHAPTER 7. MODEL-FREE ANALYSIS

7.4.2 Model-free model selection script mode – explanation

This script is designed to be used in conjunction with the model free/mf multimodel.py

script in the previous section. It will load all of the results files from the previous script
and then perform the following:

Model-free model elimination The optimisation of model-free models performed by
the previous script will fail for certain data sets together with certain models. To
ensure that these models are never selected, they are removed from the analysis (see
d’Auvergne and Gooley (2006)).

Model-free model selection The AIC model selection as described in
d’Auvergne and Gooley (2003) will be used to determine which model-free
model best describes the relaxation data.

Data output Finally both a save state and result file will be created.

These three sample scripts describe the basic components of model-free analysis. However
a full analysis requires the construction of a much more complex iterative procedure. The
following sections will describe both the original diffusion seeded approaches as well as the
new model-free protocol built into relax.

7.5 The methodology of Mandel et al., 1995

By presenting a systematic methodology for obtaining a consistent model-free description
of the dynamics of the system, the manuscript of Mandel et al. (1995) revolutionised the
application of model-free analysis. The full protocol is presented in Figure 7.1.

All of the data analysis techniques required for this protocol can be implemented within
relax. The chi-squared distributions required for the chi-squared tests are constructed
by Modelfree4 from the Monte Carlo simulations. If the optimisation algorithms and
Monte Carlo simulations built into relax are utilised, then the relax script will need to
construct the chi-squared distributions from the results as this is not yet coded into relax.
The specific step-up hypothesis testing model selection of Mandel et al. (1995) is available
through the model selection user function. Coding the rest of the protocol into a script
should be straightforward.

To implement this analysis, a number of scripts would need to be written. There is no
sample script in relax for performing this analysis. The simple sample scripts from above
would need to be extended. For example a starting script for determining the initial
diffusion tensor estimates based on the R1/R2 ratio of Kay et al. (1989) would have to
be written. The tensor from this script could then be feed into the model free/mf

multimodel.py script, followed by the model free/modsel.py script, and then a third
script written to optimise the diffusion tensor. A master script could be written first run
the initial diffusion tensor script, then to iteratively execute the last three scripts until
convergence, and finally to select the best diffusion model (see Figure 7.1). Alternatively,
these could all be combined into one super script.

7.5. THE METHODOLOGY OF MANDEL ET AL., 1995 99

Figure 7.1: A schematic of the model-free optimisation protocol of Mandel et al. (1995).
This specific protocol is for single field strength data. The initial diffusion tensor estimate
is calculated using the R2/R1 ratio. The diffusion parameters of D are held constant while
model-free models m1 to m5 (7.22.1–7.22.5) of the set Fi for each spin i are optimised and
500 Monte Carlo simulations executed. Using a web of ANOVA statistical tests, specifically
χ2 and F-tests, a step-up hypothesis testing model selection procedure is used to choose
the best model-free model. These steps are repeated for all spins of the molecule. The
global model S, the union of D and all Fi, is then optimised. These steps are repeated
until convergence of the global model. The iterative process is repeated for both isotropic
diffusion (sphere) and anisotropic diffusion (spheroid).

100 CHAPTER 7. MODEL-FREE ANALYSIS

7.6 The diffusion seeded paradigm

Ever since the original Lipari and Szabo papers (Lipari and Szabo, 1982a,b), the question
of how to obtain the model-free description of the system has followed the route in which
the diffusion tensor is initially estimated. Using this rough estimate, the model-free models
are optimised for each spin system i, the best model selected, and then the global model
S of the diffusion model D with each model-free model Fi is optimised. This procedure
is then repeated using the diffusion tensor parameters of S as the initial input. Finally
the global model is selected. The full protocol, when combined with AIC model selection
(d’Auvergne and Gooley, 2003), is illustrated in Figure 7.2.

Again this protocol is not implemented in the relax sample scripts. This would have to be
implemented in exactly the same manner as described in the previous section, but using
the AIC model selection build into relax. Constructing this set of scripts, or a single
master script, would be much easier than the Mandel et al. (1995) protocol as Modelfree4
would not need to be used, and the handling of F-tests and chi-squared tests is avoided.

7.7 The new model-free optimisation protocol

Here a new, fully automated model-free optimisation protocol will be presented. This
protocol, defined in d’Auvergne and Gooley (2007) and d’Auvergne and Gooley (2008c),
is significantly different from all those that came before, reversing the diffusion seeded
paradigm as detailed below. Within relax it is referred to as the “new protocol” or the
“d’Auvergne protocol”. The later name is to allow for more advanced protocols to be
developed and added to relax by adventurous users in the future. Note that for advanced
model-free analysis protocols, such as this one, that multiple field relaxation data is es-
sential.

7.7.1 The new protocol – model-free models

The study of the dynamics of a macromolecule using model-free analysis to interpret the
R1 and R2 relaxation rates together with the steady-state heteronuclear NOE brings two
distinct, yet linked physical theories into play. The Brownian rotational diffusion of the
molecule is the major contributor to relaxation. Although having less of an influence on
relaxation the internal dynamics of individual nuclei within the molecule is nevertheless
significant. The model-free description of the internal motion and the global diffusion of
the entire molecule are theories which are linked due to their dependence on the same relax-
ation data. The model-free models for individual spin system constructed from the original
and extended model-free theories (Lipari and Szabo, 1982a,b; Clore et al., 1990) are as-
sembled using parametric restrictions, the dropping of insignificant parameters, and the
addition of the chemical exchange parameter Rex. Labelled as m0 to m9 (Models 7.22.0–
7.22.9 on page 90) these models are an extended list of those in (Fushman et al., 1997;
Orekhov et al., 1999a; Korzhnev et al., 2001; Zhuravleva et al., 2004).

7.7. THE NEW MODEL-FREE OPTIMISATION PROTOCOL 101

Figure 7.2: A schematic of model-free analysis using the diffusion seeded paradigm – the
initial diffusion tensor estimate – together with AIC model selection and model elimination.
The initial estimates of the parameters of D are held constant while model-free models m0
to m9 (7.22.0–7.22.9) of the set Fi for each spin system i are optimised, model elimination
applied to remove failed models, and AIC model selection used to determine the best
model. The global model S, the union of D and all Fi, is then optimised. These steps are
repeated until convergence of the global model. The entire iterative process is repeated for
each of the Brownian diffusion models. Finally AIC model selection is used to determine
the best description of the dynamics of the molecule by selecting between the global models
S including the sphere, oblate spheroid, prolate spheroid, and ellipsoid. Once the solution
has been found, Monte Carlo simulations can be utilised for error analysis.

102 CHAPTER 7. MODEL-FREE ANALYSIS

7.7.2 The new protocol – the diffusion tensor

The ellipsoid

The most general form of Brownian rotational diffusion of macromolecules is the diffusion
of an ellipsoid, a diffusion also labelled as asymmetric or fully anisotropic. This diffusion
tensor can be fully specified by the geometric parameters Dx, Dy, and Dz, the eigenvalues
of the tensor, as well as three orientational parameters, the Euler angles α, β, and γ. The
diffusion equation for an ellipsoid was derived using the reasoning of Einstein (1905) in
the two papers of Perrin (1934) and Perrin (1936). Following this, Favro (1960) unknow-
ingly derived the same equations as presented in Perrin (1936) using a pseudo quantum
mechanical approach. Borrowing heavily from Perrin (1936), Woessner (1962) derived the
correlation function relevant for NMR relaxation of a bond vector rigidly attached to an
ellipsoid. However these equations are not fully simplified and the parameter set {Dx,
Dy, Dz, α, β, γ}, the eigenvalues and Euler angles defining the tensor, is not optimally
constructed for minimisation. A parameter shift to the set {Diso, Da, Dr, α, β, γ},
whereby the three geometric parameters are respectively the isotropic, anisotropic, and
rhombic components of the diffusion tensor, drastically simplifies optimisation and is how
the diffusion tensor is implemented within relax.

The spheroid

When two of the eigenvalues of the diffusion tensor are equal the molecule diffuses as a
spheroid. This is also called axially symmetric anisotropic diffusion and can be described by
the two geometric parameters Diso and Da together with the polar angle θ and azimuthal
angle φ which define the unique axis of the diffusion tensor. Two classes of spheroid can be
distinguished dependent on the relative values of the eigenvalues – the prolate and oblate
spheroids. By using parametric constraints, both tensor types can be optimised within
relax.

The sphere

The simplest form of diffusion occurs when all three eigenvalues are equal and the molecule
diffuses as a sphere. This isotropic rotation can be characterised by the single parame-
ter Diso which is related to the global correlation time by the formula 1/τm = 6Diso

(Bloembergen et al., 1948).

The local τm model-free models

Not only can the diffusion tensor be optimised as a global model affecting all spins of
the molecule but a set of model-free models can be constructed in which each spin is
assumed to diffuse independently. In these models a single local τm parameter approxi-
mates the true, multiexponential description of the Brownian rotational diffusion of the
molecule. Each spin of the macromolecule is treated independently. Another set of model-
free models which include the local τm parameter can be created and include tm0 to tm9
(Models 7.23.0–7.23.9 on page 90). These are simply models m0 to m9 with the local τm

7.7. THE NEW MODEL-FREE OPTIMISATION PROTOCOL 103

parameter added. These models are an extension of the ideas introduced in Barbato et al.
(1992) and Schurr et al. (1994) whereby the model tm2, the original Lipari and Szabo
model-free equation with a local τm parameter, is optimised to avoid issues with inaccu-
rate diffusion tensor approximations.

Determination of the diffusion tensor from the local τm parameter

In Brüschweiler et al. (1995) and further investigated in Lee et al. (1997), a methodology
for determining the diffusion tensor from the local τm parameter together with the orien-
tation of the XH bond represented by the unit vector µi was presented. A local τm value
was obtained for each spin i by optimising model tm2. The τm,i values were approximated
using the quadric model

(6τm,i)
−1 = µT

i Qµi, (7.36)

where the eigenvalues of the matrix Q are defined as Qx = (Dy+Dz)/2, Qy = (Dx+Dz)/2,
and Qz = (Dx +Dy)/2. The diffusion tensor is then found by linear least-squares fitting.

7.7.3 The universal solution U

The complex model-free problem, in which the motions of each spin are both mathemat-
ically and statistically dependent on the diffusion tensor and vice versa, was formulated
using set theory in d’Auvergne and Gooley (2007). This paper is important for under-
standing the entire concept of the new protocol in relax and for truly grasping the com-
plexity of the model-free problem. The solution Û to the model-free problem was derived
as an element of the universal set U, the union of the diverse model-free parameter spaces
S. Each set S was constructed from the union of the model-free models F for all spins and
the diffusion parameter set D. A single parameter loss on a single spin shifts optimisation
to a different space S. Ever since the seminal work of Kay et al. (1989) the model-free
problem has been tackled by first finding an initial estimate of the diffusion tensor and then
determining the model-free dynamics of the system (see Sections 7.5 on page 98 and 7.6
on page 100). This diffusion seeded paradigm is now highly evolved and much theory
has emerged to improve this path to the solution Û. The technique can, at times, suffer
from a number of issues including the two minima problem of the spheroid diffusion tensor
parameter space, the appearance of artificial chemical exchange (Tjandra et al., 1996), the
appearance of artificial nanosecond motions (Schurr et al., 1994), and the hiding of inter-
nal nanosecond motions caused by the violation of the rigidity assumption (Orekhov et al.,
1995, 1999a,b).

7.7.4 Model-free analysis in reverse

A different approach was proposed in d’Auvergne and Gooley (2008c) for finding the uni-
versal solution Û of the extremely complex, convoluted model-free optimisation and mod-
elling problem (d’Auvergne and Gooley, 2007), defined as

Û = θ̂ ∈
{
S : min

θ̂∈U
∆K-L(θ̂)

}
, s.t. θ̂ = argmin

{
χ2(θ) : θ ∈ S

}
. (7.37)

104 CHAPTER 7. MODEL-FREE ANALYSIS

Figure 7.3: A schematic of the new model-free optimisation protocol. Initially models
tm0 to tm9 (7.23.0–7.23.9) of the set Ti for each spin system i are optimised, model
elimination used to remove failed models, and AIC model selection used to pick the best
model. Once all the Ti have been determined for the system the the local τm parameter is
removed, the model-free parameters are held fixed, and the global diffusion parameters of
D are optimised. These parameters are used as input for the central part of the schematic
which follows the same procedure as that of Figure 7.2. Convergence is however precisely
defined as identical models S, identical χ2 values, and identical parameters θ between two
iterations. The universal solution Û, the best description of the dynamics of the molecule,
is determined using AIC model selection to select between the local τm models for all
spins, the sphere, oblate spheroid, prolate spheroid, ellipsoid, and possibly hybrid models
whereby multiple diffusion tensors have been applied to different parts of the molecule.

7.7. THE NEW MODEL-FREE OPTIMISATION PROTOCOL 105

This notation says that the minimised parameter vector within the space S which min-
imises the common Kullback-Leibler discrepancy ∆K-L is selected from the universal set U
as the universal solution Û. The discrepancy of Kullback and Leibler (1951) is a measure
of how well the model fits the data, in this case how well the global model S of the diffusion
tensor together with the model-free models of all residues fits the relaxation data. This
selection is subject to the condition that θ̂ is the argument or specific parameter vector
which minimises the chi-squared function χ2(θ) such that θ is an element of the space S.
Whereas the minimisation of the continuous chi-squared function within the single space
S belongs to the mathematical field of optimisation (Nocedal and Wright, 1999), the se-
lection of the universe S which minimises the discrepancy belongs to the statistical field of
model selection (Akaike, 1973; Schwarz, 1978; Linhart and Zucchini, 1986; Zucchini, 2000;
d’Auvergne and Gooley, 2003).

This new model-free optimisation protocol incorporates the ideas of the local τm model-
free model (Barbato et al., 1992; Schurr et al., 1994) and the optimisation of the diffusion
tensor using information from these models, analogously to the linear least-squares fitting
of the quadric model (Brüschweiler et al., 1995; Lee et al., 1997). The protocol also follows
the lead of the model-free optimisation protocol presented in Butterwick et al. (2004)
whereby the diffusion seeded paradigm was reversed. Rather than starting with an initial
estimation of the global diffusion tensor from the set D the protocol starts with the model-
free parameters from F.

The first step of the Butterwick et al. (2004) protocol is the reduced spectral density map-
ping of Farrow et al. (1995). As Rex has been eliminated from the analysis, three model-
free models corresponding to tm1, tm2, and tm5 (Models 7.23.1, 7.23.2, and 7.23.5 on
page 90) are employed. The model-free parameters are optimised using the reduced spec-
tral density values and the best model is selected using F-tests. The spherical, spheroidal,
and ellipsoidal diffusion tensors are obtained by linear least-squares fitting of the quadric
model of Equation (7.36) using the local τm values (Brüschweiler et al., 1995; Lee et al.,
1997). The best diffusion model is selected via F-tests and refined by iterative elimination
of spins systems with high chi-squared values. This tensor is used to calculate local τm
values for each spin system, approximating the multiexponential sum of the Brownian ro-
tational diffusion correlation function with a single exponential, using the quadric model
of Equation (7.36). In the final step of the protocol these τm values are fixed and m1,
m2, and m5 (Models 7.22.1, 7.22.2, and 7.22.5 on page 90) are optimised and the best
model-free model selected using F-tests.

The new model-free protocol built into relax utilises the core foundation of the
Butterwick et al. (2004) protocol yet its divergent implementation is designed to solve
the universal equation of d’Auvergne and Gooley (2007) to find Û (Equation 7.37). Mod-
els tm0 to tm9 (7.23.0–7.23.9 on page 90) in which no global diffusion parameters exist are
employed to significantly collapse the complexity of the problem. Model-free minimisation
(d’Auvergne and Gooley, 2008b), model elimination (d’Auvergne and Gooley, 2006), and
then AIC model selection (Akaike, 1973; d’Auvergne and Gooley, 2003) can be carried out
in the absence of the influence of global parameters. By removing the local τm parameter
and holding the model-free parameter values constant these models can then be used to
optimise the diffusion parameters of D. Model-free optimisation, model elimination, AIC
model selection, and optimisation of the global model S is iterated until convergence. The
iterations allow for sliding between different universes S to enable the collapse of model
complexity, to refine the diffusion tensor, and to find the solution within the universal set

106 CHAPTER 7. MODEL-FREE ANALYSIS

U. The last step is the AIC model selection between the different diffusion models. Because
the AIC criterion approximates the Kullback-Leibler discrepancy (Kullback and Leibler,
1951), central to the universal solution of Equation (7.37), it was chosen for all three
model selection steps over BIC model selection (Schwarz, 1978; d’Auvergne and Gooley,
2003; Chen et al., 2004). The new protocol avoids the problem of under-fitting whereby
artificial motions appear, avoids the problems involved in finding the initial diffusion tensor
within D, and avoids the problem of hidden internal nanosecond motions and the inability
to slide between universes to get to Û (see d’Auvergne and Gooley (2007) for more details).
The full protocol is summarised in Figure 7.3.

7.8. THE NEW PROTOCOL IN THE PROMPT/SCRIPT UI MODE 107

7.8 The new protocol in the prompt/script UI mode

7.8.1 d’Auvergne protocol script mode – the sample script

The sample script for performing this new analysis is sample scripts/model free/

dauvergne protocol.py. The full script is replicated below. The docstring at the start
of the script explains the practical implementation of the full protocol. If your copy of
the dauvergne protocol.py script taken from the same relax version as this manual does
not match the text below, please contact the relax developers via the relax-devel mailing
list (see section 3.3.3 on page 31). To use this script, copy it to a dedicated directory
containing your PDB file and relaxation data files. The protocol will produce many files
and directories, so it is best that these are placed within a dedicated and results directory.
The contents of the script are:

1 """Script for black-box model-free analysis.

2

3 This script is designed for those who appreciate black-boxes or those who appreciate

complex code. Importantly data at multiple magnetic field strengths is essential for

this analysis. The script will need to be heavily tailored to the molecule in

question by changing the variables just below this documentation. If you would like

to change how model-free analysis is performed, the code in the class Main can be

changed as needed. For a description of object-oriented coding in python using

classes, functions/methods, self, etc., see the python tutorial.

4

5 If you have obtained this script without the program relax, please visit http://www.nmr-

relax.com.

6

7

8 References

9 ==========

10

11 The model-free optimisation methodology herein is that of:

12

13 d'Auvergne, E. J. and Gooley, P. R. (2008b). Optimisation of NMR dynamic models II. A

new methodology for the dual optimisation of the model-free parameters and the

Brownian rotational diffusion tensor. J. Biomol. NMR, 40(2), 121-133

14

15 Other references for features of this script include model-free model selection using

Akaike's Information Criterion:

16

17 d'Auvergne, E. J. and Gooley, P. R. (2003). The use of model selection in the model-

free analysis of protein dynamics. J. Biomol. NMR, 25(1), 25-39.

18

19 The elimination of failed model-free models and Monte Carlo simulations:

20

21 d'Auvergne, E. J. and Gooley, P. R. (2006). Model-free model elimination: A new step

in the model-free dynamic analysis of NMR relaxation data. J. Biomol. NMR, 35(2),

117-135.

22

23 Significant model-free optimisation improvements:

24

25 d'Auvergne, E. J. and Gooley, P. R. (2008a). Optimisation of NMR dynamic models I.

Minimisation algorithms and their performance within the model-free and Brownian

rotational diffusion spaces. J. Biomol. NMR, 40(2), 107-109.

26

27 Rather than searching for the lowest chi-squared value, this script searches for the model

with the lowest AIC criterion. This complex multi-universe, multi-dimensional search

is formulated using set theory as the universal solution:

108 CHAPTER 7. MODEL-FREE ANALYSIS

28

29 d'Auvergne, E. J. and Gooley, P. R. (2007). Set theory formulation of the model-free

problem and the diffusion seeded model-free paradigm. 3(7), 483-494.

30

31 The basic three references for the original and extended model-free theories are:

32

33 Lipari, G. and Szabo, A. (1982a). Model-free approach to the interpretation of nuclear

magnetic-resonance relaxation in macromolecules I. Theory and range of validity. J.

Am. Chem. Soc., 104(17), 4546-4559.

34

35 Lipari, G. and Szabo, A. (1982b). Model-free approach to the interpretation of nuclear

magnetic-resonance relaxation in macromolecules II. Analysis of experimental results.

J. Am. Chem. Soc., 104(17), 4559-4570.

36

37 Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Driscoll, P. C., and Gronenborn, A.M.

(1990). Deviations from the simple 2-parameter model-free approach to the

interpretation of N-15 nuclear magnetic-relaxation of proteins. J. Am. Chem. Soc.,

112(12), 4989-4991.

38

39

40 How to use this script

41 ======================

42

43 The value of the variable DIFF_MODEL will determine the behaviour of this script. The

five diffusion models used in this script are:

44

45 Model I (MI) - Local tm.

46 Model II (MII) - Sphere.

47 Model III (MIII) - Prolate spheroid.

48 Model IV (MIV) - Oblate spheroid.

49 Model V (MV) - Ellipsoid.

50

51 Model I must be optimised prior to any of the other diffusion models, while the Models II

to V can be optimised in any order. To select the various models, set the variable

DIFF_MODEL to the following strings:

52

53 MI - 'local_tm'

54 MII - 'sphere'

55 MIII - 'prolate'

56 MIV - 'oblate'

57 MV - 'ellipsoid'

58

59 This approach has the advantage of eliminating the need for an initial estimate of a

global diffusion tensor and removing all the problems associated with the initial

estimate.

60

61 It is important that the number of parameters in a model does not exceed the number of

relaxation data sets for that spin. If this is the case, the list of models in the

MF_MODELS and LOCAL_TM_MODELS variables will need to be trimmed.

62

63

64 Model I - Local tm

65 ~~~~~~~~~~~~~~~~~~

66

67 This will optimise the diffusion model whereby all spin of the molecule have a local tm

value, i.e. there is no global diffusion tensor. This model needs to be optimised

prior to optimising any of the other diffusion models. Each spin is fitted to the

multiple model-free models separately, where the parameter tm is included in each

model.

68

69 AIC model selection is used to select the models for each spin.

7.8. THE NEW PROTOCOL IN THE PROMPT/SCRIPT UI MODE 109

70

71

72 Model II - Sphere

73 ~~~~~~~~~~~~~~~~~

74

75 This will optimise the isotropic diffusion model. Multiple steps are required, an initial

optimisation of the diffusion tensor, followed by a repetitive optimisation until

convergence of the diffusion tensor. Each of these steps requires this script to be

rerun. For the initial optimisation, which will be placed in the directory './sphere/

init/', the following steps are used:

76

77 The model-free models and parameter values for each spin are set to those of diffusion

model MI.

78

79 The local tm parameter is removed from the models.

80

81 The model-free parameters are fixed and a global spherical diffusion tensor is minimised.

82

83

84 For the repetitive optimisation, each minimisation is named from 'round_1' onwards. The

initial 'round_1' optimisation will extract the diffusion tensor from the results file

in './sphere/init/', and the results will be placed in the directory './sphere/

round_1/'. Each successive round will take the diffusion tensor from the previous

round. The following steps are used:

85

86 The global diffusion tensor is fixed and the multiple model-free models are fitted to each

spin.

87

88 AIC model selection is used to select the models for each spin.

89

90 All model-free and diffusion parameters are allowed to vary and a global optimisation of

all parameters is carried out.

91

92

93 Model III - Prolate spheroid

94 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

95

96 The methods used are identical to those of diffusion model MII, except that an axially

symmetric diffusion tensor with Da >= 0 is used. The base directory containing all

the results is './prolate/'.

97

98

99 Model IV - Oblate spheroid

100 ~~~~~~~~~~~~~~~~~~~~~~~~~~

101

102 The methods used are identical to those of diffusion model MII, except that an axially

symmetric diffusion tensor with Da <= 0 is used. The base directory containing all

the results is './oblate/'.

103

104

105 Model V - Ellipsoid

106 ~~~~~~~~~~~~~~~~~~~

107

108 The methods used are identical to those of diffusion model MII, except that a fully

anisotropic diffusion tensor is used (also known as rhombic or asymmetric diffusion).

The base directory is './ellipsoid/'.

109

110

111

112 Final run

113 ~~~~~~~~~

110 CHAPTER 7. MODEL-FREE ANALYSIS

114

115 Once all the diffusion models have converged, the final run can be executed. This is done

by setting the variable DIFF_MODEL to 'final'. This consists of two steps, diffusion

tensor model selection, and Monte Carlo simulations. Firstly AIC model selection is

used to select between the diffusion tensor models. Monte Carlo simulations are then

run solely on this selected diffusion model. Minimisation of the model is bypassed as

it is assumed that the model is already fully optimised (if this is not the case the

final run is not yet appropriate).

116

117 The final black-box model-free results will be placed in the file 'final/results'.

118 """

119

120 # Python module imports.

121 from time import asctime, localtime

122

123 # relax module imports.

124 from auto_analyses.dauvergne_protocol import dAuvergne_protocol

125

126

127 # Analysis variables.

128 #####################

129

130 # The diffusion model.

131 DIFF_MODEL = 'local_tm'

132

133 # The model-free models. Do not change these unless absolutely necessary, the protocol is

likely to fail if these are changed.

134 MF_MODELS = ['m0', 'm1', 'm2', 'm3', 'm4', 'm5', 'm6', 'm7', 'm8', 'm9']

135 LOCAL_TM_MODELS = ['tm0', 'tm1', 'tm2', 'tm3', 'tm4', 'tm5', 'tm6', 'tm7', 'tm8', 'tm9']

136

137 # The grid search size (the number of increments per dimension).

138 GRID_INC = 11

139

140 # The optimisation technique.

141 MIN_ALGOR = 'newton'

142

143 # The number of Monte Carlo simulations to be used for error analysis at the end of the

analysis.

144 MC_NUM = 500

145

146 # Automatic looping over all rounds until convergence (must be a boolean value of True or

False).

147 CONV_LOOP = True

148

149

150

151 # Set up the data pipe.

152 #######################

153

154 # The following sequence of user function calls can be changed as needed.

155

156 # Create the data pipe.

157 pipe_bundle = "mf (%s)" % asctime(localtime())

158 name = "origin - " + pipe_bundle

159 pipe.create(name, 'mf', bundle=pipe_bundle)

160

161 # Load the PDB file.

162 structure.read_pdb('1f3y.pdb', set_mol_name='Ap4Aase', read_model=3)

163

164 # Set up the 15N and 1H spins (both backbone and Trp indole sidechains).

165 structure.load_spins('@N', ave_pos=True)

7.8. THE NEW PROTOCOL IN THE PROMPT/SCRIPT UI MODE 111

166 structure.load_spins('@NE1', ave_pos=True)

167 structure.load_spins('@H', ave_pos=True)

168 structure.load_spins('@HE1', ave_pos=True)

169 spin.isotope('15N', spin_id='@N*')

170 spin.isotope('1H', spin_id='@H*')

171

172 # Set up the 15N spins (alternative to the structure-based approach).

173 #sequence.read(file='noe.500.out', dir=None, mol_name_col=1, res_num_col=2, res_name_col

=3, spin_num_col=4, spin_name_col=5)

174 #spin.element(element='N', spin_id='@N*')

175 #spin.isotope('15N', spin_id='@N*')

176

177 # Generate the 1H spins for the magnetic dipole-dipole relaxation interaction (alternative

to the structure-based approach).

178 #sequence.attach_protons()

179

180 # Load the relaxation data.

181 relax_data.read(ri_id='R1_600', ri_type='R1', frq=599.719*1e6, file='r1.600.out',

mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5,

data_col=6, error_col=7)

182 relax_data.read(ri_id='R2_600', ri_type='R2', frq=599.719*1e6, file='r2.600.out',

mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5,

data_col=6, error_col=7)

183 relax_data.read(ri_id='NOE_600', ri_type='NOE', frq=599.719*1e6, file='noe.600.out',

mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5,

data_col=6, error_col=7)

184 relax_data.read(ri_id='R1_500', ri_type='R1', frq=500.208*1e6, file='r1.500.out',

mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5,

data_col=6, error_col=7)

185 relax_data.read(ri_id='R2_500', ri_type='R2', frq=500.208*1e6, file='r2.500.out',

mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5,

data_col=6, error_col=7)

186 relax_data.read(ri_id='NOE_500', ri_type='NOE', frq=500.208*1e6, file='noe.500.out',

mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5,

data_col=6, error_col=7)

187

188 # Deselect spins to be excluded (including unresolved and specifically excluded spins).

189 deselect.read(file='unresolved', dir=None, spin_id_col=None, mol_name_col=1, res_num_col

=2, res_name_col=3, spin_num_col=4, spin_name_col=5, sep=None, spin_id=None, boolean='

AND', change_all=False)

190 deselect.read(file='exclude', spin_id_col=1)

191

192 # Define the magnetic dipole-dipole relaxation interaction.

193 interatom.define(spin_id1='@N', spin_id2='@H', direct_bond=True)

194 interatom.define(spin_id1='@NE1', spin_id2='@HE1', direct_bond=True)

195 interatom.set_dist(spin_id1='@N*', spin_id2='@H*', ave_dist=1.02 * 1e-10)

196 interatom.unit_vectors()

197

198 # Define the chemical shift relaxation interaction.

199 value.set(-172 * 1e-6, 'csa', spin_id='@N*')

200

201

202

203 # Execution.

204 ############

205

206 # Do not change!

207 dAuvergne_protocol(pipe_name=name, pipe_bundle=pipe_bundle, diff_model=DIFF_MODEL,

mf_models=MF_MODELS, local_tm_models=LOCAL_TM_MODELS, grid_inc=GRID_INC, min_algor=

MIN_ALGOR, mc_sim_num=MC_NUM, conv_loop=CONV_LOOP)

112 CHAPTER 7. MODEL-FREE ANALYSIS

7.8.2 d’Auvergne protocol script mode – analysis variables

At the start of the script you will notice a number of Analysis variables. Unless you know
what you are doing, you should only change the DIFF MODEL variable to the following:

‘local tm’: This is the first diffusion model which must be optimised prior to optimising
any of the other diffusion models. It consists of the local τm models (equations 7.23.0
to 7.23.9 on page 90).

‘sphere’: This second diffusion model is that of isotropic Brownian diffusion.

‘prolate’: This third diffusion model is that of the prolate axially-symmetric rotor.

‘oblate’: This fourth diffusion model is that of the oblate axially-symmetric rotor.

‘ellipsoid’: This fifth diffusion model is that of fully rhombic Brownian diffusion (see
Perrin (1934, 1936) for the original theory).

‘final’: This is a special value which will finalise the analysis by selecting the best diffusion
model to describe your system and to perform Monte Carlo simulations for error
propagation.

The MF MODELS and LOCAL TM MODELS variables specify which model-free models will be used
in the analysis. But, as the full protocol behind this script which is designed to find the
solution of the universal set U (see section 7.7.2 on page 103) expects that all these models
are present, you should not change these variables. If you do remove some model-free
models, you should fully expect to see artificial motions which you will not be able to
distinguish from the real molecular motions.

The next variables GRID INC and MIN ALGOR are related to the optimisation of the model-free
models. These should also not be touched unless you fully understand the consequences
(and have read d’Auvergne and Gooley (2008b)). The variable MC NUM specifies the number
of Monte Carlo simulations. This number can be increased but, for realistic parameter
errors in your publication, it should not set lower than 500 simulations.

Finally the CONV LOOP variable is designed to make your life easier. If left at the value
of True, the script will iterate until convergence (see Figure 2 in d’Auvergne and Gooley
(2008c) to understand this concept). If changed to False, then you will need to run the
script manually for the 15 or so iterations of each diffusion model, and then repeat this
for all diffusion models II to V.

7.8.3 d’Auvergne protocol script mode – data pipe initialisation

The next part of the script between the Analysis variables and execution sets up a data
pipe with all of the spin information and relaxation data to pass into the automated
protocol. The data pipe is created in the lines:

156 # Create the data pipe.

157 pipe_bundle = "mf (%s)" % asctime(localtime())

158 name = "origin - " + pipe_bundle

159 pipe.create(name, 'mf', bundle=pipe_bundle)

7.8. THE NEW PROTOCOL IN THE PROMPT/SCRIPT UI MODE 113

Firstly a data pipe bundle name is created containing the date and time at the point the
script is first executed. This pipe bundle is used to group together all of the data pipes
created automatically by the protocol. See section 4.2.1 on page 36 for more details.

The data pipe name used for this initial setup is set to origin - mf (x) where x is the
data and time again. This name is unique and will not clash with the data pipes created
within the protocol. The pipe.create command will create the data pipe and add it to
a new pipe bundle.

7.8.4 d’Auvergne protocol script mode – setting up the spin systems

To see how to set up the spin system data in all possible situations, please see Chapter 4
for a thorough description. Here two different methods are presented. The first is by
extracting the spins from a PDB file which is first loaded with:

161 # Load the PDB file.

162 structure.read_pdb('1f3y.pdb', set_mol_name='Ap4Aase', read_model=3)

This will read the 3rd model from the 1F3Y PDB file and name the single molecule as
‘Ap4Aase’. The 15N and 1H spins for the backbone and tryptophan indole sidechain are
extracted from the structure with the user functions:

164 # Set up the 15N and 1H spins (both backbone and Trp indole sidechains).

165 structure.load_spins('@N', ave_pos=True)

166 structure.load_spins('@NE1', ave_pos=True)

167 structure.load_spins('@H', ave_pos=True)

168 structure.load_spins('@HE1', ave_pos=True)

As the PDB file does not contain isotope information, this is set with the user functions:

169 spin.isotope('15N', spin_id='@N*')

170 spin.isotope('1H', spin_id='@H*')

The spin ID ‘@N*’ uses regular expression and will match both the ‘N’ and ‘NE1’ spins.

The alternative approach is if a structure is missing. This is the commented out code:

172 # Set up the 15N spins (alternative to the structure-based approach).

173 sequence.read(file='noe.500.out', dir=None, mol_name_col=1, res_num_col=2, res_name_col=3,

spin_num_col=4, spin_name_col=5)

174 spin.element(element='N', spin_id='@N*')

175 spin.isotope('15N', spin_id='@N*')

176

177 # Generate the 1H spins for the magnetic dipole-dipole relaxation interaction (alternative

to the structure-based approach).

178 sequence.attach_protons()

To use this, you will need to place comments (the # character) in front of the previous
structure.read pdb, structure.load spins and spin.isotope user functions. Then
uncomment the sequence.read, spin.element, spin.isotope and sequence.attach

protons user functions. The 15N spins will be extracted from the noe.500.out file. The
spin.element and spin.isotope user functions set the information required for relax
to understand which relaxation mechanisms are active. Finally the sequence.attach

protons user function will automatically attach protons to all nitrogen spin systems. As

114 CHAPTER 7. MODEL-FREE ANALYSIS

this method is devoid of atomic positional information, the N-H bonds are absent and
the diffusion models requiring structural information (the spheroids and ellipsoid) must
be skipped.

7.8.5 d’Auvergne protocol script mode – loading the data

The next step is to load the relaxation data for each spin system. The sample script
assumes that the NOE, R1 and R2 data was generated using relax. One of the six user
function calls is:

180 # Load the relaxation data.

181 relax_data.read(ri_id='R1_600', ri_type='R1', frq=599.719*1e6, file='r1.600.out',

mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5,

data_col=6, error_col=7)

This pattern is repeated for all of the relaxation data files loaded. The important points
are that each relaxation data set must have its own unique identification string (ri id), the
relaxation data type specified (ri type) and the frequency in Hertz (not MHz) specified.
Note that the frequency must be the exact value – see the sfrq parameter in the Varian
procpar file or the SFO1 parameter in the Bruker acqus file.

7.8.6 d’Auvergne protocol script mode – deselection

The sample script now presents the deselection of spins using two different files:

188 # Deselect spins to be excluded (including unresolved and specifically excluded spins).

189 deselect.read(file='unresolved', dir=None, spin_id_col=None, mol_name_col=1, res_num_col

=2, res_name_col=3, spin_num_col=4, spin_name_col=5, sep=None, spin_id=None, boolean='

AND', change_all=False)

190 deselect.read(file='exclude', spin_id_col=1)

The unresolved file contains a list of spins which are unresolved in all spectra. If relax
has been used for calculating the NOE and fitting the relaxation curves, then this step is
not needed as the relaxation data files will not have any data for the spins deselected in
those analyses. The second file exclude is a list of spin ID strings (see section 4.2.2 on
page 38) of spins that for which ever reason are to be excluded from the analysis.

7.8.7 d’Auvergne protocol script mode – relaxation interactions

The next step is to fully specify all of the relaxation interactions active on the spins of
interest. Firstly the magnetic dipole-dipole interaction is defined between directly bonded
nitrogens and protons:

192 # Define the magnetic dipole-dipole relaxation interaction.

193 interatom.define(spin_id1='@N', spin_id2='@H', direct_bond=True)

194 interatom.define(spin_id1='@NE1', spin_id2='@HE1', direct_bond=True)

195 interatom.set_dist(spin_id1='@N*', spin_id2='@H*', ave_dist=1.02 * 1e-10)

196 interatom.unit_vectors()

7.8. THE NEW PROTOCOL IN THE PROMPT/SCRIPT UI MODE 115

The regular expression ‘@N*’ and ‘@H*’ cannot be used with the dipole pair. define
user function as otherwise @N spins will be connected to @HE1 spins of the same trypto-
phan residue and @H spins to @NE1 spins. The average interatomic distance is set to 1.02
Ångstrom (though the dipole pair.set dist user function expects the units of meters).
The dipole pair.unit vectors is used to calculate the averaged unit vector between the
two atoms.

Secondly the chemical shift anisotropy (CSA) relaxation mechanism is defined via the
single command:

198 # Define the chemical shift relaxation interaction.

199 value.set(-172 * 1e-6, 'csa', spin_id='@N*')

If your system does not experience CSA relaxation, the value can be set to zero.

7.8.8 d’Auvergne protocol script mode – execution

Once the data is set up and you have modified your script to match your analysis needs,
then the data pipe, pipe bundle and analysis variables are passed into the dAuvergne

protocol class. This is the final line of the script:

203 # Execution.

204 ############

205

206 # Do not change!

207 dAuvergne_protocol(pipe_name=name, pipe_bundle=pipe_bundle, diff_model=DIFF_MODEL,

mf_models=MF_MODELS, local_tm_models=LOCAL_TM_MODELS, grid_inc=GRID_INC, min_algor=

MIN_ALGOR, mc_sim_num=MC_NUM, conv_loop=CONV_LOOP)

This script needs to be executed multiple times, once for each of the diffusion models. For
example if the DIFF MODEL variable is set to ‘ellipsoid’, you can run relax with:

$ relax --tee log.ellipsoid dauvergne protocol.py

You should use a different log file for each diffusion model, though relax will prevent you
from overwriting an old log file. Note that the log.* files for each diffusion model may
end up being a few gigabytes in size.

For a full analysis of a protein system, the analysis may require between one to two weeks
to complete. This can be speed up using Gary Thompson’s multi-processor code (see
section 1.3 on page 17). The analysis is performed as described in the previous sections
and summarised in Figure 7.3. If you are curious, the implementation is within a very
large relax script called auto analyses/dauvergne protocol.py (which must never be
changed). This automatic analysis script hides all of the complexity of the full protocol
from the sample script.

116 CHAPTER 7. MODEL-FREE ANALYSIS

7.9 The new protocol in the GUI

A model-free analysis can be performed within the GUI (see Figure 1.8 on page 18). This
analysis is that of the fully automated d’Auvergne protocol which can be chosen via the
analysis selection wizard (Figure 1.4 on page 12). Please see Section 7.7 on page 100 for
a description of this new model-free protocol. As mentioned previously, please note that
this protocol requires multiple field relaxation data.

The GUI is designed to be robust – you should be able to set up all the input data and
parameters in any order with relax returning you warnings if something is missing. The
analysis will only execute once everything is correctly set up. If this is not the case, clicking
on the “Execute relax” button will display a warning window explaining what the issue is
rather than initialising the analysis. Despite the self-explanatory nature of the GUI a
tutorial on how to use the GUI, with screenshots, will be presented below.

If the “Protocol mode” field is left to the “Fully automated” setting then, after clicking on
“Execute relax”, the calculation can be left to complete. It is highly recommended to check
the log messages in the relax controller window, at least at the start of the analysis, to
make sure that all the data is being read correctly and everything is set up as desired. All
warnings should be carefully checked as these can indicate a fatal problem. If you would
like to log all the messages into a file, relax can be run with:

$ relax -g --log log

Note that the size of this log file could end up being in the gigabyte range for a model-free
analysis.

For the full analysis to complete, for a protein system this may take about a week. De-
pending on the nature of the problem and the speed of the computer, the calculation time
may be significantly shorter or longer. To speed up the calculations, if you have access
to multiple cores and/or hyper-threading, the GUI can be run using Gary Thompson’s
multi-processor framework (see section 1.3 on page 17). For example on a dual-core, dual-
CPU system, four calculations can be run simultaneously. In this case, the GUI can be
launched with:

$ mpirun -np 5 /usr/local/bin/relax --multi=‘mpi4py’ --gui --log log

This assumes that OpenMPI and the Python mpi4py module have been installed on your
system, and relax is installed into the /usr/local/bin/ directory. If this is successful,
you should only see a single relax GUI window (and not five windows) and in the relax
controller, you should see text similar to:

Processor fabric: MPI 2.1 running via mpi4py with 4 slave processors & 1 master. Using

Open MPI 1.4.3.

If you are using a different MPI implementation, please see the documentation of that
implementation to see how to launch a program in MPI mode. Finally as the calculation
takes so long, we will run the calculations at a lower priority so that the computer is not
slowed down too much and remains responsive. Therefore this model-free GUI analysis
tutorial will be launched with the full command:

$ nice -n 15 mpirun -np 5 /usr/local/bin/relax --multi=‘mpi4py’ --gui --log log

7.9. THE NEW PROTOCOL IN THE GUI 117

7.9.1 d’Auvergne protocol GUI mode – data pipe initialisation

First launch the analysis selection wizard (see Figure 1.4 on page 12) and click on the
model-free analysis button.

Click on the “Next” button and on the second page click on the “Start” button. The text
in the second page need not be changed.

7.9.2 d’Auvergne protocol GUI mode – general setup

Once the analysis is initialised, the screen should look like:

118 CHAPTER 7. MODEL-FREE ANALYSIS

The “About” button in the bottom left will bring up a window with the same description
as given in the sample script:

At this point, back in the main relax window, the results directory where all of the output
files and directories will be saved can be changed.

7.9.3 d’Auvergne protocol GUI mode – setting up the spin systems

The model-free dynamics is at the level of the spins – relaxation affects individual nuclei.
In the main model-free tab you will see the “Spin systems” GUI element. Clicking on the
“Spin editor” button to the right of this element will launch the spin editor window.

7.9. THE NEW PROTOCOL IN THE GUI 119

In this tutorial, the 3rd model of the PDB file 1f3y.pdb will be used to extract the spin
system information. The molecule will be named “Ap4Aase”. For details on how to create
the spin containers necessary for this analysis, please see section 4.5.2 on page 42 (or
analyses lacking structural data in section 4.5.3 on page 45 for sequence files).

Note that for this tutorial, the protein backbone spins “@N” and “@H” as well as the
tryptophan sidechain indole “@NE1” and “@HE1” spins should be loaded in the spin viewer
window.

7.9.4 d’Auvergne protocol GUI mode – unresolved spins

To deselect all unwanted spins, please read section 4.5.5 on page 46 for all the necessary
instructions for how to do this in the GUI.

7.9.5 d’Auvergne protocol GUI mode – loading the data

The relaxation data can either come from plain columnar formatted text files (such as if
relax was used for the NOE, R1 and R2 analyses) or from the Bruker Dynamics Centre.
For the former, click on the “Add” button in the “Relaxation data list” GUI element. This
route will be used for this tutorial. For the later, click on the “Add Bruker” button. After
clicking on “Add”, you will see the relaxation data loading wizard:

In this first page, the unique relaxation data identification string (“r2 500”), the relaxation
data type (“R2”), the frequency in Hertz (“500208174.2”) and the file (“r2.500.out”) are
specified. If your data comes from another program, you many need to change the values
in the “Free format file settings” element. Click on “Next” to load the data from the file.

The next wizard pages are for loading the metadata which is used in the BioMagResBank
deposition of your final results. The first is how the peak intensities were measured, either
peak heights or volumes. Select the appropriate value, then click on “Next”.

120 CHAPTER 7. MODEL-FREE ANALYSIS

Then the temperature control method is given. For more details, please read the docu-
mentation provided in the wizard and see section 5.3.1 on page 52. Click on “Next” to
continue.

The temperature calibration method can finally be specified. Again, see section 5.3.1 on
page 52 for the full details. Click on the “Finish” button to close the wizard.

7.9. THE NEW PROTOCOL IN THE GUI 121

After you have repeated this for the NOE, R1 and R2 at both 500 and 600 MHz, you
should now see:

Check that the metadata has been properly entered by clicking on the “View metadata”
button in the “Relaxation data list” GUI element:

122 CHAPTER 7. MODEL-FREE ANALYSIS

7.9.6 d’Auvergne protocol GUI mode – relaxation interactions

Just as in the scripting mode, the relaxation interactions need to now be defined. The
first is the magnetic diole-dipole interaction. All coupled nitrogen and proton spins should
already be loaded at this point. Click on the “Dipolar relaxation” button in the model-free
tab in the main relax window to launch the magnetic dipole-dipole interaction wizard:

For this example, directly bonded nitrogens and protons will be analysed. To start with,
the backbone NH pairs will be defined. Leave the values at “@N” and “@H” and click on
the “Apply” button. Then change the two spin ID strings to “@NE1” and “@HE1” to set
up the tryptophan sidechain indole NH pairs and click on the “Next” button. Note that

7.9. THE NEW PROTOCOL IN THE GUI 123

the regular expression “@N*” and “@H*” should not be used in this first wizard page as
otherwise @N spins will be connected to @HE1 spins of the same tryptophan residue and @H

spins to @NE1 spins.

Now the 〈r−3〉 averaged distance of 1.02 Å will be set. Leave all settings as they are and
click on “Next”:

If multiple models have been loaded in the previous steps, then the unit vectors between
each model need to be calculated. For a model-free analysis multiple unit vectors must be
averaged to a single vector – current model-free theory is based on the assumption of a
single vector orientation. Therefore the averaged vector flag must be left on “True”. Click
on “Finish” to terminate the set up of the magnetic dipole-dipole interactions:

124 CHAPTER 7. MODEL-FREE ANALYSIS

Secondly the chemical shift anisotropy (CSA) relaxation mechanism needs to be defined.
Click on the “CSA relaxation” button in the model-free tab in the main relax window. An
averaged CSA value of -172 ppm will be used for all spins, so simply click on “Ok” to
finish.

7.9.7 d’Auvergne protocol GUI mode – spin isotopes

As the PDB file contains no isotope information, this needs to now be specified. First click
on the “X isotope” button to set the nuclear isotope type of the heteronuclei:

As nitrogen relaxation is being studied, the nuclear isotope name can be left as “15N” and
the spin ID string to “@N*”. Therefore simply click on the “Ok” button. Exactly the same

7.9. THE NEW PROTOCOL IN THE GUI 125

procedure can be used for the proton with the “H isotope” button.

7.9.8 d’Auvergne protocol GUI mode – the rest of the setup

The local τm models and model-free models should not be modified, the reason for this
is explained in section 7.8.2 on page 112. The grid search increments defaults to “11”.
This is used in the optimisation of the individual model-free models for each spin. This
value should also not be touched unless you know what you are doing (and have read
d’Auvergne and Gooley (2008b)). The number of Monte Carlo simulations can be in-
creased but, for accurate error estimates, it should not be less than 500 simulations. One
additional setting is the “Maximum iterations”. This is a maximum number of times the
protocol will iterate before terminating. This allows infinite loops to be broken. The value
of 30 iterations should be fine for most analyses.

The “Protocol mode” GUI element setting of “Fully automated” will not be changed for the
analysis of this tutorial. However if you are studying a system without a 3D structure,
you can execute each individual component of the analysis by clicking on the “Change”
button. This will make the protocol mode selection window appear:

From this you can first select the “Local τm” model, then the “Sphere” and finally the
“Final” mode, clicking on “Execute relax” between each selection.

7.9.9 d’Auvergne protocol GUI mode – execution

Prior to executing relax, you should very carefully check the relax controller window for
any strange messages, warnings or errors. You can open this window in three ways:

• Selecting the “View→Controller” menu item.

• Typing “[Ctrl+Z]” within the main relax window.

126 CHAPTER 7. MODEL-FREE ANALYSIS

• Clicking on the “relax controller” button on the toolbar.

These messages are very important and will indicate to you if there are any problems prior
to starting the very long model-free calculation. This information should be stored in the
log file as well. As the execution of a fully iterative and complete model-free protocol
takes a very long time to finish, it is advisable to save the current relax state. This will
allow you restart the calculation without performing all of the steps detailed above. Just
in case you cannot work out how to do this yourself, here is a list of the different ways
you can do this (if this is not enough for you, please email the relax-users mailing list with
your suggestions):

• Selecting the “File→Save relax state” menu item.

• Typing “[Ctrl+S]” within the main relax window.

• Clicking on the “Save relax state” button on the toolbar.

• Selecting the “File→Save as...” menu item.

• Typing “[Shift+Ctrl+S]” within the main relax window.

• Clicking on the “Save as” button on the toolbar.

• Selecting the “User functions→state→save” menu item.

• Opening up the relax prompt window with “View→relax prompt” or “[Ctrl+P]” and
using the state.save user function.

If all the messages in the relax controller or log file appear to be fine and you have saved
the current relax state, then click on “Execute relax”. This will start the calculations, freeze
most of the GUI and open up the relax controller to give you feedback on the progress of
the calculations:

7.9. THE NEW PROTOCOL IN THE GUI 127

At the start of the protocol, you should again check the messages carefully to be sure that
relax is operating as you would expect. There may be very important RelaxWarnings

that will require you to quit relax and start the analysis all over again.

7.9.10 d’Auvergne protocol GUI mode – completion

Upon completion of the analysis, the save and results files for the final result will be located
in the final directory within the selected results directory. The results files will consist
of text files for each of the spin specific model-free parameters, 2D Grace plots of the
model-free parameters, PyMOL and MOLMOL macros for superimposing the model-free
parameter values onto the 3D structure of the molecule, and a PDB representation of the
final diffusion tensor.

Further visualisations of the results are possible via the “User functions” menu entry. For
example to generate a 2D plot of order parameters for one of the other diffusion tensor
results, the pipe editor window can be used to switch data pipes to the other diffusion
models and then the “User functions→grace→write” menu item can be selected to create the
plot.

7.9.11 d’Auvergne protocol GUI mode – BMRB deposition

Once you are ready to publish your results, the very last step of the model-free analysis is
to create a NMR-STAR formatted file for BioMagResBank submission for each model-free
analysis you perform. This can be accomplished using the BMRB export window. Simply
select the “File→Export for BMRB deposition” menu item. You will then see the BMRB export
window:

From here you can complete the relaxation data metadata if needed, set up all the molecule
information needed for a BMRB deposition, specify the software you have used running up

http://www.bmrb.wisc.edu/

128 CHAPTER 7. MODEL-FREE ANALYSIS

to the model-free analysis and any spectral processing or relax scripts you have used. You
can also add as many citations relevant to your analysis as you wish. The NMR-STAR
formatted file can be previewed in the relax controller window via the “Preview” button
and the final file created using the “Export” button.

Once you are in the stage of writing up, simply go to the ADIT-NMR webpage at
http://deposit.bmrb.wisc.edu/bmrb-adit/, create a new BMRB deposition, upload the
file you have created, complete the deposition as needed, and add the BMRB deposition
number to your paper.

http://deposit.bmrb.wisc.edu/bmrb-adit/

Chapter 8

Reduced spectral density mapping

8.1 Introduction to reduced spectral density mapping

The reduced spectral density mapping analysis is often performed when the system under
study is not suitable for model-free analysis, or as a last resort if a model-free analysis
fails. The aim is to convert the relaxation data into three J(ω) values for the given field
strength. Interpretation of this data, although slightly less convoluted than the relaxation
data, is still plagued by problems related to non-spherical diffusion and much care must
be taken when making conclusions. A full understanding of the model-free analysis and
the effect of diffusion tensor anisotropy and rhombicity allows for better interpretation of
the raw numbers.

To understand how reduced spectral density mapping is implemented in relax, the sample
script will be worked through. This analysis type is not implemented in the GUI yet,
though it shouldn’t be too hard if anyone would like to contribute this and have a reference
added to Chapter , the citations chapter.

8.2 J(w) mapping script mode – the sample script

1 """Script for reduced spectral density mapping."""

2

3

4 # Create the data pipe.

5 pipe.create(pipe_name='my_protein', pipe_type='jw')

6

7 # Set up the 15N spins.

8 sequence.read(file='noe.600.out', res_num_col=1, res_name_col=2)

9 spin.name(name='N')

10 spin.element(element='N')

11 spin.isotope(isotope='15N', spin_id='@N')

12

13 # Load the 15N relaxation data.

14 relax_data.read(ri_id='R1_600', ri_type='R1', frq=600.0*1e6, file='r1.600.out',

res_num_col=1, data_col=3, error_col=4)

15 relax_data.read(ri_id='R2_600', ri_type='R2', frq=600.0*1e6, file='r2.600.out',

res_num_col=1, data_col=3, error_col=4)

129

130 CHAPTER 8. REDUCED SPECTRAL DENSITY MAPPING

16 relax_data.read(ri_id='NOE_600', ri_type='NOE', frq=600.0*1e6, file='noe.600.out',

res_num_col=1, data_col=3, error_col=4)

17

18 # Generate 1H spins for the magnetic dipole-dipole relaxation interaction.

19 sequence.attach_protons()

20

21 # Define the magnetic dipole-dipole relaxation interaction.

22 interatom.define(spin_id1='@N', spin_id2='@H', direct_bond=True)

23 interatom.set_dist(spin_id1='@N', spin_id2='@H', ave_dist=1.02 * 1e-10)

24

25 # Define the chemical shift relaxation interaction.

26 value.set(val=-172 * 1e-6, param='csa')

27

28 # Select the frequency.

29 jw_mapping.set_frq(frq=600.0 * 1e6)

30

31 # Reduced spectral density mapping.

32 minimise.calculate()

33

34 # Monte Carlo simulations (well, bootstrapping as this is a calculation and not a fit!).

35 monte_carlo.setup(number=500)

36 monte_carlo.create_data()

37 minimise.calculate()

38 monte_carlo.error_analysis()

39

40 # Create grace files.

41 grace.write(y_data_type='j0', file='j0.agr', force=True)

42 grace.write(y_data_type='jwx', file='jwx.agr', force=True)

43 grace.write(y_data_type='jwh', file='jwh.agr', force=True)

44

45 # View the grace files.

46 grace.view(file='j0.agr')

47 grace.view(file='jwx.agr')

48 grace.view(file='jwh.agr')

49

50 # Write out the values.

51 value.write(param='j0', file='j0.txt', force=True)

52 value.write(param='jwx', file='jwx.txt', force=True)

53 value.write(param='jwh', file='jwh.txt', force=True)

54

55 # Finish.

56 results.write(file='results', force=True)

57 state.save('save', force=True)

8.3 J(w) mapping script mode – data pipe and spin system

setup

The steps for setting up relax and the data model concept are described in full detail in
Chapter 4. The first step, as for all analyses in relax, is to create a data pipe for storing
all the data:

4 # Create the data pipe.

5 pipe.create(pipe_name='my_protein', pipe_type='jw')

Then, in this example, the 15N spins are created from one of the NOE relaxation data files
(Chapter 6):

7 # Set up the 15N spins.

8.4. J(W) MAPPING SCRIPT MODE – RELAXATION DATA LOADING 131

8 sequence.read(file='noe.600.out', res_num_col=1, res_name_col=2)

9 spin.name(name='N')

10 spin.element(element='N')

11 spin.isotope(isotope='15N', spin_id='@N')

Skipping the relaxation data loading, the next part of the analysis is to create protons
attached to the nitrogens for the magnetic dipole-dipole relaxation interaction:

18 # Generate 1H spins for the magnetic dipole-dipole relaxation interaction.

19 sequence.attach_protons()

This is needed to define the magnetic dipole-dipole interaction which governs relaxation.

8.4 J(w) mapping script mode – relaxation data loading

The loading of relaxation data is straight forward. This is performed prior to the creation
of the proton spins so that the data is loaded only into the 15N spin containers and not
both spins for each residue. Only data for a single field strength can be loaded:

13 # Load the 15N relaxation data.

14 relax_data.read(ri_id='R1_600', ri_type='R1', frq=600.0*1e6, file='r1.600.out',

res_num_col=1, data_col=3, error_col=4)

15 relax_data.read(ri_id='R2_600', ri_type='R2', frq=600.0*1e6, file='r2.600.out',

res_num_col=1, data_col=3, error_col=4)

16 relax_data.read(ri_id='NOE_600', ri_type='NOE', frq=600.0*1e6, file='noe.600.out',

res_num_col=1, data_col=3, error_col=4)

The frequency of the data must also be explicitly specified:

28 # Select the frequency.

29 jw_mapping.set_frq(frq=600.0 * 1e6)

8.5 J(w) mapping script mode – relaxation interactions

Prior to calculating the J(ω) values, the physical interactions which govern relaxation of
the spins must be defined. For the magnetic dipole-dipole relaxation interaction, the user
functions are:

21 # Define the magnetic dipole-dipole relaxation interaction.

22 interatom.define(spin_id1='@N', spin_id2='@H', direct_bond=True)

23 interatom.set_dist(spin_id1='@N', spin_id2='@H', ave_dist=1.02 * 1e-10)

For the chemical shift relaxation interaction, the user function call is:

25 # Define the chemical shift relaxation interaction.

26 value.set(val=-172 * 1e-6, param='csa')

132 CHAPTER 8. REDUCED SPECTRAL DENSITY MAPPING

8.6 J(w) mapping script mode – calculation and error prop-

agation

Optimisation for this analysis is not needed as this is a direct calculation. Therefore the
J(ω) values are simply calculated with the call:

31 # Reduced spectral density mapping.

32 minimise.calculate()

The propagation of errors is more complicated. The Monte Carlo simulation framework
of relax can be used to propagate the relaxation data errors to the spectral density errors.
As this is a direct calculation, this collapses into the standard bootstrapping method. The
normal Monte Carlo user functions can be called:

34 # Monte Carlo simulations (well, bootstrapping as this is a calculation and not a fit!).

35 monte_carlo.setup(number=500)

36 monte_carlo.create_data()

37 minimise.calculate()

38 monte_carlo.error_analysis()

In this case, the monte carlo.initial values user function call is not required.

8.7 J(w) mapping script mode – visualisation and data out-

put

The rest of the script is used to output the results to 2D Grace files for visualisation (the
grace.view user function calls will launch Grace with the created files), and the output
of the values into plain text files.

Chapter 9

Consistency testing

9.1 Introduction to the consistency testing of relaxation
data

In spin relaxation, datasets are often recorded at different magnetic fields. This is especially
important when R2 values are to be used since µs-ms motions contribute to R2. This
contribution being scaled quadratically with the strength of the magnetic field, recording
at multiple magnetic fields helps extract it. Also, acquiring data at multiple magnetic fields
allows over-determination of the mathematical problems, e.g. in the model-free approach.

Recording at multiple magnetic fields is a good practice. However, it can cause artifacts
if those different datasets are inconsistent. Inconsistencies can originate from, inter alia,
the sample or the acquisition. Sample variations can be linked to changes in temperature,
concentration, pH, etc. Water suppression is the main cause of acquisition variations as it
affect relaxation parameters (especially NOE) of exposed and exchangeable moieties (e.g.
the NH moiety).

It is thus a good idea to assess consistency of datasets acquired at different magnetic fields.
For this purpose, three tests are implemented in relax. They are all based on the same
principle – calculate a field independent value and compare it from one field to another.

The three tests are:

J(0) The spectral density at the zero frequency calculated using the reduced spectral
density approach.

Fη A consistency function proposed by Fushman et al. (1998).

FR2
A consistency function proposed by Fushman et al. (1998).

These three tests are very similar (all probing consistency of R2 data and all suffering from
the same limitations) and any of them can be used for consistency testing. In the example
below, the J(0) values are used for consistency testing.

Different methods exist to compare tests values calculated from one field to another. These
include correlation plots and histograms, and calculation of correlation, skewness and

133

134 CHAPTER 9. CONSISTENCY TESTING

kurtosis coefficients. The details of how to interpret such analyses are avaliable at the end
of this chapter in Section 9.7.

For more details on the tests and their implementation within relax, see:

• Morin, S. and Gagné, S. (2009a). Simple tests for the validation of multiple field
spin relaxation data. J. Biomol. NMR, 45, 361–372. (10.1007/s10858-009-9381-4)

Or for the origin of the tests themselves:

• Fushman, D., Tjandra, N., and Cowburn, D. (1999). An approach to direct determi-
nation of protein dynamics from 15N NMR relaxation at multiple fields, independent
of variable 15N chemical shift anisotropy and chemical exchange contributions. J.
Am. Chem. Soc., 121(37), 8577–8582. (10.1021/ja9904991)

In addition, see the following review which includes a discussion on how to evaluate the
reliability of recorded relaxation data:

• Morin, S. (2011). A practical guide to protein dynamics from 15N spin relaxation in
solution. Prog. NMR Spectrosc., 59(3), 245–262. (10.1016/j.pnmrs.2010.12.003)

9.2 Consistency testing in the prompt/script UI mode

The consistency testing analysis is only available via the prompt/script UI modes – no
GUI auto-analysis has yet been built by a relax power-user.

9.2.1 Consistency testing script mode – the sample script

The following script can be found in the sample scripts directory.

1 """ Script for consistency testing.

2

3 Severe artifacts can be introduced if model-free analysis is performed from inconsistent

multiple magnetic field datasets. The use of simple tests as validation tools for the

consistency assessment can help avoid such problems in order to extract more reliable

information from spin relaxation experiments. In particular, these tests are useful

for detecting inconsistencies arising from R2 data. Since such inconsistencies can

yield artificial Rex parameters within model-free analysis, these tests should be use

routinely prior to any analysis such as model-free calculations.

4

5 This script will allow one to calculate values for the three consistency tests J(0), F_eta

and F_R2. Once this is done, qualitative analysis can be performed by comparing

values obtained at different magnetic fields. Correlation plots and histograms are

useful tools for such comparison, such as presented in Morin & Gagne (2009a) J.

Biomol. NMR, 45: 361-372.

6

7

8 References

9 ==========

10

http://dx.doi.org/10.1007/s10858-009-9381-4
http://dx.doi.org/10.1021/ja9904991
http://dx.doi.org/10.1016/j.pnmrs.2010.12.003

9.2. CONSISTENCY TESTING IN THE PROMPT/SCRIPT UI MODE 135

11 The description of the consistency testing approach:

12

13 Morin & Gagne (2009a) Simple tests for the validation of multiple field spin

relaxation data. J. Biomol. NMR, 45: 361-372. U{http://dx.doi.org/10.1007/s10858

-009-9381-4}

14

15 The origins of the equations used in the approach:

16

17 J(0):

18 Farrow et al. (1995) Spectral density function mapping using 15N relaxation data

exclusively. J. Biomol. NMR, 6: 153-162. U{http://dx.doi.org/10.1007/BF00211779}

19

20 F_eta:

21 Fushman et al. (1998) Direct measurement of 15N chemical shift anisotropy in

solution. J. Am. Chem. Soc., 120: 10947-10952. U{http://dx.doi.org/10.1021/ja981686m}

22

23 F_R2:

24 Fushman et al. (1998) Direct measurement of 15N chemical shift anisotropy in

solution. J. Am. Chem. Soc., 120: 10947-10952. U{http://dx.doi.org/10.1021/ja981686m}

25

26 A study where consistency tests were used:

27

28 Morin & Gagne (2009) NMR dynamics of PSE-4 beta-lactamase: An interplay of ps-ns order

and us-ms motions in the active site. Biophys. J., 96: 4681-4691. U{http://dx.doi.org

/10.1016/j.bpj.2009.02.068}

29 """

30

31 # Create the data pipe.

32 name = 'consistency'

33 pipe.create(name, 'ct')

34

35 # Set up the 15N spins.

36 sequence.read('noe.600.out', res_num_col=1)

37 spin.name(name='N')

38 spin.element(element='N')

39 spin.isotope(isotope='15N', spin_id='@N')

40

41 # Load the relaxation data.

42 relax_data.read(ri_id='R1_600', ri_type='R1', frq=600.0*1e6, file='r1.600.out',

res_num_col=1, data_col=3, error_col=4)

43 relax_data.read(ri_id='R2_600', ri_type='R2', frq=600.0*1e6, file='r2.600.out',

res_num_col=1, data_col=3, error_col=4)

44 relax_data.read(ri_id='NOE_600', ri_type='NOE', frq=600.0*1e6, file='noe.600.out',

res_num_col=1, data_col=3, error_col=4)

45

46 # Generate the 1H spins for the magnetic dipole-dipole interaction.

47 sequence.attach_protons()

48

49 # Define the magnetic dipole-dipole relaxation interaction.

50 interatom.define(spin_id1='@N', spin_id2='@H', direct_bond=True)

51 interatom.set_dist(spin_id1='@N', spin_id2='@H', ave_dist=1.02 * 1e-10)

52

53 # Define the chemical shift relaxation interaction.

54 value.set(val=-172 * 1e-6, param='csa')

55

56 # Set the angle between the 15N-1H vector and the principal axis of the 15N chemical shift

tensor

57 value.set(val=15.7, param='orientation')

58

59 # Set the approximate correlation time.

60 value.set(val=13 * 1e-9, param='tc')

136 CHAPTER 9. CONSISTENCY TESTING

61

62 # Set the frequency.

63 consistency_tests.set_frq(frq=600.0 * 1e6)

64

65 # Consistency tests.

66 minimise.calculate()

67

68 # Monte Carlo simulations.

69 monte_carlo.setup(number=500)

70 monte_carlo.create_data()

71 minimise.calculate()

72 monte_carlo.error_analysis()

73

74 # Create grace files.

75 grace.write(y_data_type='j0', file='j0.agr', force=True)

76 grace.write(y_data_type='f_eta', file='f_eta.agr', force=True)

77 grace.write(y_data_type='f_r2', file='f_r2.agr', force=True)

78

79 # View the grace files.

80 grace.view(file='j0.agr')

81 grace.view(file='f_eta.agr')

82 grace.view(file='f_r2.agr')

83

84 # Finish.

85 results.write(file='results', force=True)

86 state.save('save', force=True)

This is similar in spirit to the reduced spectral density mapping sample script (Chapter 8
on page 129).

9.3 Consistency testing script mode – data pipe and spin
system setup

The steps for setting up relax and the data model concept are described in full detail in
Chapter 4. The first step, as for all analyses in relax, is to create a data pipe for storing
all the data:

31 # Create the data pipe.

32 name = 'consistency'

33 pipe.create(name, 'ct')

Then, in this example, the 15N spins are created from one of the NOE relaxation data files
(Chapter 6):

35 # Set up the 15N spins.

36 sequence.read('noe.600.out', res_num_col=1)

37 spin.name(name='N')

38 spin.element(element='N')

39 spin.isotope(isotope='15N', spin_id='@N')

Skipping the relaxation data loading, the next part of the analysis is to create protons
attached to the nitrogens for the magnetic dipole-dipole relaxation interaction:

46 # Generate the 1H spins for the magnetic dipole-dipole interaction.

47 sequence.attach_protons()

9.4. CONSISTENCYTESTING SCRIPTMODE – RELAXATIONDATA LOADING137

This is needed to define the magnetic dipole-dipole interaction which governs relaxation.

9.4 Consistency testing script mode – relaxation data load-
ing

The loading of relaxation data is straight forward. This is performed prior to the creation
of the proton spins so that the data is loaded only into the 15N spin containers and not both
spins for each spin system. Note that if the relaxation data files contain spin information,
then this order is not important. For this analysis, only data for a single field strength
can be loaded:

41 # Load the relaxation data.

42 relax_data.read(ri_id='R1_600', ri_type='R1', frq=600.0*1e6, file='r1.600.out',

res_num_col=1, data_col=3, error_col=4)

43 relax_data.read(ri_id='R2_600', ri_type='R2', frq=600.0*1e6, file='r2.600.out',

res_num_col=1, data_col=3, error_col=4)

44 relax_data.read(ri_id='NOE_600', ri_type='NOE', frq=600.0*1e6, file='noe.600.out',

res_num_col=1, data_col=3, error_col=4)

The frequency of the data must also be explicitly specified:

62 # Set the frequency.

63 consistency_tests.set_frq(frq=600.0 * 1e6)

9.5 Consistency testing script mode – relaxation interac-

tions

Prior to calculating the J(0), Fη , and FR2
values, the physical interactions which gov-

ern relaxation of the spins must be defined. For the magnetic dipole-dipole relaxation
interaction, the user functions are:

49 # Define the magnetic dipole-dipole relaxation interaction.

50 interatom.define(spin_id1='@N', spin_id2='@H', direct_bond=True)

51 interatom.set_dist(spin_id1='@N', spin_id2='@H', ave_dist=1.02 * 1e-10)

For the chemical shift relaxation interaction, the user function call is:

53 # Define the chemical shift relaxation interaction.

54 value.set(val=-172 * 1e-6, param='csa')

For the angle in degrees between the 15N-1H vector and the principal axis of the 15N
chemical shift tensor, the user function call is:

56 # Set the angle between the 15N-1H vector and the principal axis of the 15N chemical shift

tensor

57 value.set(val=15.7, param='orientation')

138 CHAPTER 9. CONSISTENCY TESTING

9.6 Consistency testing script mode – calculation and error

propagation

Optimisation for this analysis is not needed as this is a direct calculation. Therefore the
J(0), Fη , and FR2

values are simply calculated with the call:

65 # Consistency tests.

66 minimise.calculate()

The propagation of errors is more complicated. The Monte Carlo simulation framework
of relax can be used to propagate the relaxation data errors to the spectral density errors.
As this is a direct calculation, this collapses into the standard bootstrapping method. The
normal Monte Carlo user functions can be called:

68 # Monte Carlo simulations.

69 monte_carlo.setup(number=500)

70 monte_carlo.create_data()

71 minimise.calculate()

72 monte_carlo.error_analysis()

In this case, the monte carlo.initial values user function call is not required.

9.7 Consistency testing script mode – visualisation and data

output

The rest of the script is used to output the results to 2D Grace files for visualisation (the
grace.view user function calls will launch Grace with the created files), and the output
of the values into plain text files.

However, simply visualizing the calculated J(0), Fη, and FR2
values this way does not

allow proper consistency testing. Indeed, for assessing the consistency of relaxation data
using these tests, different methods exist to compare values calculated from one field to
another. These include correlation plots and histograms, and calculation of correlation,
skewness and kurtosis coefficients.

To complete the consistency testing analysis, the following steps are needed:

• Extract the J(0) values at multiple magnetic fields.

• Join together the data from a pair of magnetic fields either by pasting them as two
columns of one file (approach A), or by dividing values from a first magnetic field
by values from a second magnetic field (approach B).

• Make either a correlation plot (approach A), or an histogram of the ratios (approach
B).

• See if the correlation plot is centered around a perfect correlation or skewed away
(approach A), or if the values are centered around 1 in the histogram (approach B).
If yes, data from multiple magnetic fields is consistent from one magnetic field to
another. If no, data is inconsistent. In the case where inconsistency arises, if data

9.7. CONSISTENCYTESTING SCRIPTMODE – VISUALISATIONAND DATA OUTPUT139

from more than two magnetic fields is available, more than one pair of data can be
checked and the inconsistent magnetic field data can be identified.

J(
0
)

 (
6
0
0
 M

H
z)

600 MHz vs 500 MHz

J(0) (500 MHz)

800 MHz vs 500 MHz 800 MHz vs 600 MHz

0 1e-09 2e-09 3e-09 4e-09 5e-09 6e-09

J(0) (500 MHz)
0

1e-09

2e-09

3e-09

4e-09

5e-09

6e-09

0 1e-09 2e-09 3e-09 4e-09 5e-09 6e-09
0

1e-09

2e-09

3e-09

4e-09

5e-09

6e-09

0 1e-09 2e-09 3e-09 4e-09 5e-09 6e-09
0

1e-09

2e-09

3e-09

4e-09

5e-09

6e-09

J(
0
)

 (
8
0
0
 M

H
z)

0 1e-09 2e-09 3e-09 4e-09 5e-09 6e-09
0

1e-09

2e-09

3e-09

4e-09

5e-09

6e-09

0 1e-09 2e-09 3e-09 4e-09 5e-09 6e-09

J(0) (600 MHz)
0

1e-09

2e-09

3e-09

4e-09

5e-09

6e-09

J(
0
)

 (
8
0
0
 M

H
z)

0 1e-09 2e-09 3e-09 4e-09 5e-09 6e-09
0

1e-09

2e-09

3e-09

4e-09

5e-09

6e-09

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Ratio: /

0

5

10

15

20

25 1.009 +/- 0.057

0.6 0.8 1 1.2 1.4

Ratio: /

0

5

10

15

20

25 0.959 +/- 0.066

0.6 0.8 1 1.2 1.4

J(0) (800 MHz)

0

5

10

15

20

25 0.955 +/- 0.077

0.6 0.8 1 1.2 1.4

J(0) (500 MHz)

0

5

10

15

20

25 1.009 +/- 0.057

0.6 0.8 1 1.2 1.4

J(0) (600 MHz)

0

5

10

15

20

25 1.009 +/- 0.057

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

J(0) (500 MHz)

0

5

10

15

20

25 0.959 +/- 0.066

0.6 0.8 1 1.2 1.4

J(0) (800 MHz)

0

5

10

15

20

25 0.959 +/- 0.066

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Ratio: /

0

5

10

15

20

25 0.955 +/- 0.077

0.6 0.8 1 1.2 1.4

J(0) (600 MHz)

0

5

10

15

20

25 0.955 +/- 0.077

Figure 9.1: Example of consistency testing visual analysis. Relaxation data from three
different magnetic fields are compared. For each pair of magnetic field, a correlation plot
of the calculated J(0) values (approach A, top) as well as an histogram of the ration of
calculated J(0) values (approach B, bottom) are shown. These graphs must be manually
created from the output of the sample script shown in section 9.2.1. The PSE-4 data, as
published in Morin and Gagné (2009b), has been reused for the purpose of this example.

An example of such an analysis is shown in Figure 9.1. This example displays both
consistent and inconsistent data. As the figure shows, the data recorded at 500 MHz and
600 MHz are consistent with each other whereas the data recorded at 800 MHz is consistent
with the neither the 500 MHz nor 600 MHz data. Since more than two magnetic fields were
used, this allowed the identification of the 800 MHz data as being inconsistent allowing
the authors to take special care with this data set.

The 800 MHz data inconsistency is seen in the correlation plots (top) by a deviation
from the dotted line (which represents the theoretical situation when equal J(0) values
are extracted from both magnetic fields. It is also observable in the histograms (bottom)
where the ratio of the data from two magnetic fields is not centered at 1.0. In fact, there
seems to be a systematic shift of the calculated J(0) values at 800 MHz when compared
to the two other magnetic fields. This is caused by a similar shift in the experimental R2

(transversal relaxation rate) data.

For the 500 MHz and 600 MHz data pair, the data are centered around the dotted line
in the correlation plot (approach A, top left) as well as centered around a value of 1.0
in the histogram comparing the ratios of values from both magnetic fields (approach B,
bottom left). Of course, there are some outlier values even in the case of consistent data.
There are caused by specific dynamic characteristics of these spins and are different from
systematic inconsistencies such as depicted in the example above with the data recorded
at 800 MHz.

140 CHAPTER 9. CONSISTENCY TESTING

Chapter 10

The N-state model or ensemble
analysis

10.1 Introduction to the N-state model

The modelling of motion in molecules using experimental data consists of either continuous
or discrete distributions. These can be visualised respectively as either an infinite number
of states or a limited set of N states. The N-state model analysis in relax models the
molecular dynamics using an ensemble of static structures.

This analysis supports a number of data types including:

• Residual dipolar couplings (RDCs)

• Pseudo-contact shifts (PCSs)

• NOEs

The main idea is to evaluate the quality of a fixed ensemble of structures. relax will not
perform structural optimisations. The evaluation includes:

• Alignment tensor optimisation for the RDCs and PCSs.

141

142 CHAPTER 10. THE N-STATE MODEL OR ENSEMBLE ANALYSIS

• Optional optimisation of the position of the paramagnetic centre for the PCSs.

• Calculation of NOE constraint violations.

• Q factor calculation for the RDC, PCS, and NOE.

Note that this analysis will also handle single structures. Hence you can use the N-state
model in relax with N set to 1 to find, for example, a single alignment tensor for a single
structure using RDCs, PCSs, or both together. This is useful for comparing a ensemble
to a single structure to determine if any statistically significant motions are present.

The primary references for the N-state model analysis in relax are:

• Sun, H., d’Auvergne, E. J., Reinscheid, U. M., Dias, L. C., Andrade, C. K. Z.,
Rocha, R. O., and Griesinger, C. (2011). Bijvoet in solution reveals unex-
pected stereoselectivity in a michael addition. Chem. Eur. J., 17(6), 1811–1817.
(10.1002/chem.201002520)

• Erdelyi, M., d’Auvergne, E., Navarro-Vazquez, A., Leonov, A., and Griesinger, C.
(2011). Dynamics of the glycosidic bond: conformational space of lactose. Chem.
Eur. J., 17(34), 9368–9376. (10.1002/chem.201100854)

10.2 Experimental data support for the N-state model

10.2.1 RDCs in the N-state model

Residual dipolar couplings (RDCs) can be used to evaluate ensembles. The ensemble
interconversion is assumed to be fast relative to timescale of the alignment process, hence a
single tensor for all members of the ensemble will be used. As such, precise superimposition
of structures using a logical frame of reference is very important. This can be performed
in relax using the structure.superimpose user function. The RDCs can either be from
external or internal alignment.

10.2.2 PCSs in the N-state model

Pseudo-contact shifts (PCSs) can also be used to evaluate ensembles. The same averaging
process as described above for the RDC is assumed. Hence correct structural superimpo-
sition is essential and one alignment tensor will be optimised for the entire ensemble.

One powerful feature of relax is that the paramagnetic centre can either be fixed or be
allowed to move during optimisation. This allows an unknown paramagnetic centre posi-
tion to be found. Or a known position to be refined to higher accuracy than that possible
with most other techniques.

http://dx.doi.org/10.1002/chem.201002520
http://dx.doi.org/10.1002/chem.201100854

10.3. DETERMINING STEREOCHEMISTRY IN DYNAMIC MOLECULES 143

10.2.3 NOEs in the N-state model

Another data type which can be used to evaluate dynamics ensembles is the NOE. This is
not used in optimisation but rather is used to calculate NOE constraint violations. These
violations are then compared to evaluate the ensemble. In the stereochemistry auto-
analysis, these violations will also be converted to Q factors to allow direct comparison
with RDC Q factors.

10.3 Determining stereochemistry in dynamic molecules

A published application of the N-state model in relax is:

• Sun, H., d’Auvergne, E. J., Reinscheid, U. M., Dias, L. C., Andrade, C. K. Z.,
Rocha, R. O., and Griesinger, C. (2011). Bijvoet in solution reveals unex-
pected stereoselectivity in a michael addition. Chem. Eur. J., 17(6), 1811–1817.
(10.1002/chem.201002520)

This analysis of the stereochemistry of a small molecule consists of two steps. The first
part is to determine the relative configuration. The idea is to use NMR data (consisting of
RDCs and NOEs) to find the relative configuration. Ensembles of 10 members are created
from molecular dynamics simulations (MD) or simulated annealing (SA). These are then
ranked by the RDC Q factor and NOE violation. By converting the NOE violation into a
Q factor:

Q2
NOE =

U∑
iNOE2 , (10.1)

where U is the quadratic flat bottom well potential, i.e. the NOE violation in Å2, and the
denominator is the sum of all squared NOEs. A combined Q factor is calculated as:

Q2
total = Q2

NOE +Q2
RDC. (10.2)

The second step is to distinguish enantiomers. As NMR data is symmetric, it cannot
distinguish enantiomers. Therefore an optical technique such as optical rotatory dispersion
can be used. For molecules experiencing large amounts of motion, sampling all possible
conformations, calculating the expected dispersion properties, and calculating an averaged
dispersion curve is not feasible. The idea is therefore to combine NMR and ORD by taking
the best NMR ensembles from step one to use for ORD spectral prediction.

10.3.1 Stereochemistry – the auto-analysis

Step one of the N-state model is implemented as an auto-analysis. This is lo-
cated in the module auto analysis.stereochem analysis (see http://www.nmr-relax.
com/api/3.1/auto_analyses.stereochem_analysis-module.html). The auto-analysis
is accessed via the Stereochem analysis class, the details of which can be
seen at http://www.nmr-relax.com/api/3.1/auto_analyses.stereochem_analysis.

Stereochem_analysis-class.html.

http://dx.doi.org/10.1002/chem.201002520
http://en.wikipedia.org/wiki/Optical_rotatory_dispersion
http://www.nmr-relax.com/api/3.1/auto_analyses.stereochem_analysis-module.html
http://www.nmr-relax.com/api/3.1/auto_analyses.stereochem_analysis-module.html
http://www.nmr-relax.com/api/3.1/auto_analyses.stereochem_analysis.Stereochem_analysis-class.html
http://www.nmr-relax.com/api/3.1/auto_analyses.stereochem_analysis.Stereochem_analysis-class.html

144 CHAPTER 10. THE N-STATE MODEL OR ENSEMBLE ANALYSIS

10.3.2 Stereochemistry – the sample script

The following script was used for the analysis in Sun et al. (2011). It is used to complete
the first step of the analysis, the determination of relative configuration, and for the
generation of ensembles for the second step of the analysis. The file is located at sample
scripts/n state model/stereochem analysis.py. The contents of the script are:

1 """Script for the determination of relative stereochemistry.

2

3 The analysis is preformed by using multiple ensembles of structures, randomly sampled from

a given set of structures. The discrimination is performed by comparing the sets of

ensembles using NOE violations and RDC Q factors.

4

5 This script is split into multiple stages:

6

7 1. The random sampling of the snapshots to generate the N ensembles (NUM_ENS, usually

10,000 to 100,000) of M members (NUM_MODELS, usually ~10). The original snapshot

files are expected to be named the SNAPSHOT_DIR + CONFIG + a number from SNAPSHOT_MIN

to SNAPSHOT_MAX + ".pdb", e.g. "snapshots/R647.pdb". The ensembles will be placed

into the "ensembles" directory.

8

9 2. The NOE violation analysis.

10

11 3. The superimposition of ensembles. For each ensemble, Molmol is used for

superimposition using the fit to first algorithm. The superimposed ensembles will be

placed into the "ensembles_superimposed" directory. This stage is not necessary for

the NOE analysis.

12

13 4. The RDC Q factor analysis.

14

15 5. Generation of Grace graphs.

16

17 6. Final ordering of ensembles using the combined RDC and NOE Q factors, whereby the

NOE Q factor is defined as::

18

19 Q^2 = U / sum(NOE_i^2),

20

21 where U is the quadratic flat bottom well potential - the NOE violation in Angstrom^2.

The denominator is the sum of all squared NOEs - this must be given as the value of

NOE_NORM. The combined Q is given by::

22

23 Q_total^2 = Q_NOE^2 + Q_RDC^2.

24 """

25

26 # relax module imports.

27 from auto_analyses.stereochem_analysis import Stereochem_analysis

28

29

30 # Stage of analysis (see the docstring above for the options).

31 STAGE = 1

32

33 # Number of ensembles.

34 NUM_ENS = 100000

35

36 # Ensemble size.

37 NUM_MODELS = 10

38

39 # Configurations.

40 CONFIGS = ["R", "S"]

41

10.3. DETERMINING STEREOCHEMISTRY IN DYNAMIC MOLECULES 145

42 # Snapshot directories (corresponding to CONFIGS).

43 SNAPSHOT_DIR = ["snapshots", "snapshots"]

44

45 # Min and max number of the snapshots (corresponding to CONFIGS).

46 SNAPSHOT_MIN = [0, 0]

47 SNAPSHOT_MAX = [76, 71]

48

49 # Pseudo-atoms.

50 PSEUDO = [

51 ["Q7", ["@H16", "@H17", "@H18"]],

52 ["Q9", ["@H20", "@H21", "@H22"]],

53 ["Q10", ["@H23", "@H24", "@H25"]]

54]

55

56 # NOE info.

57 NOE_FILE = "noes"

58 NOE_NORM = 50 * 4**2 # The NOE normalisation factor (sum of all NOEs squared).

59

60 # RDC file info.

61 RDC_NAME = "PAN"

62 RDC_FILE = "pan_rdcs"

63 RDC_SPIN_ID1_COL = 1

64 RDC_SPIN_ID2_COL = 2

65 RDC_DATA_COL = 2

66 RDC_ERROR_COL = None

67

68 # Bond length.

69 BOND_LENGTH = 1.117 * 1e-10

70

71 # Log file output (only for certain stages).

72 LOG = True

73

74 # Number of buckets for the distribution plots.

75 BUCKET_NUM = 200

76

77 # Distribution plot limits.

78 LOWER_LIM_NOE = 0.0

79 UPPER_LIM_NOE = 600.0

80 LOWER_LIM_RDC = 0.0

81 UPPER_LIM_RDC = 1.0

82

83

84 # Set up and code execution.

85 analysis = Stereochem_analysis(

86 stage=STAGE,

87 num_ens=NUM_ENS,

88 num_models=NUM_MODELS,

89 configs=CONFIGS,

90 snapshot_dir=SNAPSHOT_DIR,

91 snapshot_min=SNAPSHOT_MIN,

92 snapshot_max=SNAPSHOT_MAX,

93 pseudo=PSEUDO,

94 noe_file=NOE_FILE,

95 noe_norm=NOE_NORM,

96 rdc_name=RDC_NAME,

97 rdc_file=RDC_FILE,

98 rdc_spin_id1_col=RDC_SPIN_ID1_COL,

99 rdc_spin_id2_col=RDC_SPIN_ID2_COL,

100 rdc_data_col=RDC_DATA_COL,

101 rdc_error_col=RDC_ERROR_COL,

102 bond_length=BOND_LENGTH,

146 CHAPTER 10. THE N-STATE MODEL OR ENSEMBLE ANALYSIS

103 log=LOG,

104 bucket_num=BUCKET_NUM,

105 lower_lim_noe=LOWER_LIM_NOE,

106 upper_lim_noe=UPPER_LIM_NOE,

107 lower_lim_rdc=LOWER_LIM_RDC,

108 upper_lim_rdc=UPPER_LIM_RDC

109)

110 analysis.run()

In contrast to all of the other auto-analyses, here you do not set up your own data pipe
containing all of the relevant data that is then passed into the auto-analysis. This may
change in the future to allow for more flexibility in how you load structures, load the RDC
and NOE base data, set up pseudo-atoms and bond lengths for the RDC, etc.

Note that you need to execute this script 6 times, changing the STAGE variable to match.
These stages are fully documented at the start of the script.

Due to the original analysis being performed prior to the addition of the structure.

superimpose user function to relax, you will see that the auto-analysis performs superim-
position of each ensemble using the external software Molmol. If you wish to perform this
analysis without using Molmol, please contact the relax users mailing list “nmr-relax-users
at lists.sourceforge.net” (see Section 3.3.2 on page 31). It would be rather straightforward
for the relax developers to replace the complicated Molmol superimposition code with a
single call to the structure.superimpose user function.

Chapter 11

The analysis of relaxation
dispersion

11.1 Introduction to relaxation dispersion

Relaxation dispersion is the experimental modulation of chemical exchange relaxation.
For the R1ρ-type experiment in which the nucleus of interest is spin-locked, either the
spin-lock field strength or the offset between the spin-lock pulse and the chemical shift of
the spins is used to modulate the exchange. For the CPMG-type experiment, varying the
time between the pulses modules the exchange. Both experiment types are handled by
relax.

The primary reference for the relaxation dispersion implemented in relax is:

• Morin, S., Linnet, T. E., Lescanne, M., Schanda, P., Thompson, G. S., Tollinger, M.,
Teilum, K., Gagne, S., Marion, D., Griesinger, C., Blackledge, M., and d’Auvergne,
E. J. (2014). relax: the analysis of biomolecular kinetics and thermodynam-
ics using NMR relaxation dispersion data. Bioinformatics, 30(15), 2219–2220.
(10.1093/bioinformatics/btu166)

For other citations, please see the citation chapter on page xxvii.

147

http://dx.doi.org/10.1093/bioinformatics/btu166

148 CHAPTER 11. RELAXATION DISPERSION

11.1.1 The modelling of dispersion data

For a system under the influence of chemical exchange, the evolution of the transverse
magnetisation is given by the Bloch (1946) equations as modified by McConnell (1958) for
chemical exchange – the Bloch-McConnell equations. For a two state exchange jumping
between states A and B, the equation is:

d

dt

[
M+

A (t)
M+

B (t)

]
=

[
−iΩA − R0

2A − pBkex pAkex
pBkex −iΩB − R0

2B − pAkex

] [
M+

A (t)
M+

B (t)

]
. (11.1)

The analytic or closed-form frequency-domain solution for this equation however remains
intractable. Solutions can nevertheless be found by either making assumptions or restric-
tions about the exchange process and then analytically solving 11.1 or by finding numeric
solutions. The modelling of relaxation dispersion data can hence be categorised into these
two distinct methodologies:

Analytical models: Optimisation of models based on analytical, closed-form expressions
derived from the Bloch-McConnell equations subject to certain conditions (see Sec-
tion 11.3 on page 159 and Section 11.7 on page 176).

Numerical models: Optimisation of models based on numerically solving the Bloch-
McConnell equations (see Section 11.4 on page 166 and Section 11.8 on page 180).

11.1.2 Implemented models

A number of analytic and numeric models are supported within relax. These cover single
quantum (SQ) CPMG-type, combined proton-heteronuclear single quantum (SQ), zero
quantum (ZQ), double quantum (DQ) and multi quantum (MQ) CPMG-type experiments,
and R1ρ-type. If the model you are interested in is not available, please see Section 11.11
on page 197 for how you can add new models to relax.

Models which are independent of the experiment type include:

‘R2eff’: This is the model used to determine the R2eff or R1ρ values and errors required
as the base data for all other models. See Section 11.2.1 on page 156.

‘No Rex’: This is the model for no chemical exchange being present. See Section 11.2.2
on page 158.

For the SQ CPMG-type experiments, the analytic models currently supported are:

‘LM63’: The original Luz and Meiboom (1963) 2-site fast exchange equation with pa-
rameters {R0

2, . . . ,Φex, kex}. See Section 11.3.1 on page 159.

‘LM63 3-site’: The original Luz and Meiboom (1963) 3-site fast exchange equation with
parameters {R0

2, . . . ,Φex,B, kB,Φex,C, kC}. The equations of O’Connell et al. (2009)
can be used to approximately convert the parameters {Φex,B, kB,Φex,C, kC} to more
biologically relevant parameters. See Section 11.3.2 on page 160.

11.1. INTRODUCTION TO RELAXATION DISPERSION 149

‘CR72’: The reduced Carver and Richards (1972) 2-site equation for most time scales
whereby the simplification R0

2A = R0
2B is assumed. It has the parameters

{R0
2, . . . , pA,∆ω, kex}. See Section 11.3.4 on page 162.

‘CR72 full’: The full Carver and Richards (1972) 2-site equation for most time scales
with parameters {R0

2A,R
0
2B, . . . , pA,∆ω, kex}. See Section 11.3.3 on page 161.

‘IT99’: The Ishima and Torchia (1999) 2-site model for all time scales with pA ≫ pB and
with parameters {R0

2, . . . , pA,∆ω, τex}. See Section 11.3.5 on page 162.

‘TSMFK01’: The Tollinger et al. (2001) 2-site very-slow exchange model for time scales
within range of microsecond to second time scale. Applicable in the limit of slow
exchange, when |R0

2A−R0
2B| ≪ kAB, kBA ≪ 1/τCPMG. 2∗τCPMG is the time between

successive 180 degree pulses. Parameters are {R0
2A, . . . ,∆ω, kAB}. See Section 11.3.6

on page 163.

‘B14’: The reduced Baldwin (2014) 2-site exact solution equation for all time scales
whereby the simplification R0

2A = R0
2B is assumed. It has the parameters

{R0
2, . . . , pA,∆ω, kex}. See Section 11.3.8 on page 166.

‘B14 full’: The full Baldwin (2014) 2-site exact equation for all time scales with param-
eters {R0

2A,R
0
2B, . . . , pA,∆ω, kex}. See Section 11.3.7 on page 164.

For the SQ CPMG-type experiments, the numeric models currently supported are:

‘NS CPMG 2-site expanded’: A model for 2-site exchange expanded using Maple
by Nikolai Skrynnikov (Tollinger et al., 2001). It has the parameters
{R0

2, . . . , pA,∆ω, kex}. See Section 11.4.1 on page 166.

‘NS CPMG 2-site 3D’: The reduced model for 2-site exchange using 3D magnetisation
vectors whereby the simplification R0

2A = R0
2B is assumed. It has the parameters

{R0
2, . . . , pA,∆ω, kex}. See Section 11.4.3 on page 169.

‘NS CPMG 2-site 3D full’: The full model for 2-site exchange using 3D magnetisation
vectors with parameters {R0

2A,R
0
2B, . . . , pA,∆ω, kex}. See Section 11.4.2 on page 169.

‘NS CPMG 2-site star’: The reduced model for 2-site exchange using complex conju-
gate matrices whereby the simplification R0

2A = R0
2B is assumed. It has the parame-

ters {R0
2, . . . , pA,∆ω, kex}. See Section 11.4.5 on page 170.

‘NS CPMG 2-site star full’: The full model for 2-site exchange using complex conju-
gate matrices with parameters {R0

2A,R
0
2B, . . . , pA,∆ω, kex}. See Section 11.4.4 on

page 169.

For the combined proton-heteronuclear SQ, ZQ, DQ and MQ CPMG-type experiments
(MMQ – or multi-multiple quantum), the analytic models currently supported are:

‘MMQ CR72’: The Carver and Richards (1972) 2-site model for most time scales ex-
panded for MMQ CPMG data by Korzhnev et al. (2004a). It has the parameters
{R0

2, . . . , pA,∆ω,∆ωH, kex}. See Section 11.5.1 on page 170.

150 CHAPTER 11. RELAXATION DISPERSION

For the combined proton-heteronuclear SQ, ZQ, DQ and MQ CPMG-type experiments
(MMQ – or multi-multiple quantum), the numeric models currently supported are:

‘NS MMQ 2-site’: The model for 2-site exchange whereby the simplification R0
2A = R0

2B

is assumed. It has the parameters {R0
2, . . . , pA,∆ω,∆ωH, kex}. See Section 11.6.1 on

page 172.

‘NS MMQ 3-site linear’: The model for 3-site exchange linearised with kAC = kCA = 0
whereby the simplification R0

2A = R0
2B = R0

2C is assumed. It has the parameters {R0
2,

. . . , pA, pB, ∆ωAB, ∆ωBC, ∆ωH

AB, ∆ωH

BC, k
AB
ex , kBC

ex }. See Section 11.6.2 on page 174.

‘NS MMQ 3-site’: The model for 3-site exchange whereby the simplification R0
2A =

R0
2B = R0

2C is assumed. It has the parameters {R0
2, . . . , pA, pB, ∆ωAB, ∆ωBC,

∆ωH

AB, ∆ωH

BC, k
AB
ex , kBC

ex , kAC
ex }. See Section 11.6.3 on page 175.

For the R1ρ-type experiments, the analytic models currently supported are:

‘M61’: The Meiboom (1961) 2-site fast exchange equation for on-resonance data with
parameters {R′

1ρ, . . . ,Φex, kex}. See Section 11.7.1 on page 177.

‘DPL94’: The Davis et al. (1994) extension of the ‘M61’ model for off-resonance data
with parameters {R′

1ρ, . . . ,Φex, kex}. See Section 11.7.3 on page 178.

‘M61 skew’: The Meiboom (1961) 2-site equation for all time scales with pA ≫ pB and
with parameters {R′

1ρ, . . . , pA,∆ω, kex}. This model is disabled by default in the
dispersion auto-analysis. See Section 11.7.2 on page 177.

‘TP02’: The Trott and Palmer (2002) 2-site equation for all time scales with pA ≫ pB
and with parameters {R′

1ρ, . . . , pA,∆ω, kex}. See Section 11.7.4 on page 178.

‘TAP03’: The Trott et al. (2003) off-resonance 2-site analytic equation for all time scales
with the weak condition pA ≫ pB and with parameters {R′

1ρ, . . . , pA,∆ω, kex}.

‘MP05’: The Miloushev and Palmer (2005) off-resonance 2-site equation for all time
scales with parameters {R′

1ρ, . . . , pA,∆ω, kex}. See Section 11.7.6 on page 180.

For the R1ρ-type experiments, the numeric models currently supported are:

‘NS R1rho 2-site’: The model for 2-site exchange using 3D magnetisation vectors. It
has the parameters {R′

1ρ, . . . , pA,∆ω, kex}. See Section 11.8.1 on page 181.

‘NS R1ρ 3-site linear’: The model for 3-site exchange linearised with kAC = kCA = 0
whereby the simplification R′

1ρA = R′
1ρB = R′

1ρC is assumed. It has the parameters

{R′
1ρ, . . . , pA, pB, ∆ωAB, ∆ωBC, k

AB
ex , kBC

ex }. See Section 11.8.3 on page 183.

‘NS R1ρ 3-site’: The model for 3-site exchange whereby the simplification R′
1ρA =

R′
1ρB = R′

1ρC is assumed. It has the parameters {R′
1ρ, . . . , pA, pB, ∆ωAB, ∆ωBC,

kAB
ex , kBC

ex , kAC
ex }. See Section 11.8.2 on page 181.

11.1. INTRODUCTION TO RELAXATION DISPERSION 151

11.1.3 Dispersion model summary

Except for ‘R2eff’ and ‘No Rex’, all models can be fit to clusterings of spins, or spin
blocks. The models are described in more detail below and summarised in Table 11.1. The
parameters of the models and of relaxation dispersion in general are given in Table 17.5.

R1 parameter optimisation

For a number of models, the off-resonance R1 value can be optimised. Normally the off-
resonance models will use fixed experimental R1 values for optimisation. However if the
experimental values are not loaded, then the R1 values will be automatically optimised.
For finer control of this optimisation behaviour, see the relax disp.r1 fit user function
(page 583). The models which support off-resonance R1 fitting include:

• ‘No Rex’,

• ‘DPL94’,

• ‘TP02’,

• ‘TAP03’,

• ‘MP05’,

• ‘NS R1rho 2-site’.

In the future, support for off-resonance effects in the CPMG experiments is planned (see
section 11.10 on page 196).

152 CHAPTER 11. RELAXATION DISPERSION
T
a
b
le

1
1
.1
:
T
h
e
d
is
p
er
si
o
n
m
o
d
el
s
su
p
p
o
rt
ed

b
y
re
la
x
.

M
o
d
el

n
a
m
e

S
o
lu
ti
o
n

S
it
es

P
a
ra
m
et
er
s

R
es
tr
ic
ti
o
n
s

R
ef
er
en
ce

E
x
p
er
im

en
t
in
d
ep

en
d
en
t

R
2
eff

-
-

{R
2
e
ff
,·
··
}

F
ix
ed

re
la
x
a
ti
o
n
ti
m
e
p
er
io
d

-
R
2
eff

-
-

{R
2
e
ff
,I

0
,·
··
}

V
a
ri
a
b
le

re
la
x
a
ti
o
n
ti
m
e
p
er
io
d

-
N
o
R
ex

C
lo
se
d

1
{R

0 2
,·
··
}

-
-

C
P
M
G
-t
y
p
e

L
M
6
3

A
n
a
ly
ti
c

2
{R

0 2
,.
..
,Φ

e
x
,k

e
x
}

F
a
st

ex
ch
a
n
g
e

L
u
z
a
n
d
M
ei
b
o
o
m

(1
9
6
3)

L
M
6
3
3
-s
it
e

A
n
a
ly
ti
c

3
{R

0 2
,.
..
,Φ

e
x
,B
,k

B
,Φ

e
x
,C
,k

C
}

F
a
st

ex
ch
a
n
g
e,

p
A
>

p
B
a
n
d

L
u
z
a
n
d
M
ei
b
o
o
m

(1
9
6
3)

p
A
>

p
C

C
R
7
2

A
n
a
ly
ti
c

2
{R

0 2
,.
..
,p

A
,∆

ω
,k

e
x
}

p
A
>

p
B
,
n
o
t
v
er
y
sl
ow

ex
ch
a
n
g
e

C
a
rv
er

a
n
d
R
ic
h
a
rd
s
(1
9
7
2)

C
R
7
2
fu
ll

A
n
a
ly
ti
c

2
{R

0 2
A
,R

0 2
B
,.
..
,p

A
,∆

ω
,k

e
x
}

p
A
>

p
B
,
n
o
t
v
er
y
sl
ow

ex
ch
a
n
g
e

C
a
rv
er

a
n
d
R
ic
h
a
rd
s
(1
9
7
2)

IT
9
9

A
n
a
ly
ti
c

2
{R

0 2
,.
..
,p

A
,∆

ω
,τ

e
x
}

p
A
≫

p
B

Is
h
im

a
a
n
d
T
o
rc
h
ia

(1
9
9
9)

T
S
M
F
K
0
1

A
n
a
ly
ti
c

2
{R

0 2
A
,.
..
,∆

ω
,k

A
B
}

p
A
≫

p
B
sl
ow

ex
ch
a
n
g
e

T
o
ll
in
g
er

et
a
l.
(2
0
0
1)

B
1
4

A
n
a
ly
ti
c

2
{R

0 2
,.
..
,p

A
,∆

ω
,k

e
x
}

p
A
>

p
B
,

B
a
ld
w
in

(2
0
1
4)

B
1
4
fu
ll

A
n
a
ly
ti
c

2
{R

0 2
A
,R

0 2
B
,.
..
,p

A
,∆

ω
,k

e
x
}

p
A
>

p
B
,

B
a
ld
w
in

(2
0
1
4)

N
S
C
P
M
G

2
-s
it
e
ex
p
a
n
d
ed

N
u
m
er
ic

2
{R

0 2
,.
..
,p

A
,∆

ω
,k

e
x
}

p
A
>

p
B

T
o
ll
in
g
er

et
a
l.
(2
0
0
1)

N
S
C
P
M
G

2
-s
it
e
3
D

N
u
m
er
ic

2
{R

0 2
,.
..
,p

A
,∆

ω
,k

e
x
}

p
A
>

p
B

-
N
S
C
P
M
G

2
-s
it
e
3
D

fu
ll

N
u
m
er
ic

2
{R

0 2
A
,R

0 2
B
,.
..
,p

A
,∆

ω
,k

e
x
}

p
A
>

p
B

-
N
S
C
P
M
G

2
-s
it
e
st
a
r

N
u
m
er
ic

2
{R

0 2
,.
..
,p

A
,∆

ω
,k

e
x
}

p
A
>

p
B

-
N
S
C
P
M
G

2
-s
it
e
st
a
r
fu
ll

N
u
m
er
ic

2
{R

0 2
A
,R

0 2
B
,.
..
,p

A
,∆

ω
,k

e
x
}

p
A
>

p
B

-

11.1. INTRODUCTION TO RELAXATION DISPERSION 153

T
a
b
le

1
1
.1
:
T
h
e
d
is
p
er
si
o
n
m
o
d
el
s
su
p
p
o
rt
ed

b
y
re
la
x
.

M
o
d
el

n
a
m
e

S
o
lu
ti
o
n

S
it
es

P
a
ra
m
et
er
s

R
es
tr
ic
ti
o
n
s

R
ef
er
en
ce

M
M
Q

C
P
M
G
-t
y
p
e

M
M
Q

C
R
7
2

A
n
a
ly
ti
c

2
{R

0 2
,.
..
,p

A
,∆

ω
,∆

ω
H
,k

e
x
}

p
A
>

p
B

K
o
rz
h
n
ev

et
a
l.
(2
0
0
4
a)

N
S
M
M
Q

2
-s
it
e

N
u
m
er
ic

2
{R

0 2
,.
..
,p

A
,∆

ω
,∆

ω
H
,k

e
x
}

p
A
>

p
B

K
o
rz
h
n
ev

et
a
l.
(2
0
0
5
a)

N
S
M
M
Q

3
-s
it
e
li
n
ea
r

N
u
m
er
ic

3
{R

0 2
,.
..
,p

A
,p

B
,∆

ω
A
B
,∆

ω
B
C
,

p
A
>

p
B
a
n
d
p
B
>

p
C

K
o
rz
h
n
ev

et
a
l.
(2
0
0
5
a)

∆
ω

H A
B
,∆

ω
H B
C
,k

A
B

e
x
,k

B
C

e
x
}

N
S
M
M
Q

3
-s
it
e

N
u
m
er
ic

3
{R

0 2
,.
..
,p

A
,p

B
,∆

ω
A
B
,∆

ω
B
C
,

p
A
>

p
B
a
n
d
p
B
>

p
C

K
o
rz
h
n
ev

et
a
l.
(2
0
0
5
a)

∆
ω

H A
B
,∆

ω
H B
C
,k

A
B

e
x
,k

B
C

e
x
,k

A
C

e
x
}

R
1
ρ
-t
y
p
e

M
6
1

A
n
a
ly
ti
c

2
{R

′ 1
ρ
,.
..
,Φ

e
x
,k

e
x
}

F
a
st

ex
ch
a
n
g
e,

o
n
-r
es
o
n
a
n
ce
,

M
ei
b
o
o
m

(1
9
6
1)

R
1
=

R
2

D
P
L
9
4

A
n
a
ly
ti
c

2
{R

′ 1
ρ
,.
..
,Φ

e
x
,k

e
x
}

F
a
st

ex
ch
a
n
g
e

D
av

is
et

a
l.
(1
9
9
4)

M
6
1
sk
ew

A
n
a
ly
ti
c

2
{R

′ 1
ρ
,.
..
,p

A
,∆

ω
,k

e
x
}

p
A
≫

p
B
,
o
n
-r
es
o
n
a
n
ce

M
ei
b
o
o
m

(1
9
6
1)

T
P
0
2

A
n
a
ly
ti
c

2
{R

′ 1
ρ
,.
..
,p

A
,∆

ω
,k

e
x
}

p
A
≫

p
B
,
n
o
t
fa
st

ex
ch
a
n
g
e

T
ro
tt

a
n
d
P
a
lm

er
(2
0
0
2)

T
A
P
0
3

A
n
a
ly
ti
c

2
{R

′ 1
ρ
,.
..
,p

A
,∆

ω
,k

e
x
}

W
ea
k
co
n
d
it
io
n
o
f
p
A
≫

p
B

T
ro
tt

et
a
l.
(2
0
0
3)

T
P
0
4
1

A
n
a
ly
ti
c

N
{R

′ 1
ρ
,.
..
,p

1
,.
..
,p

N
,ω

,k
1
2
,.
..

k
1
N
}

O
n
e
si
te

d
o
m
in
a
n
t

T
ro
tt

a
n
d
P
a
lm

er
(2
0
0
4)

M
P
0
5

A
n
a
ly
ti
c

2
{R

′ 1
ρ
,.
..
,p

A
,∆

ω
,k

e
x
}

p
A
>

p
B

M
il
o
u
sh
ev

a
n
d
P
a
lm

er
(2
0
0
5)

B
K
1
3

A
n
a
ly
ti
c

2
{R

0 2
,.
..
,p

A
,∆

ω
,k

e
x
}

p
A
>

p
B
,

B
a
ld
w
in

a
n
d
K
ay

(2
0
1
3)

B
K
1
3
fu
ll

A
n
a
ly
ti
c

2
{R

0 2
A
,R

0 2
B
,.
..
,p

A
,∆

ω
,k

e
x
}

p
A
>

p
B
,

B
a
ld
w
in

a
n
d
K
ay

(2
0
1
3)

N
S
R
1
rh
o
2
-s
it
e

N
u
m
er
ic

2
{R

′ 1
ρ
,.
..
,p

A
,∆

ω
,k

e
x
}

p
A
>

p
B

-
N
S
R
1
rh
o
3
-s
it
e
li
n
ea
r

N
u
m
er
ic

3
{R

′ 1
ρ
,.
..
,p

A
,p

B
,∆

ω
A
B
,∆

ω
B
C
,

p
A
>

p
B
a
n
d
p
A
>

p
C

-

k
A
B

e
x
,k

B
C

e
x
}

N
S
R
1
rh
o
3
-s
it
e

N
u
m
er
ic

3
{R

′ 1
ρ
,.
..
,p

A
,p

B
,∆

ω
A
B
,∆

ω
B
C
,

p
A
>

p
B
a
n
d
p
A
>

p
C

-

k
A
B

e
x
,k

B
C

e
x
,k

A
C

e
x
}

1
N
o
t
im

p
le
m
en

te
d
y
et

154 CHAPTER 11. RELAXATION DISPERSION
T
a
b
le

1
1
.2
:
T
h
e
p
a
ra
m
et
er
s
o
f
re
la
x
a
ti
o
n
d
is
p
er
si
o
n
.

P
a
ra
m
et
er

E
q
u
a
ti
o
n

D
es
cr
ip
ti
o
n

U
n
it
s

ν C
P
M

G
1
/
(4
τ C

P
M

G
)

C
P
M
G

fr
eq
u
en
cy

H
z

τ C
P
M

G
1
/
(4
ν C

P
M

G
)

D
el
ay

b
et
w
ee
n
C
P
M
G

π
p
u
ls
es

s
T
re
la
x

-
T
h
e
re
la
x
a
ti
o
n
d
el
ay

p
er
io
d

s
I 0

-
R
ef
er
en
ce

p
ea
k
in
te
n
si
ty

w
h
en

T
re
la
x
is

ze
ro

-
I 1

-
P
ea
k
in
te
n
si
ty

fo
r
a
g
iv
en

ν C
P
M

G
o
r
sp
in
-l
o
ck

fi
el
d
st
re
n
g
th

ω
1

-
R

0 2
-

R
2
re
la
x
a
ti
o
n
ra
te

in
th
e
a
b
se
n
ce

o
f
ex
ch
a
n
g
e

ra
d
.s
−
1

R
0 2
A

-
R

2
re
la
x
a
ti
o
n
ra
te

fo
r
st
a
te

A
in

th
e
a
b
se
n
ce

o
f
ex
ch
a
n
g
e

ra
d
.s
−
1

R
0 2
B

-
R

2
re
la
x
a
ti
o
n
ra
te

fo
r
st
a
te

B
in

th
e
a
b
se
n
ce

o
f
ex
ch
a
n
g
e

ra
d
.s
−
1

R
′ 1
ρ

-
R

1
ρ
re
la
x
a
ti
o
n
ra
te

in
th
e
a
b
se
n
ce

o
f
ex
ch
a
n
g
e

ra
d
.s
−
1

Ω
ω
−
ω
rf

T
h
e
av
er
a
g
e
re
so
n
a
n
ce

o
ff
se
t
in

th
e
ro
ta
ti
n
g
fr
a
m
e

ra
d
.s
−
1

Ω
A

ω
A
−
ω
rf

T
h
e
re
so
n
a
n
ce

o
ff
se
t
in

th
e
ro
ta
ti
n
g
fr
a
m
e
fo
r
st
a
te

A
ra
d
.s
−
1

Ω
B

ω
B
−
ω
rf

T
h
e
re
so
n
a
n
ce

o
ff
se
t
in

th
e
ro
ta
ti
n
g
fr
a
m
e
fo
r
st
a
te

B
ra
d
.s
−
1

Ω
C

ω
C
−
ω
rf

T
h
e
re
so
n
a
n
ce

o
ff
se
t
in

th
e
ro
ta
ti
n
g
fr
a
m
e
fo
r
st
a
te

C
ra
d
.s
−
1

ω
A

-
T
h
e
L
a
rm

o
r
fr
eq
u
en
cy

o
f
th
e
sp
in

in
st
a
te

A
ra
d
.s
−
1

ω
B

-
T
h
e
L
a
rm

o
r
fr
eq
u
en
cy

o
f
th
e
sp
in

in
st
a
te

B
ra
d
.s
−
1

ω
C

-
T
h
e
L
a
rm

o
r
fr
eq
u
en
cy

o
f
th
e
sp
in

in
st
a
te

C
ra
d
.s
−
1

ω
H A

-
T
h
e
p
ro
to
n
L
a
rm

o
r
fr
eq
u
en
cy

o
f
th
e
sp
in

in
st
a
te

A
(f
o
r
M
M
Q

d
a
ta
)

ra
d
.s
−
1

ω
H B

-
T
h
e
p
ro
to
n
L
a
rm

o
r
fr
eq
u
en
cy

o
f
th
e
sp
in

in
st
a
te

B
(f
o
r
M
M
Q

d
a
ta
)

ra
d
.s
−
1

ω
H C

-
T
h
e
p
ro
to
n
L
a
rm

o
r
fr
eq
u
en
cy

o
f
th
e
sp
in

in
st
a
te

C
(f
o
r
M
M
Q

d
a
ta
)

ra
d
.s
−
1

ω
p
A
ω
A
+
p
B
ω
B

T
h
e
p
o
p
u
la
ti
o
n
av
er
a
g
ed

L
a
rm

o
r
fr
eq
u
en
cy

o
f
th
e
sp
in

ra
d
.s
−
1

ω
1

-
S
p
in
-l
o
ck

fi
el
d
st
re
n
g
th
,
i.
e.

th
e
a
m
p
li
tu
d
e
o
f
th
e
rf

fi
el
d

ra
d
.s
−
1

ω
e

√
Ω

2
+
ω
2 1

E
ff
ec
ti
v
e
fi
el
d
in

th
e
ro
ta
ti
n
g
fr
a
m
e

ra
d
.s
−
1

ω
rf

-
S
p
in
-l
o
ck

o
ff
se
t,
i.
e.

th
e
fr
eq
u
en
cy

o
f
th
e
rf

fi
el
d

ra
d
.s
−
1

θ
a
rc
ta
n
(ω

1

Ω

)
R
o
ta
ti
n
g
fr
a
m
e
ti
lt
a
n
g
le

ra
d

k
A
B

p
B
k
e
x

T
h
e
fo
rw

a
rd

ex
ch
a
n
g
e
ra
te

fr
o
m

st
a
te

A
to

st
a
te

B
(2
-s
it
e)

ra
d
.s
−
1

k
B
A

p
A
k
e
x

T
h
e
re
v
er
se

ex
ch
a
n
g
e
ra
te

fr
o
m

st
a
te

B
to

st
a
te

A
(2
-s
it
e)

ra
d
.s
−
1

k
A
B

p
B
k
A
B

e
x

T
h
e
fo
rw

a
rd

ex
ch
a
n
g
e
ra
te

fr
o
m

st
a
te

A
to

st
a
te

B
(3
-s
it
e)

ra
d
.s
−
1

k
B
A

p
A
k
A
B

e
x

T
h
e
re
v
er
se

ex
ch
a
n
g
e
ra
te

fr
o
m

st
a
te

B
to

st
a
te

A
(3
-s
it
e)

ra
d
.s
−
1

k
B
C

p
C
k
B
C

e
x

T
h
e
fo
rw

a
rd

ex
ch
a
n
g
e
ra
te

fr
o
m

st
a
te

B
to

st
a
te

C
(3
-s
it
e)

ra
d
.s
−
1

k
C
B

p
B
k
B
C

e
x

T
h
e
re
v
er
se

ex
ch
a
n
g
e
ra
te

fr
o
m

st
a
te

C
to

st
a
te

B
(3
-s
it
e)

ra
d
.s
−
1

11.1. INTRODUCTION TO RELAXATION DISPERSION 155

T
a
b
le

1
1
.2
:
T
h
e
p
a
ra
m
et
er
s
o
f
re
la
x
a
ti
o
n
d
is
p
er
si
o
n
.

P
a
ra
m
et
er

E
q
u
a
ti
o
n

D
es
cr
ip
ti
o
n

U
n
it
s

k
A
C

p
C
k
A
C

e
x

T
h
e
fo
rw

a
rd

ex
ch
a
n
g
e
ra
te

fr
o
m

st
a
te

A
to

st
a
te

C
(3
-s
it
e)

ra
d
.s
−
1

k
C
A

p
A
k
A
C

e
x

T
h
e
re
v
er
se

ex
ch
a
n
g
e
ra
te

fr
o
m

st
a
te

C
to

st
a
te

A
(3
-s
it
e)

ra
d
.s
−
1

k
e
x

1
/
τ e

x
C
h
em

ic
a
l
ex
ch
a
n
g
e
ra
te

co
n
st
a
n
t

ra
d
.s
−
1

k
A
B

e
x

k
A
B
+
k
B
A

C
h
em

ic
a
l
ex
ch
a
n
g
e
ra
te

co
n
st
a
n
t
b
et
w
ee
n
si
te
s
A

a
n
d
B

ra
d
.s
−
1

k
B
C

e
x

k
B
C
+

k
C
B

C
h
em

ic
a
l
ex
ch
a
n
g
e
ra
te

co
n
st
a
n
t
b
et
w
ee
n
si
te
s
B

a
n
d
C

ra
d
.s
−
1

k
A
C

e
x

k
A
C
+
k
C
A

C
h
em

ic
a
l
ex
ch
a
n
g
e
ra
te

co
n
st
a
n
t
b
et
w
ee
n
si
te
s
A

a
n
d
C

ra
d
.s
−
1

k
B

≈
k
A
B

e
x

A
p
p
ro
x
im

a
te

ch
em

ic
a
l
ex
ch
a
n
g
e
ra
te

co
n
st
a
n
t
b
et
w
ee
n
si
te
s
A

a
n
d
B

ra
d
.s
−
1

k
C

≈
k
A
C

e
x

A
p
p
ro
x
im

a
te

ch
em

ic
a
l
ex
ch
a
n
g
e
ra
te

co
n
st
a
n
t
b
et
w
ee
n
si
te
s
A

a
n
d
C

ra
d
.s
−
1

τ e
x

1
/
k
e
x

T
im

e
o
f
ex
ch
a
n
g
e

s.
ra
d
−
1

p
A

-
P
o
p
u
la
ti
o
n
o
f
st
a
te

A
-

p
B

1
−
p
A

P
o
p
u
la
ti
o
n
o
f
st
a
te

B
(2
-s
it
e)

-
p
B

1
−
p
A
−
p
C

P
o
p
u
la
ti
o
n
o
f
st
a
te

B
(3
-s
it
e)

-
p
C

1
−
p
A
−
p
B

P
o
p
u
la
ti
o
n
o
f
st
a
te

C
(3
-s
it
e)

-
∆
ω

ω
B
−
ω
A

C
h
em

ic
a
l
sh
if
t
d
iff
er
en
ce

b
et
w
ee
n
si
te
s
A

a
n
d
B

(2
-s
it
e)

ra
d
.s
−
1
(s
to
re
d
a
s
p
p
m
)

∆
ω
A
B

ω
B
−
ω
A

C
h
em

ic
a
l
sh
if
t
d
iff
er
en
ce

b
et
w
ee
n
si
te
s
A

a
n
d
B

(3
-s
it
e)

ra
d
.s
−
1
(s
to
re
d
a
s
p
p
m
)

∆
ω
B
C

ω
C
−
ω
B

C
h
em

ic
a
l
sh
if
t
d
iff
er
en
ce

b
et
w
ee
n
si
te
s
B

a
n
d
C

(3
-s
it
e)

ra
d
.s
−
1
(s
to
re
d
a
s
p
p
m
)

∆
ω
A
C

∆
ω
A
B
+
∆
ω
B
C

C
h
em

ic
a
l
sh
if
t
d
iff
er
en
ce

b
et
w
ee
n
si
te
s
A

a
n
d
C

(3
-s
it
e)

ra
d
.s
−
1
(s
to
re
d
a
s
p
p
m
)

∆
ω

H
ω

H B
−
ω

H A
P
ro
to
n
ch
em

ic
a
l
sh
if
t
d
iff
er
en
ce

b
et
w
ee
n
si
te
s
A

a
n
d
B

(2
-s
it
e)

ra
d
.s
−
1
(s
to
re
d
a
s
p
p
m
)

∆
ω

H A
B

ω
H B
−
ω

H A
P
ro
to
n
ch
em

ic
a
l
sh
if
t
d
iff
er
en
ce

b
et
w
ee
n
si
te
s
A

a
n
d
B

(3
-s
it
e)

ra
d
.s
−
1
(s
to
re
d
a
s
p
p
m
)

∆
ω

H B
C

ω
H C
−
ω

H B
P
ro
to
n
ch
em

ic
a
l
sh
if
t
d
iff
er
en
ce

b
et
w
ee
n
si
te
s
B

a
n
d
C

(3
-s
it
e)

ra
d
.s
−
1
(s
to
re
d
a
s
p
p
m
)

∆
ω

H A
C

∆
ω

H A
B
+
∆
ω

H B
C

P
ro
to
n
ch
em

ic
a
l
sh
if
t
d
iff
er
en
ce

b
et
w
ee
n
si
te
s
A

a
n
d
C

(3
-s
it
e)

ra
d
.s
−
1
(s
to
re
d
a
s
p
p
m
)

Φ
e
x

p
A
p
B
∆
ω
2

F
a
st

ex
ch
a
n
g
e
fa
ct
o
r

ra
d
2
.s
−
2
(s
to
re
d
a
s
p
p
m

2
)

Φ
e
x
,B

S
ee

1
1
.2
0
a
o
n
p
a
g
e
1
6
0

F
a
st

ex
ch
a
n
g
e
fa
ct
o
r
b
et
w
ee
n
si
te
s
A

a
n
d
B

ra
d
2
.s
−
2
(s
to
re
d
a
s
p
p
m

2
)

Φ
e
x
,C

S
ee

1
1
.2
0
b
o
n
p
a
g
e
1
6
0

F
a
st

ex
ch
a
n
g
e
fa
ct
o
r
b
et
w
ee
n
si
te
s
A

a
n
d
C

ra
d
2
.s
−
2
(s
to
re
d
a
s
p
p
m

2
)

156 CHAPTER 11. RELAXATION DISPERSION

11.2 The base dispersion models

11.2.1 The R2eff model

This is the simplest of all models in that the dispersion component of the base data – the
peak intensity values – is not modelled. It is used to determine either the R2eff or R1ρ

values and errors as required for the base data for all other models. It can be selected
by setting the model to ‘R2eff’. Depending on the experiment type, this model will be
handled differently. The R2eff/R1ρ values determined can be later copied to the data pipes
of the other dispersion models using the appropriate user functions.

Fixed relaxation period experiments

For the fixed relaxation time period CPMG-type experiments, the R2eff/R1ρ values are
determined by direct calculation using the formula

R2eff(νCPMG) = − 1

Trelax
· ln
(
I1(νCPMG)

I0

)
. (11.2)

The values and errors are determined with a single call of the minimise.calculate user
function. The R1ρ version of the equation is essentially the same:

R1ρ(ω1) = − 1

Trelax
· ln
(
I1(ω1)

I0

)
. (11.3)

Errors are calculated using the formula

σR2
=

1

Trelax

√(
σI1

I1(ω1)

)2

+

(
σI0
I0

)2

. (11.4)

The derivation of this is simple enough. Rearranging 11.2,

R2 · Trelax = − ln

(
I1
I0

)
. (11.5)

Using the rule

ln

(
X

Y

)
= ln(X) − ln(Y), (11.6)

where X and Y are normally distributed variables, then

R2 · Trelax = ln(I0)− ln(I1), (11.7)

and

R2 = − 1

Trelax
· (ln(I0)− ln(I1)) , (11.8)

11.2. THE BASE DISPERSION MODELS 157

Using the estimate from https://en.wikipedia.org/wiki/Propagation_of_

uncertainty that for
f = a ln(A), (11.9)

the variance of f is

σ2
f =

(
a ∗ σA

A

)2
, (11.10)

then the R2 variance is

σ2
R2

=

(
1

Trelax
· σI0
I0

)2

+

(
1

Trelax
· σI1
I1

)2

. (11.11)

Rearranging gives 11.4.

In a number of publications, the error formula from Ishima and Torchia (2005) has been
used. This is the collapse of Equation 11.4 by setting σI0 to zero:

σR2
=

σI1
TrelaxI1(ω1)

. (11.12)

This is not implemented in relax as it can be shown by simple simulation that the formula
is incorrect (see Figure 11.1). This formula significantly underestimates the real errors.
The use of the same I0 value for all dispersion points does not cause a decrease in the R2eff

error but rather a correlation in the errors.

Variable relaxation period experiments

For the variable relaxation time period type experiments, the R2eff/R1ρ values are deter-
mined by fitting to the simple two parameter exponential as in a R1 or R2 analysis. Both
R2eff/R1ρ and the initial peak intensity I0 are optimised using the minimise user function
for each exponential curve separately. Monte Carlo simulations are used to obtain the
parameter errors.

Links

More information about the R2eff model is available from:

• the relax wiki at http://wiki.nmr-relax.com/R2eff,

• the API documentation (for exponential curves) at http://www.nmr-relax.com/

api/3.2/specific_analyses.relax_disp.optimisation-module.html#back_

calc_r2eff,

• the API documentation (for the 2-point fit) at http://www.nmr-relax.com/api/

3.2/lib.dispersion.two_point-module.html#calc_two_point_r2eff,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#R2eff.

https://en.wikipedia.org/wiki/Propagation_of_uncertainty
https://en.wikipedia.org/wiki/Propagation_of_uncertainty
http://wiki.nmr-relax.com/R2eff
http://www.nmr-relax.com/api/3.2/specific_analyses.relax_disp.optimisation-module.html#back_calc_r2eff
http://www.nmr-relax.com/api/3.2/specific_analyses.relax_disp.optimisation-module.html#back_calc_r2eff
http://www.nmr-relax.com/api/3.2/specific_analyses.relax_disp.optimisation-module.html#back_calc_r2eff
http://www.nmr-relax.com/api/3.2/lib.dispersion.two_point-module.html#calc_two_point_r2eff
http://www.nmr-relax.com/api/3.2/lib.dispersion.two_point-module.html#calc_two_point_r2eff
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#R2eff
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#R2eff

158 CHAPTER 11. RELAXATION DISPERSION

Figure 11.1: A demonstration of the inaccuracy of the error formula of Equation 11.12
from Ishima and Torchia (2005). This plot was generated using the script test suite/

shared data/dispersion/error testing/simulation.py. The bootstrapping simula-
tion involves randomising noise-free I0 and I1 values for each dispersion data point as-
suming Gaussian errors. The full error formula is from Equation 11.4, the reduced error
formula is from Equation 11.12, the bootstrapping using individual dispersion points esti-
mates the errors assuming different I0 randomisations for each dispersion point and each
simulation, and the bootstrapping group graph uses the same randomised I0 value for all
dispersion points for each simulation.

11.2.2 The model for no chemical exchange relaxation

This model is provided for model selection purposes. In combination with frequentist meth-
ods, such as AIC, or Bayesian methods it can show if the presence of chemical exchange is
statistically significant. Optimisation is still required as one R0

2 value per magnetic field
strength will be fit to the measured data for each spin system. If off-resonance CPMG or
R1ρ data is being used, then one of the following equations will be fit:

R2eff = R1 cos
2 θ +R0

2 sin
2 θ, (11.13a)

R1ρ = R1 cos
2 θ +R′

1ρ sin
2 θ. (11.13b)

The R1 value can either be fixed to loaded experimental values or optimised. It is selected
by setting the model to ‘No Rex’.

More information about the No Rex model is available from the:

• the relax wiki at http://wiki.nmr-relax.com/No_Rex,

http://wiki.nmr-relax.com/No_Rex

11.3. THE ANALYTIC CPMG MODELS 159

• the API documentation at http://www.nmr-relax.com/api/3.2/target_

functions.relax_disp.Dispersion-class.html#func_NOREX,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#No_Rex.

11.3 The analytic CPMG models

These are the analytic models designed for a single data type – the single quantum CPMG-
type experiment.

11.3.1 The LM63 2-site fast exchange CPMG model

This is the original model for 2-site fast exchange for CPMG-type experiments. It is
selected by setting the model to ‘LM63’, here named after Luz and Meiboom (1963). The
original n-site Equation (7) from their paper can be written as

Rex =
[
1− 2τexg · tanh (2τexg)−1

]
· τex ·

n∑

i=2

pi∆ωi, (11.14)

where g is the pulse repetition rate defined as

g = 2νCPMG. (11.15)

It can be rearranged as

Rex =

n∑

i=2

Φex,i

ki
·
(
1− 4νCPMG

ki
· tanh

(
ki

4νCPMG

))
. (11.16)

The equation for the 2-site exchange process can be expressed as

R2eff = R0
2 +

Φex

kex
·
(
1− 4νCPMG

kex
· tanh

(
kex

4νCPMG

))
. (11.17)

The reference for this equation is:

• Luz, Z. and Meiboom, S. (1963). Nuclear magnetic resonance study of protolysis
of trimethylammonium ion in aqueous solution - order of reaction with respect to
solvent. J. Chem. Phys., 39(2), 366–370. (10.1063/1.1734254)

More information about the LM63 model is available from:

• the relax wiki at http://wiki.nmr-relax.com/LM63,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.lm63-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#LM63.

http://www.nmr-relax.com/api/3.2/target_functions.relax_disp.Dispersion-class.html#func_NOREX
http://www.nmr-relax.com/api/3.2/target_functions.relax_disp.Dispersion-class.html#func_NOREX
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#No_Rex
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#No_Rex
http://dx.doi.org/10.1063/1.1734254
http://wiki.nmr-relax.com/LM63
http://www.nmr-relax.com/api/3.2/lib.dispersion.lm63-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.lm63-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#LM63
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#LM63

160 CHAPTER 11. RELAXATION DISPERSION

11.3.2 The LM63 3-site fast exchange CPMG model

This is the original Luz and Meiboom (1963) model for 3-site fast exchange for CPMG-
type experiments. It is selected by setting the model to ‘LM63 3-site’. Taking the original
Equation 11.16, the equation for 3-site exchange is simply:

Rex =

3∑

i=2

Φex,i

ki
·
(
1− 4νCPMG

ki
· tanh

(
ki

4νCPMG

))
, (11.18)

The reference for this equation is:

• Luz, Z. and Meiboom, S. (1963). Nuclear magnetic resonance study of protolysis
of trimethylammonium ion in aqueous solution - order of reaction with respect to
solvent. J. Chem. Phys., 39(2), 366–370. (10.1063/1.1734254)

This model is only provided as a demonstration and should not be used for a normal analy-
sis. Without data at multiple temperatures, a feature not currently supported within relax,
that there are infinite lines of solutions and that the Φex,B, Φex,C, kB and kC parameters
are all convoluted together.

This equation was made more practically relevant in the paper of O’Connell et al. (2009).
This relies on the assumption that site 1 (or A) has a much larger equilibrium population
than the other sites (pA ≫ pB and pA ≫ pC). As stated, “if the different values of ji are
well-separated (by a factor of 3-10), then Eq. 3 reduces approximately to the sum of n - 1
independent two-state processes for exchange between site 1 and the n - 1 other sites”. In
this situation, the following relationships hold

kB ≈ kAB
ex = kAB + kBA, (11.19a)

kC ≈ kAC
ex = kAC + kCA, (11.19b)

and

Φex,B = Φex

(
kAB
ex

)2 (
kex − kAC

ex

)

k2ex
(
kex − kAC

ex

) , (11.20a)

Φex,C = Φex

(
kAC
ex

)2 (
kex − kAB

ex

)

k2ex
(
kAC
ex − kAB

ex

) , (11.20b)

with

Φex,B ≈ (pA + pC)pB∆ω2
AB, (11.21a)

Φex,C ≈ (pA + pB)pC∆ω2
AC. (11.21b)

The parameter deconvolutions for this model can be performed after a relax analysis, if
desired.

More information about the LM63 3-site model is available from:

http://dx.doi.org/10.1063/1.1734254

11.3. THE ANALYTIC CPMG MODELS 161

• the relax wiki at http://wiki.nmr-relax.com/LM63_3-site,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.lm63_3site-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#LM63_3-site.

11.3.3 The full CR72 2-site CPMG model

This is the model for 2-site exchange on most times scales (with the constraint that pA >
pB), named after Carver and Richards (1972). It is selected by setting the model to ‘CR72
full’. The equation is

R2eff =
1

2

(
R0

2A +R0
2B + kex − 2νCPMG cosh−1

(
D+ cosh(η+)−D− cos(η−)

))
, (11.22)

where

D± =
1

2

(
±1 +

Ψ + 2∆ω2

√
Ψ2 + ζ2

)
, (11.23)

η± = 2
−3
2

1

νCPMG

(
±Ψ+

√
Ψ2 + ζ2

) 1
2
, (11.24)

Ψ =
(
R0

2A − R0
2B − pAkex + pBkex

)2 −∆ω2 + 4pApBk
2
ex, (11.25)

ζ = 2∆ω
(
R0

2A − R0
2B − pAkex + pBkex

)
. (11.26)

Note that these equations use the numerically simplified form derived in the appendix of
Davis et al. (1994).

This model is not accurate when the motional process is very slow. In that case, the
‘TSMFK01’ model in Section 11.3.6 on page 163 should be used instead.

The reference for this equation is:

• Carver, J. P. and Richards, R. E. (1972). General 2-site solution for chemical ex-
change produced dependence of T2 upon Carr-Purcell pulse separation. J. Magn.
Reson., 6(1), 89–105. (10.1016/0022-2364(72)90090-X)

More information about the CR72 full model is available from:

• the relax wiki at http://wiki.nmr-relax.com/CR72_full,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.cr72-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#CR72_full.

http://wiki.nmr-relax.com/LM63_3-site
http://www.nmr-relax.com/api/3.2/lib.dispersion.lm63_3site-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.lm63_3site-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#LM63_3-site
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#LM63_3-site
http://dx.doi.org/10.1016/0022-2364(72)90090-X
http://wiki.nmr-relax.com/CR72_full
http://www.nmr-relax.com/api/3.2/lib.dispersion.cr72-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.cr72-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#CR72_full
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#CR72_full

162 CHAPTER 11. RELAXATION DISPERSION

11.3.4 The reduced CR72 2-site CPMG model

This is the model for 2-site exchange on most times scales (with the constraint that pA >
pB), named after Carver and Richards (1972). It is selected by setting the model to ‘CR72’.
It is the same as the full CR72 model described above, but with the simplification that
R0

2A = R0
2B. This simplifies the equations to

R2eff = R0
2 +

kex
2

− νCPMG cosh−1
(
D+ cosh(η+)−D− cos(η−)

)
, (11.27)

where D± and η± are unchanged and

Ψ = k2ex −∆ω2, (11.28)

ζ = −2∆ω(pAkex − pBkex). (11.29)

As mentioned in the ‘CR72 full’ model section, this model is not accurate when the mo-
tional process is very slow. In that case please use the ‘TSMFK01’ model in Section 11.3.6
on page 163 instead.

More information about the CR72 model is available from:

• the relax wiki at http://wiki.nmr-relax.com/CR72,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.cr72-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#CR72.

11.3.5 The IT99 2-site CPMG model

This is the model for 2-site exchange on all times scales (with the constraint that pA ≫ pB),
named after Ishima and Torchia (1999). It is selected by setting the model to ‘IT99’. The
equation is:

Rex ≃ Φexτex
1 + ω2

aτ
2
ex

, (11.30)

ω2
a =

√
ω4
1eff + p2A∆ω4, (11.31)

R2eff = R0
2 +Rex. (11.32)

The effective rotating frame field for a CPMG-type experiment is given by

ω1eff = 4
√
3νCPMG, (11.33)

and hence
ω4
1eff = 2304ν4CPMG. (11.34)

The reference for this equation is:

http://wiki.nmr-relax.com/CR72
http://www.nmr-relax.com/api/3.2/lib.dispersion.cr72-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.cr72-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#CR72
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#CR72

11.3. THE ANALYTIC CPMG MODELS 163

• Ishima, R. and Torchia, D. A. (1999). Estimating the time scale of chemical exchange
of proteins from measurements of transverse relaxation rates in solution. J. Biomol.
NMR, 14(4), 369–372. (10.1023/A:1008324025406)

More information about the IT99 model is available from:

• the relax wiki at http://wiki.nmr-relax.com/IT99,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.it99-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#IT99.

11.3.6 The TSMFK01 2-site CPMG model

This is the model for 2-site very-slow exchange model for time scales within range of
microsecond to second time scale, where pA ≫ pB, and named after Tollinger et al. (2001).
It is selected by setting the model to ‘TSMFK01’. A particularly interesting feature of the
dispersion curves is the damped oscillations, which occur at low CPMG field strengths, and
is solely a function of the chemical shift difference between the two sites (i.e. independent
of the rate of exchange).

The equation is:

R2eff = R0
2A + kAB − kAB

sin (∆ω · τCPMG)

∆ω · τCPMG
(11.35)

The reference for this equation is:

• Tollinger, M., Skrynnikov, N. R., Mulder, F. A. A., Forman-Kay, J. D., and Kay,
L. E. (2001). Slow dynamics in folded and unfolded states of an SH3 domain. J.
Am. Chem. Soc., 123(46), 11341–11352. (10.1021/ja011300z)

More information about the TSMFK01 model is available from:

• the relax wiki at http://wiki.nmr-relax.com/TSMFK01,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.tsmfk01-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#TSMFK01.

http://dx.doi.org/10.1023/A:1008324025406
http://wiki.nmr-relax.com/IT99
http://www.nmr-relax.com/api/3.2/lib.dispersion.it99-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.it99-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#IT99
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#IT99
http://dx.doi.org/10.1021/ja011300z
http://wiki.nmr-relax.com/TSMFK01
http://www.nmr-relax.com/api/3.2/lib.dispersion.tsmfk01-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.tsmfk01-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#TSMFK01
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#TSMFK01

164 CHAPTER 11. RELAXATION DISPERSION

11.3.7 The full B14 2-site CPMG model

This is the model for 2-site exchange exact analytical derivation on all time scales (with
the constraint that pA > pB), named after Baldwin (2014). It is selected by setting the
model to ‘B14 full’. The equation is

R2eff =
R0

2A +R0
2B + kex
2

− Ncyc

Trelax
cosh −1(ν1c)

− 1

Trelax
ln

(
1 + y

2
+

1− y

2
√

ν21c − 1
(ν2 + 2kABpD)

)
, (11.36a)

= RCR72
2eff − 1

Trelax
ln

(
1 + y

2
+

1− y

2
√

ν21c − 1
(ν2 + 2kABpD)

)
, (11.36b)

where Appendix 1 in Baldwin (2014) lists the recipe for the exact calculation of R2eff.
Note that the following definitions are different to those in the original publication, but
match both the reference implementation and the relax implementation. The definitions
are functionally equivalent. First establish the complex free precession eigenfrequency with

∆R0
2 = R0

2A − R0
2B, (11.37a)

α− = ∆R0
2 + kAB − kBA, (11.37b)

ζ = 2∆ωα−, (11.37c)

Ψ = α2
− + 4kABkBA −∆ω2, (11.37d)

h3 =
1√
2

√
Ψ+

√
ζ2 +Ψ2, (11.37e)

h4 =
1√
2

√
−Ψ+

√
ζ2 +Ψ2. (11.37f)

The ground state ensemble evolution frequency f00 expressed in separated real and imag-
inary components in terms of definitions ζ, Ψ, and h4 is

f00 =
1

2

(
R0

2A +R0
2B + kex

)
+

ı

2
(∆ω − h4) . (11.38)

Define substitutions for ‘stay’ and ‘swap’ factors as

N = h3 + ıh4, (11.39a)

NN∗ = h23 + h24, (11.39b)

F0 =
(
∆ω2 + h23

)
/NN∗, (11.39c)

F2 =
(
∆ω2 − h24

)
/NN∗, (11.39d)

F b
1 = (∆ω + h4) (∆ω − ıh3) /NN∗, (11.39e)

F a+b
1 =

(
2∆ω2 + ıζ

)
/NN∗. (11.39f)

The weighting factors for frequencies E0−2 emerging from a single CPMG block, F0−2, are

E0 = 2τCPMG · h3, (11.40a)

E2 = 2τCPMG · h4, (11.40b)

E1 = (h3 − ıh4) · τCPMG. (11.40c)

11.3. THE ANALYTIC CPMG MODELS 165

Here τCPMG = 1/4νCPMG. The final result, with identities to assist efficient matrix expo-
nentiation optimised for numerical calculation, is

ν1c = F0 cosh(E0)− F2 cos(E2), (11.41a)

ν1s = F0 sinh(E0)− ıF2 sin(E2), (11.41b)

ν3 =
√

ν21c − 1, (11.41c)

ν4 = F b
1 (−α− − h3) + ıF b

1 (∆ω − h4), (11.41d)

ν5 =
(
−∆R0

2 + kex + ı∆ω
)
ν1s + 2

(
ν4 + kABF

a+b
1

)
sinh(E1), (11.41e)

y =

(
ν1c − ν3
ν1c + ν3

)Ncyc

, (11.41f)

T =
1 + y

2
+

1− y

2

ν5
ν3N

, (11.41g)

RCR72
2eff =

R0
2A +R0

2B + kex
2

− Ncyc

Trelax
arccosh (ℜ(ν1c)) , (11.41h)

R2eff = RCR72
2eff − 1

Trelax
log (ℜ(T)) . (11.41i)

The advantage of these equations is that you will always obtain the correct answer provided
you have 2-site exchange, in-phase magnetisation and on-resonance pulses.

The term pD is based on product of the off diagonal elements in the CPMG propagator,
see supplementary Section 3 (Baldwin, 2014).

It is interesting to consider the region of validity of the Carver and Richards result. The
two results are equal when the correction is zero, which is true when

√
ν21c − 1 ≈ ν2 + 2kABpD. (11.42)

This occurs when kABpD tends to zero, and so ν2 = ν3. Setting kABpD to zero amounts to
neglecting magnetisation that starts on the ground state ensemble and end on the excited
state ensemble and vice versa. This will be a good approximation when pA ≫ pB. In
practise, significant deviations from the Carver and Richards equation can be incurred if
pB > 1%. Incorporation of the correction term results in an improved description of the
CPMG experiment over Carver and Richards (1972).

The reference for this equation is:

• Baldwin, A. J. (2014). An exact solution for R2,eff in CPMG experiments
in the case of two site chemical exchange. J. Magn. Reson., 244, 114–124.
(10.1016/j.jmr.2014.02.023)

More information about the B14 full model is available from:

• the relax wiki at http://wiki.nmr-relax.com/B14_full,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.b14-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#B14_full.

http://dx.doi.org/10.1016/j.jmr.2014.02.023
http://wiki.nmr-relax.com/B14_full
http://www.nmr-relax.com/api/3.2/lib.dispersion.b14-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.b14-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#B14_full
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#B14_full

166 CHAPTER 11. RELAXATION DISPERSION

11.3.8 The reduced B14 2-site CPMG model

This is the model for 2-site exchange exact analytical derivation on all time scales (with the
constraint that pA > pB), named after Baldwin (2014). It is selected by setting the model
to ‘B14’. It is the same as the full B14 model described above, but with the simplification
that R0

2A = R0
2B.

More information about the B14 model is available from:

• the relax wiki at http://wiki.nmr-relax.com/B14,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.b14-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#B14.

11.4 The numeric CPMG models

These are the numeric models designed for a single data type – the single quantum CPMG-
type experiment.

11.4.1 The NS 2-site expanded CPMG model

This is the numerical model for 2-site exchange expanded using Maple by Nikolai Skryn-
nikov. It is selected by setting the model to ‘NS CPMG 2-site expanded’. The simple
constraint pA > pB is used to halve the optimisation space, as both sides of the limit are
mirror image spaces.

This model will give the same results as the other numerical solutions whereby R0
2A = R0

2B.
The following is the set of equations of the expansion used in relax. It has been modified
from the original for speed. See the lib.dispersion.ns cpmg 2site expanded module
for more details including the original code. Further simplifications can be found in the
code.

t3 = ı, (11.43.1)

t4 = t3∆ω, (11.43.2)

t5 = k2BA, (11.43.3)

t8 = 2t4kBA, (11.43.4)

t10 = 2kBAkAB, (11.43.5)

t11 = ∆ω2, (11.43.6)

t14 = 2t4kAB, (11.43.7)

t15 = k2AB, (11.43.8)

t17 =
√
t5 − t8 + t10 − t11 + t14 + t15, (11.43.9)

http://wiki.nmr-relax.com/B14
http://www.nmr-relax.com/api/3.2/lib.dispersion.b14-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.b14-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#B14
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#B14

11.4. THE NUMERIC CPMG MODELS 167

t21 = exp

(
(−kBA + t4 − kAB + t17)τCPMG

2

)
, (11.43.10)

t22 =
1

t17
, (11.43.11)

t28 = exp

(
(−kBA + t4 − kAB − t17)τCPMG

2

)
, (11.43.12)

t31 = t22kAB(t21 − t28), (11.43.13)

t33 =
√
t5 + t8 + t10 − t11 − t14 + t15, (11.43.14)

t34 = kBA + t4 − kAB + t33, (11.43.15)

t37 = exp ((−kBA − t4 − kAB + t33)τCPMG) , (11.43.16)

t39 =
1

t33
, (11.43.17)

t41 = kBA + t4 − kAB − t33, (11.43.18)

t44 = exp ((−kBA − t4 − kAB − t33)τCPMG) , (11.43.19)

t47 =
t39
2

(t34t37 − t41t44) , (11.43.20)

t49 = kBA − t4 − kAB − t17, (11.43.21)

t51 = t21t49t22, (11.43.22)

t52 = kBA − t4 − kAB + t17, (11.43.23)

t54 = t28t52t22, (11.43.24)

t55 = t54 − t51, (11.43.25)

t60 =
1

2
t39kAB (t37 − t44) , (11.43.26)

t62 = t31t47 + t55t60, (11.43.27)

t63 =
1

kAB
, (11.43.28)

t68 =
t63
2

(t49t54 − t52t51) , (11.43.29)

t69 =
t62t68
2

, (11.43.30)

t72 = t37t41t39, (11.43.31)

t76 = t44t34t39, (11.43.32)

t78 =
t63
2

(t41t76 − t34t72) , (11.43.33)

t80 =
1

2
(t76 − t72), (11.43.34)

t82 =
1

2
(t31t78 + t55t80), (11.43.35)

t83 =
t82t55
2

, (11.43.36)

t88 =
t22
2

(t52t21 − t49t28) , (11.43.37)

t91 = t88t47 + t68t60, (11.43.38)

t92 = t91t88, (11.43.39)

t95 =
1

2
(t88t78 + t68t80), (11.43.40)

168 CHAPTER 11. RELAXATION DISPERSION

t96 = t95t31, (11.43.41)

t97 = t69 + t83, (11.43.42)

t98 = t297, (11.43.43)

t99 = t92 + t96, (11.43.44)

t102 = t299, (11.43.45)

t108 = t62t88 + t82t31, (11.43.46)

t112 =
√

t98 − 2t99t97 + t102 + 2(t91t68 + t95t55)t108, (11.43.47)

t113 = t97 − t99 − t112, (11.43.48)

t115 = nCPMG, (11.43.49)

t116 =

(
t97 + t99 + t112

2

)t115

, (11.43.50)

t118 =
1

t112
, (11.43.51)

t120 = t97 − t99 + t112, (11.43.52)

t122 =

(
t97 + t99 − t112

2

)t115

, (11.43.53)

t127 =
1

2t108
, (11.43.54)

t139 =
1

2(kAB + kBA)

[
(t120t122 − t113t116)t118kBA

+ (t120t122 − t116t120)t113t118t127kAB

]
. (11.43.55)

The relative peak intensities, magnetisation, and effective R2 relaxation rate are calculated
as

I0 = pA, (11.44a)

I1 = ℜ(t139) exp(−TrelaxR
0
2), (11.44b)

Mx = I1/I0, (11.44c)

R2eff = − 1

Trelax
· ln (Mx) . (11.44d)

In these equations τCPMG and nCPMG are numpy arrays and hence t139 is also a numpy
array. This avoids a Python loop over the dispersion points until the very end of the
calculation, required to populate the R2eff data structure, resulting in very fast calculations.

The reference for this model is:

• Tollinger, M., Skrynnikov, N. R., Mulder, F. A. A., Forman-Kay, J. D., and Kay,
L. E. (2001). Slow dynamics in folded and unfolded states of an SH3 domain. J.
Am. Chem. Soc., 123(46), 11341–11352. (10.1021/ja011300z)

More information about the NS CPMG 2-site expanded model is available from:

• the relax wiki at http://wiki.nmr-relax.com/NS_CPMG_2-site_expanded,

http://dx.doi.org/10.1021/ja011300z
http://wiki.nmr-relax.com/NS_CPMG_2-site_expanded

11.4. THE NUMERIC CPMG MODELS 169

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.ns_cpmg_2site_expanded-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#NS_CPMG_2-site_expanded.

11.4.2 The full NS 2-site 3D CPMG model

This is the numerical model for 2-site exchange using 3D magnetisation vectors. It is
selected by setting the model to ‘NS CPMG 2-site 3D full’. The simple constraint pA > pB
is used to halve the optimisation space, as both sides of the limit are mirror image spaces.

More information about the NS CPMG 2-site 3D full model is available from:

• the relax wiki at http://wiki.nmr-relax.com/NS_CPMG_2-site_3D_full,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.ns_cpmg_2site_3d-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#NS_CPMG_2-site_3D_full.

11.4.3 The reduced NS 2-site 3D CPMG model

This is the numerical model for 2-site exchange using 3D magnetisation vectors, whereby
the simplification R0

2A = R0
2B is assumed. It is selected by setting the model to ‘NS CPMG

2-site 3D’. The simple constraint pA > pB is used to halve the optimisation space, as both
sides of the limit are mirror image spaces.

More information about the NS CPMG 2-site 3D model is available from:

• the relax wiki at http://wiki.nmr-relax.com/NS_CPMG_2-site_3D,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.ns_cpmg_2site_3d-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#NS_CPMG_2-site_3D.

11.4.4 The full NS 2-site star CPMG model

This is the numerical model for 2-site exchange using complex conjugate matrices. It is
selected by setting the model to ‘NS CPMG 2-site star full’. The simple constraint pA > pB
is used to halve the optimisation space, as both sides of the limit are mirror image spaces.

More information about the NS CPMG 2-site star full model is available from:

• the relax wiki at http://wiki.nmr-relax.com/NS_CPMG_2-site_star_full,

http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_cpmg_2site_expanded-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_cpmg_2site_expanded-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_CPMG_2-site_expanded
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_CPMG_2-site_expanded
http://wiki.nmr-relax.com/NS_CPMG_2-site_3D_full
http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_cpmg_2site_3d-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_cpmg_2site_3d-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_CPMG_2-site_3D_full
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_CPMG_2-site_3D_full
http://wiki.nmr-relax.com/NS_CPMG_2-site_3D
http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_cpmg_2site_3d-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_cpmg_2site_3d-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_CPMG_2-site_3D
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_CPMG_2-site_3D
http://wiki.nmr-relax.com/NS_CPMG_2-site_star_full

170 CHAPTER 11. RELAXATION DISPERSION

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.ns_cpmg_2site_star-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#NS_CPMG_2-site_star_full.

11.4.5 The reduced NS 2-site star CPMG model

This is the numerical model for 2-site exchange using complex conjugate matrices, whereby
the simplification R0

2A = R0
2B is assumed. It is selected by setting the model to ‘NS CPMG

2-site star’. The simple constraint pA > pB is used to halve the optimisation space, as
both sides of the limit are mirror image spaces.

More information about the NS CPMG 2-site star model is available from:

• the relax wiki at http://wiki.nmr-relax.com/NS_CPMG_2-site_star,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.ns_cpmg_2site_star-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#NS_CPMG_2-site_star.

11.5 The analytic MMQ CPMG models

These are the analytic models designed for handling combined proton-heteronuclear SQ,
ZQ, DQ, and MQ CPMG-type experiments. This data combination is labelled as multiple
multiple quantum data or MMQ.

11.5.1 The MMQ CR72 model

This is the analytic CR72 model for 2-site exchange on most times scales (Section 11.3.4 on
page 162) extended for multiple types of multiple quantum data (MMQ) by Korzhnev et al.
(2004a). It is selected by setting the model to ‘MMQ CR72’. The simple constraint
pA > pB is used to halve the optimisation space, as both sides of the limit are mirror
image spaces. The equation for the exchange process is

R2eff = ℜ(λ1)−
1

Trelax
ln(Q), (11.45)

http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_cpmg_2site_star-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_cpmg_2site_star-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_CPMG_2-site_star_full
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_CPMG_2-site_star_full
http://wiki.nmr-relax.com/NS_CPMG_2-site_star
http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_cpmg_2site_star-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_cpmg_2site_star-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_CPMG_2-site_star
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_CPMG_2-site_star

11.5. THE ANALYTIC MMQ CPMG MODELS 171

where

λ1 = R0
2,MQ +

kex
2

− νCPMG cosh−1
(
D+ cosh(η+)−D− cos(η−)

)
, (11.46)

D± =
1

2

(
±1 +

Ψ + 2∆ω2

√
Ψ2 + ζ2

)
, (11.47)

η± = 2
2
3

1

νCPMG

(
±Ψ+

√
Ψ2 + ζ2

) 1
2
, (11.48)

Ψ = (ı∆ωH + pAkex − pBkex)
2 −∆ω2 + 4pApBk

2
ex, (11.49)

ζ = −2∆ω (ı∆ωH + pAkex − pBkex) , (11.50)

and where

Q = ℜ
(
1−m2

D+ +mD+mZ+ −m2
Z+ +

mD+ +mZ+

2

√
pB
pA

)
, (11.51)

and

mD± = ± ıkex
√
pApB

d±z±

(
z± + 2∆ω

sin(z±δ)

sin((d± + z±)δ)

)
, (11.52)

mZ∓ = ± ıkex
√
pApB

d±z±

(
d± − 2∆ω

sin(d±δ)

sin((d± + z±)δ)

)
, (11.53)

and

d± = (∆ωH +∆ω)± ıkex, (11.54)

z± = (∆ωH −∆ω)± ıkex. (11.55)

The symbol δ is half of τCPMG or

δ =
1

4νCPMG
. (11.56)

The references for this model are:

• Korzhnev, D. M., Kloiber, K., Kanelis, V., Tugarinov, V., and Kay, L. E. (2004a).
Probing slow dynamics in high molecular weight proteins by methyl-TROSY NMR
spectroscopy: application to a 723-residue enzyme. J. Am. Chem. Soc., 126(12),
3964–3973. (10.1021/ja039587i)

• Korzhnev, D. M., Kloiber, K., and Kay, L. E. (2004b). Multiple-quantum re-
laxation dispersion NMR spectroscopy probing millisecond time-scale dynamics
in proteins: theory and application. J. Am. Chem. Soc., 126(23), 7320–7329.
(10.1021/ja049968b)

• Korzhnev, D. M., Neudecker, P., Mittermaier, A., Orekhov, V. Y., and Kay, L. E.
(2005a). Multiple-site exchange in proteins studied with a suite of six NMR relaxation
dispersion experiments: an application to the folding of a Fyn SH3 domain mutant.
J. Am. Chem. Soc., 127(44), 15602–15611. (10.1021/ja054550e)

http://dx.doi.org/10.1021/ja039587i
http://dx.doi.org/10.1021/ja049968b
http://dx.doi.org/10.1021/ja054550e

172 CHAPTER 11. RELAXATION DISPERSION

More information about the MMQ CR72 model is available from:

• the relax wiki at http://wiki.nmr-relax.com/MMQ_CR72,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.mmq_cr72-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#MMQ_CR72.

11.6 The numeric MMQ CPMG models

These are the numeric models designed for handling combined proton-heteronuclear SQ,
ZQ, DQ, and MQ CPMG-type experiments. This data combination is labelled as multiple
multiple quantum data or MMQ.

11.6.1 The NS MMQ 2-site model

This is the numerical model for 2-site exchange for proton-heteronuclear SQ, ZQ, DQ
and MQ CPMG data, as derived in (Korzhnev et al., 2004a,b, 2005a). It is selected by
setting the model to ‘NS MMQ 2-site’. The simple constraint pA > pB is used to halve
the optimisation space, as both sides of the limit are mirror image spaces. Different sets
of equations are used for the different data types.

The SQ, ZD and DQ equations

The basic evolution matrices for single, zero and double quantum CPMG-type data for
this model are

R2eff = − 1

Trelax
log

MA(Trelax)

MA(0)
, (11.57)

where MA(0) is proportional to the vector [pA, pB]
T and

MA(Trelax) = (A±A∓A∓A±)
nMA(0) (11.58)

The evolution matrix A is defined as

A± = ea±·τCPMG , (11.59)

where

a± =

(
−kAB − R0

2A kBA

kAB −kBA ± ı∆ω − R0
2B

)
. (11.60)

For different data types ∆ω is defined as: ∆ω (15N SQ-type data); ∆ωH (1H SQ-type
data); ∆ωH −∆ω (ZQ-type data); and ∆ωH +∆ω (DQ-type data).

http://wiki.nmr-relax.com/MMQ_CR72
http://www.nmr-relax.com/api/3.2/lib.dispersion.mmq_cr72-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.mmq_cr72-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#MMQ_CR72
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#MMQ_CR72

11.6. THE NUMERIC MMQ CPMG MODELS 173

The MQ equations

The equation for the exchange process for multiple quantum CPMG-type data is

R2eff = − 1

T
log

{
Re

[
0.5

pA

(
1 0

)
· (AB+CD) ·

(
pA
pB

)]}
, (11.61)

where T is the constant time interval, and the matrices A, B, C, and D are dually defined.
When n is even, they are defined as

A = (M1M2M2M1)
n
2 , (11.62a)

B = (M2
∗M1

∗M1
∗M2

∗)
n
2 , (11.62b)

C = (M2M1M1M2)
n
2 , (11.62c)

D = (M1
∗M2

∗M2
∗M1

∗)
n
2 . (11.62d)

When n is odd, they are defined as

A = (M1M2M2M1)
n−1
2 M1M2, (11.63a)

B = (M1
∗M2

∗M2
∗M1

∗)
n−1
2 M1

∗M2
∗, (11.63b)

C = (M2M1M1M2)
n−1
2 M2M1, (11.63c)

D = (M2
∗M1

∗M1
∗M2

∗)
n−1
2 M2

∗M1
∗. (11.63d)

When n is zero, to avoid matrix powers of zero they are defined as

A = M1M2, (11.64a)

B = M1
∗M2

∗, (11.64b)

C = M2M1, (11.64c)

D = M2
∗M1

∗. (11.64d)

The M matrices are defined as:
Mj = exp(mjδ), (11.65)

where 2δ is the spacing between successive 180◦ pulses and where The references for this
model are:

m1 =

(−pBkex − RA
2,DQ pAkex

pBkex −pAkex − ı(∆ωH +∆ω)− RB
2,DQ

)
, (11.66a)

m2 =

(−pBkex − RA
2,ZQ pAkex

pBkex −pAkex − ı(∆ωH −∆ω)− RB
2,ZQ

)
. (11.66b)

For the model it is assumed that RA
2,DQ = RA

2,ZQ = R0
2A and RB

2,DQ = RB
2,ZQ = R0

2B. The
references for this model are:

174 CHAPTER 11. RELAXATION DISPERSION

• Korzhnev, D. M., Kloiber, K., Kanelis, V., Tugarinov, V., and Kay, L. E. (2004a).
Probing slow dynamics in high molecular weight proteins by methyl-TROSY NMR
spectroscopy: application to a 723-residue enzyme. J. Am. Chem. Soc., 126(12),
3964–3973. (10.1021/ja039587i)

• Korzhnev, D. M., Kloiber, K., and Kay, L. E. (2004b). Multiple-quantum re-
laxation dispersion NMR spectroscopy probing millisecond time-scale dynamics
in proteins: theory and application. J. Am. Chem. Soc., 126(23), 7320–7329.
(10.1021/ja049968b)

• Korzhnev, D. M., Neudecker, P., Mittermaier, A., Orekhov, V. Y., and Kay, L. E.
(2005a). Multiple-site exchange in proteins studied with a suite of six NMR relaxation
dispersion experiments: an application to the folding of a Fyn SH3 domain mutant.
J. Am. Chem. Soc., 127(44), 15602–15611. (10.1021/ja054550e)

More information about the NS MMQ 2-site model is available from:

• the relax wiki at http://wiki.nmr-relax.com/NS_MMQ_2-site,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.ns_mmq_2site-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#NS_MMQ_2-site.

11.6.2 The NS MMQ 3-site linear model

This is the numerical model for 3-site exchange for proton-heteronuclear SQ, ZQ, DQ and
MQ CPMG data, as derived in (Korzhnev et al., 2004a,b, 2005a). As this model is linear,
the assumption that kAC = kCA = 0 has been made. To simplify the optimisation space
for the model, the assumption R0

2A = R0
2B = R0

2C = R0
2 has also been made.

The SQ, ZD and DQ equations

The basic evolution matrices for single, zero and double quantum CPMG-type data for
this model are

A± = ea±·τCPMG , (11.67)

where

a± =

−kAB kBA 0
kAB −kBA − kBC ± ı∆ωAB kCB

0 kBC −kCB ± ı∆ωAC

−

R0

2A 0 0
0 R0

2B 0
0 0 R0

2C

 . (11.68)

http://dx.doi.org/10.1021/ja039587i
http://dx.doi.org/10.1021/ja049968b
http://dx.doi.org/10.1021/ja054550e
http://wiki.nmr-relax.com/NS_MMQ_2-site
http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_mmq_2site-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_mmq_2site-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_MMQ_2-site
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_MMQ_2-site

11.6. THE NUMERIC MMQ CPMG MODELS 175

The MQ equations

The formulae for multiple quantum CPMG-type data are the same as for the ‘NS MMQ
2-site’ model except for the R2eff calculation and the mj matrices. The rate is calculated
as

R2eff = − 1

T
log

Re

0.5
pA

(
1 0 0

)
· (AB+CD) ·

pA
pB
pC

 . (11.69)

The mj matrices are

m1 =

−kAB kBA 0
kAB −kBA − kBC − ı(∆ωH

AB +∆ωAB) kCB

0 kBC −kCB − ı(∆ωH

AC +∆ωAC)

−

R0

2A 0 0
0 R0

2B 0
0 0 R0

2C

 , (11.70a)

m2 =

−kAB kBA 0
kAB −kBA − kBC − ı(∆ωH

AB −∆ωAB) kCB

0 kBC −kCB − ı(∆ωH

AC −∆ωAC)

−

R0

2A 0 0
0 R0

2B 0
0 0 R0

2C

 . (11.70b)

For the model, the assumption R0
2A = R0

2B = R0
2C = R0

2 is made.

More information about the NS MMQ 3-site linear model is available from:

• the relax wiki at http://wiki.nmr-relax.com/NS_MMQ_3-site_linear,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.ns_mmq_3site-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#NS_MMQ_3-site_linear.

11.6.3 The NS MMQ 3-site model

This is the numerical model for 3-site exchange for proton-heteronuclear SQ, ZQ, DQ and
MQ CPMG data, as derived in (Korzhnev et al., 2004a,b, 2005a). However it has been
extended to allow the A ↔ C transition. To simplify the optimisation space for the model
as in the ‘NS MMQ 3-site linear’ model, the assumption R0

2A = R0
2B = R0

2C = R0
2 has been

made.

http://wiki.nmr-relax.com/NS_MMQ_3-site_linear
http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_mmq_3site-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_mmq_3site-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_MMQ_3-site_linear
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_MMQ_3-site_linear

176 CHAPTER 11. RELAXATION DISPERSION

The SQ, ZD and DQ equations

The basic evolution matrices for single, zero and double quantum CPMG-type data for
this model are

A± = ea±·τCPMG , (11.71)

where

a± =

−kAB − kAC kBA kCA

kAB −kBA − kBC ± ı∆ωAB kCB

kAC kBC −kCB − kCA ± ı∆ωAC

−

R0

2A 0 0
0 R0

2B 0
0 0 R0

2C

 . (11.72)

The MQ equations

The mj matrices for this model are

m1 =

−kAB − kAC kBA kCA

kAB −kBA − kBC − ı(∆ωH

AB +∆ωAB) kCB

kAC kBC −kCB − kCA − ı(∆ωH

AC +∆ωAC)

−

R0

2A 0 0
0 R0

2B 0
0 0 R0

2C

 , (11.73a)

m2 =

−kAB − kAC kBA kCA

kAB −kBA − kBC − ı(∆ωH

AB −∆ωAB) kCB

kAC kBC −kCB − kCA − ı(∆ωH

AC −∆ωAC)

−

R0

2A 0 0
0 R0

2B 0
0 0 R0

2C

 . (11.73b)

More information about the NS MMQ 3-site model is available from:

• the relax wiki at http://wiki.nmr-relax.com/NS_MMQ_3-site,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.ns_mmq_3site-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#NS_MMQ_3-site.

11.7 The analytic R1ρ models

These are the analytic models designed for R1ρ-type experiments.

http://wiki.nmr-relax.com/NS_MMQ_3-site
http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_mmq_3site-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_mmq_3site-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_MMQ_3-site
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_MMQ_3-site

11.7. THE ANALYTIC R1ρ MODELS 177

11.7.1 The M61 2-site fast exchange R1ρ model

This is the model for 2-site fast exchange for on-resonance R1ρ-type data. It is selected
by setting the model to ‘M61’, here named after Meiboom (1961). The equation for the
exchange process is

R1ρ = R′
1ρ +

Φexkex

k2ex + ω2
e

. (11.74)

The reference for this equation is:

• Meiboom, S. (1961). Nuclear magnetic resonance study of proton transfer in water.
J. Chem. Phys., 34(2), 375–388. (10.1063/1.1700960)

More information about the M61 model is available from:

• the relax wiki at http://wiki.nmr-relax.com/M61,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.m61-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#M61.

11.7.2 The M61 skew 2-site fast exchange R1ρ model

This is the second model for 2-site fast exchange for on-resonance R1ρ-type data from
Meiboom (1961). It is selected by setting the model to ‘M61 skew’. The equation for the
exchange process is

R1ρ = R′
1ρ +

p2ApB∆ω2kex

k2ex + p2A∆ω2 + ω2
1

. (11.75)

Care must be taken as this model appears to have infinite lines of solutions – pA and ∆ω
are convoluted. Hence this model is disabled in the dispersion auto-analysis.

More information about the M61 skew model is available from:

• the relax wiki at http://wiki.nmr-relax.com/M61_skew,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.m61b-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#M61_skew.

http://dx.doi.org/10.1063/1.1700960
http://wiki.nmr-relax.com/M61
http://www.nmr-relax.com/api/3.2/lib.dispersion.m61-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.m61-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#M61
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#M61
http://wiki.nmr-relax.com/M61_skew
http://www.nmr-relax.com/api/3.2/lib.dispersion.m61b-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.m61b-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#M61_skew
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#M61_skew

178 CHAPTER 11. RELAXATION DISPERSION

11.7.3 The DPL94 2-site fast exchange R1ρ model

This is the model for 2-site fast exchange for R1ρ-type data. It is selected by setting the
model to ‘DPL94’, here named after Davis et al. (1994). It extends the Meiboom (1961)
model to off-resonance data. The model collapses to the M61 model for on-resonance data.
The equation for the exchange process is

R1ρ = R1 cos
2 θ +

(
R′

1ρ +
Φexkex

k2ex + ω2
e

)
sin2 θ, (11.76)

where θ is the rotating frame tilt angle. The reference for this equation is:

• Davis, D. G., Perlman, M. E., and London, R. E. (1994). Direct measurements of
the dissociation-rate constant for inhibitor-enzyme complexes via the T1ρ and T2

(CPMG) methods. J. Magn. Reson., 104(3), 266–275. (10.1006/jmrb.1994.1084)

More information about the DPL94 model is available from:

• the relax wiki at http://wiki.nmr-relax.com/DPL94,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.dpl94-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#DPL94.

11.7.4 The TP02 2-site exchange R1ρ model

This is the model for 2-site exchange for off-resonance R1ρ-type data from
Trott and Palmer (2002). It is selected by setting the model to ‘TP02’. The equation
for the exchange process is

R1ρ = R1 cos
2 θ +R′

1ρ sin
2 θ +

sin2 θpApB∆ω2kex

ω2
Aeffω

2
Beff/ω

2
eff + k2ex

, (11.77)

in which

δA = ωA − ωrf, (11.78a)

δB = ωB − ωrf, (11.78b)

ω = pAωA + pBωB, (11.78c)

Ω = ω − ωrf, (11.78d)

ω2
Aeff = ω2

1 + δ2A, (11.78e)

ω2
Beff = ω2

1 + δ2B , (11.78f)

ω2
eff = ω2

1 +Ω
2
, (11.78g)

θ = arctan

(
ω1

Ω

)
. (11.78h)

http://dx.doi.org/10.1006/jmrb.1994.1084
http://wiki.nmr-relax.com/DPL94
http://www.nmr-relax.com/api/3.2/lib.dispersion.dpl94-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.dpl94-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#DPL94
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#DPL94

11.7. THE ANALYTIC R1ρ MODELS 179

The equation is accurate only when populations are highly skewed with pA ≫ pB. And
it is valid only for exchange processes which are not fast. Note that this model has been
superseded by the ‘TAP03’ and ‘MP05’ models. The reference for this equation is:

• Trott, O. and Palmer, 3rd, A. G. (2002). R1ρ relaxation outside of the fast-exchange
limit. J. Magn. Reson., 154(1), 157–160. (10.1006/jmre.2001.2466)

More information about the TP02 model is available from:

• the relax wiki at http://wiki.nmr-relax.com/TP02,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.tp02-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#TP02.

11.7.5 The TAP03 2-site exchange R1ρ model

This is the model for 2-site exchange for off-resonance R1ρ-type data from Trott et al.
(2003). It is selected by setting the model to ‘TAP03’. The equation for the exchange
process is

R1ρ =R1 cos
2 θ +R′

1ρ sin
2 θ

+

(
1

γ

)
sin2 θ̂pApB∆ω2kex

ω̂2
Aeffω̂

2
Beff/ω̂

2
eff + k2ex − 2 sin2 θ̂pApB∆ω2 + (1− γ)ω2

1

, (11.79)

in which, in addition to those parameters defined above for the ‘TP02’ model,

σ = pBδA + pAδB , (11.80a)

γ = 1− pApB∆ω2 σ2 − k2ex + ω2
1(

σ2 + k2ex + ω2
1

)2 , (11.80b)

ω̂2
Aeff = γω2

1 + δ2A, (11.80c)

ω̂2
Beff = γω2

1 + δ2B , (11.80d)

ω̂2
eff = γω2

1 +Ω
2
, (11.80e)

θ̂ = arctan

(√
γω1

Ω

)
. (11.80f)

The equation is accurate when populations are less skewed than the ‘TP02’ model (pA ≫
pB). Note that this model, as with the ‘TP02’ model, has been superseded by the ‘MP05’
model in the next section. The reference for this equation is:

• Trott, O., Abergel, D., and Palmer, A. (2003). An average-magnetization analy-
sis of R1ρ relaxation outside of the fast exchange. Mol. Phys., 101(6), 753–763.
(10.1080/0026897021000054826)

http://dx.doi.org/10.1006/jmre.2001.2466
http://wiki.nmr-relax.com/TP02
http://www.nmr-relax.com/api/3.2/lib.dispersion.tp02-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.tp02-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#TP02
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#TP02
http://dx.doi.org/10.1080/0026897021000054826

180 CHAPTER 11. RELAXATION DISPERSION

More information about the TAP03 model is available from:

• the relax wiki at http://wiki.nmr-relax.com/TAP03,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.tap03-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#TAP03.

11.7.6 The MP05 2-site exchange R1ρ model

This is the model for 2-site exchange for off-resonance R1ρ-type data for all time scales
from Miloushev and Palmer (2005). It is selected by setting the model to ‘MP05’. The
equation for the exchange process is

R1ρ =R1 cos
2 θ +R′

1ρ sin
2 θ

+
sin2 θpApB∆ω2kex

ω2
Aeffω

2
Beff/ω

2
eff + k2ex − sin2 θpApB∆ω2

(
1 +

2k2ex(pAω2
Aeff

+pBω
2
Beff)

ω2
Aeff

ω2
Beff

+ω2
eff

k2ex

) , (11.81)

in which the parameters are defined as in the ‘TP02’ model above. This model supersedes
both the ‘TP02’ and ‘TAP03’ models. The reference for this equation is:

• Miloushev, V. Z. and Palmer, 3rd, A. G. (2005). R1ρ relaxation for two-site chem-
ical exchange: general approximations and some exact solutions. J. Magn. Reson.,
177(2), 221–227. (10.1016/j.jmr.2005.07.023)

More information about the MP05 model is available from:

• the relax wiki at http://wiki.nmr-relax.com/MP05,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.mp05-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#MP05.

11.8 The numeric R1ρ models

These are the numeric models designed for R1ρ-type experiments.

http://wiki.nmr-relax.com/TAP03
http://www.nmr-relax.com/api/3.2/lib.dispersion.tap03-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.tap03-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#TAP03
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#TAP03
http://dx.doi.org/10.1016/j.jmr.2005.07.023
http://wiki.nmr-relax.com/MP05
http://www.nmr-relax.com/api/3.2/lib.dispersion.mp05-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.mp05-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#MP05
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#MP05

11.8. THE NUMERIC R1ρ MODELS 181

11.8.1 The NS 2-site R1ρ model

This is the numerical model for 2-site exchange using 3D magnetisation vectors. It is
selected by setting the model to ‘NS R1rho 2-site’. The simple constraint pA > pB is used
to halve the optimisation space, as both sides of the limit are mirror image spaces.

For this model, the equations from Korzhnev et al. (2005b) have been used. The R1ρ value
for state A magnetisation is defined as

R1ρ = − 1

Trelax
· ln
(
MT

0 · eR·Trelax ·M0

)
, (11.82)

where

M0 =

sin θ
0

cos θ
0
0
0

, (11.83)

θ = arctan

(
ω1

ΩA

)
. (11.84)

The relaxation evolution matrix is defined as

R =

−R′
1ρ − kAB −δA 0 kBA 0 0

δA −R′
1ρ − kAB −ω1 0 kBA 0

0 ω1 −R1 − kAB 0 0 kBA

kAB 0 0 −R′
1ρ − kBA −δB 0

0 kAB 0 δB −R′
1ρ − kBA −ω1

0 0 kAB 0 ω1 −R1 − kBA

,

(11.85)

where δA,B is defined in Equations 11.78a and 11.78b.

More information about the NS R1rho 2-site model is available from:

• the relax wiki at http://wiki.nmr-relax.com/NS_R1rho_2-site,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.ns_r1rho_2site-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#NS_R1rho_2-site.

11.8.2 The NS 3-site R1ρ model

This is the numerical model for 3-site exchange using 3D magnetisation vectors. It is
selected by setting the model to ‘NS R1rho 3-site’. The constraints pA > pB and pA > pC

http://wiki.nmr-relax.com/NS_R1rho_2-site
http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_r1rho_2site-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_r1rho_2site-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_R1rho_2-site
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_R1rho_2-site

182 CHAPTER 11. RELAXATION DISPERSION

is used to decrease the size of the optimisation space, as both sides of the limit are mirror
image spaces.

For this model, as for the 2-site model above, the equations from Korzhnev et al.
(2005b) have been used. These have been however rearranged to match the notation
in Palmer and Massi (2006). The R1ρ value for state A magnetisation is defined as

R1ρ = − 1

Trelax
· ln
(
MT

0 · eR·Trelax ·M0

)
, (11.86)

where

M0 =

sin θ
0

cos θ
0
0
0
0
0
0

, (11.87)

θ = arctan

(
ω1

ΩA

)
. (11.88)

This assumes that the starting magnetisation has an X and Z component only for the A
state. The relaxation evolution matrix is defined as

R =

−R′
1ρA − kAB − kAC −δA 0 · · ·

δA −R′
1ρA − kAB − kAC −ω1 · · ·

0 ω1 −R1A − kAB − kAC · · ·
...

...
...

. . .

+

. . .
...

...
... . .

.

· · · −R′
1ρB − kBA − kBC −δB 0 · · ·

· · · δB −R′
1ρB − kBA − kBC −ω1 · · ·

· · · 0 ω1 −R1B − kBA − kBC · · ·
. .
. ...

...
...

. . .

+

. . .
...

...
...

· · · −R′
1ρC − kCA − kCB −δC 0

· · · δC −R′
1ρC − kCA − kCB −ω1

· · · 0 ω1 −R1C − kCA − kCB

+

kBA 0 0 · · ·
. . . 0 kBA 0 · · ·

0 0 kBA · · ·
kAB 0 0

0 kAB 0
. . . · · ·

0 0 kAB

...
...

...
...

. . .

11.8. THE NUMERIC R1ρ MODELS 183

+

· · · kCA 0 0
. . . · · · 0 kCA 0

· · · 0 0 kCA

...
...

...
. . .

...
...

...
kAC 0 0 · · ·

0 kAC 0 · · · . . .

0 0 kAC · · ·

+

. . .
...

...
...

...
kCB 0 0

· · · . . . 0 kCB 0
0 0 kCB

· · · kBC 0 0

· · · 0 kBC 0
. . .

· · · 0 0 kBC

, (11.89)

where δA,B,C are defined as in Equations 11.78a and 11.78b. For the model, the assump-
tions R′

1ρA = R′
1ρB = R′

1ρC = R′
1ρ and R1A = R1B = R1C = R1 have been made.

More information about the NS R1rho 3-site model is available from:

• the relax wiki at http://wiki.nmr-relax.com/NS_R1rho_3-site,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.ns_r1rho_3site-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#NS_R1rho_3-site.

11.8.3 The NS 3-site linear R1ρ model

This is the numerical model for 3-site linear exchange using 3D magnetisation vectors.
The assumption that kAC = kCA = 0 has been made to linearise this model. It is selected
by setting the model to ‘NS R1rho 3-site linear’. The constraints pA > pB and pA > pC is
used to decrease the size of the optimisation space, as both sides of the limit are mirror
image spaces. To simplify the optimisation space for the model as in the ‘NS R1ρ 3-site’
model, the assumptions R0

2A = R0
2B = R0

2C = R0
2 and R1A = R1B = R1C = R1 have been

made.

The equations are the same as for the ‘NS R1rho 3-site’ model except for the relaxation

http://wiki.nmr-relax.com/NS_R1rho_3-site
http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_r1rho_3site-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_r1rho_3site-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_R1rho_3-site
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_R1rho_3-site

184 CHAPTER 11. RELAXATION DISPERSION

evolution matrix which simplifies to

R =

−R′
1ρA − kAB −δA 0 · · ·
δA −R′

1ρA − kAB −ω1 · · ·
0 ω1 −R1A − kAB · · ·
...

...
...

. . .

+

. . .
...

...
... . .

.

· · · −R′
1ρB − kBA − kBC −δB 0 · · ·

· · · δB −R′
1ρB − kBA − kBC −ω1 · · ·

· · · 0 ω1 −R1B − kBA − kBC · · ·
. .
. ...

...
...

. . .

+

. . .
...

...
...

· · · −R′
1ρC − kCB −δC 0

· · · δC −R′
1ρC − kCB −ω1

· · · 0 ω1 −R1C − kCB

+

kBA 0 0 · · ·
. . . 0 kBA 0 · · ·

0 0 kBA · · ·
kAB 0 0

0 kAB 0
. . . · · ·

0 0 kAB

...
...

...
...

. . .

+

. . .
...

...
...

...
kCB 0 0

· · · . . . 0 kCB 0
0 0 kCB

· · · kBC 0 0

· · · 0 kBC 0
. . .

· · · 0 0 kBC

, (11.90)

where δA,B,C are defined as in Equations 11.78a and 11.78b. For the model, the assump-
tions R′

1ρA = R′
1ρB = R′

1ρC = R′
1ρ and R1A = R1B = R1C = R1 have been made.

More information about the NS R1rho 3-site linear model is available from:

• the relax wiki at http://wiki.nmr-relax.com/NS_R1rho_3-site_linear,

• the API documentation at http://www.nmr-relax.com/api/3.2/lib.

dispersion.ns_r1rho_3site-module.html,

• the relaxation dispersion page of the relax website at http://www.nmr-relax.com/
analyses/relaxation_dispersion.html#NS_R1rho_3-site_linear.

http://wiki.nmr-relax.com/NS_R1rho_3-site_linear
http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_r1rho_3site-module.html
http://www.nmr-relax.com/api/3.2/lib.dispersion.ns_r1rho_3site-module.html
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_R1rho_3-site_linear
http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_R1rho_3-site_linear

11.9. RELAXATION DISPERSION OPTIMISATION THEORY 185

11.9 Relaxation dispersion optimisation theory

The implementation of optimisation in relax is discussed in detail in Chapter 14. To
understand the concepts in this subsection, it is best to look at that chapter first.

11.9.1 The relaxation dispersion auto-analysis

In relax, optimisation can either be performed manually or one of the auto-analyses can be
employed. Note that if you are using the relax GUI, you will be using the dispersion auto-
analysis. The auto-analysis is a fully self-contained protocol designed to make the analysis
as simple as possible. All details can be seen in the auto analyses/relax disp.py file
which, in reality, is simply a large relax script.

The relaxation dispersion auto-analysis implements many of the concepts described in
detail in the next sections. It can be summarised as:

Peak intensity error analysis: An error analysis is performed to determine the peak
intensity errors, if not already calculated (see Section 17.2.213 on page 608).

‘R2eff’ model optimisation: Firstly the ‘R2eff’ model is either optimised (us-
ing the minimise.execute user function) or simply calculated (using the
minimise.calculate user function) to find the R2eff or R1ρ values used as the base
data for all other dispersion models (see Section 11.2.1 on page 156).

Dispersion curve insignificance: Spins with insignificant dispersion profiles will be de-
selected with the relax disp.insignificance user function, as described below,
excluding the ‘No Rex’ model.

Model optimisation: Sequential optimisation of each of the specified dispersion mod-
els. This consists of a grid search followed by Nelder-Mead simplex optimisation
constrained using the log-barrier constraint algorithm. Each model will be stored
in a different data pipe. See Section 17.2.70 on page 500 for the grid search and
Section 17.2.69 on page 497 for minimisation.

Grid search avoidance: A number of tricks are used to speed up optimisation by skip-
ping or decreasing the size of the initial grid search:

Pre-run directory: If a pre-run directory is supplied – a separate directory con-
taining the dispersion auto-analysis results from a previous run – the optimised
parameters from these previous results will be used as the starting point for
optimisation rather than performing a grid search. This is used in a clustered
analysis whereby the pre-run directory contains results from a non-clustered
analysis. This is essential for when large spin clusters are specified, as a grid
search becomes prohibitively expensive with clusters of three or more spins. At
some point a RelaxError will occur because the grid search is impossibly large.
For the cluster specific parameters, i.e. the populations of the states and the
exchange parameters, an average value will be used as the starting point. For
all other parameters, the R0

2 values for each spin and magnetic field, as well as
the parameters related to the chemical shift difference ∆ω, the optimised values
of the previous run will be directly copied.

186 CHAPTER 11. RELAXATION DISPERSION

Model nesting: If two models are nested, then the parameters of the simpler will be
used as the starting point for optimisation of the more complex. The currently
supported nested model sets are presented in Table 11.3 on page 188. The
models are optimised in the order presented in that table. In some cases, the
R0

2A and R0
2B parameter values are set to the simpler model R0

2 value and the
grid search is bypassed.

Model equivalence: When two models are equivalent, the optimised parameters of
one model can be used as the starting point of the other rather than performing
a grid search. This is used in the auto-analysis for avoiding the grid search in
the numeric models. The optimised ‘CR72’ model is used for the ‘NS CPMG
2-site expanded’, ‘NS CPMG 2-site 3D’, and ‘NS CPMG 2-site star’ models.
The optimised ‘MMQ CR72’ model is used for the ‘NS MMQ 2-site’ model.
And the ‘MP05’ model is used for the ‘NS R1rho 2-site’ model.

Interruption: The optimisation procedure of the auto-analysis can read saved results
files if a previous calculation was interrupted.

Model elimination: As it is quite common that some of the dispersion models fail to
optimise to reasonable values, or will even optimise to non-physically possible values
where the global minimum is located, model elimination is performed to remove these
models. The relax implementation is described in d’Auvergne and Gooley (2006).
This needs to be performed prior to model selection as a failed model will often
provide a statistically better fit than a non-failed model.

Per-model error analysis: If desired, Monte Carlo simulations for error propagation
can be performed for each model. This does however require far greater computation
time.

Model selection: If more than one model is analysed, AIC model selection will be per-
formed to judge statistical significance of the models (Akaike, 1973). This is used
to determine if statistically significant Rex contributions can be extracted form the
data, as well as determine if one model is better than the other. Different sta-
tistical techniques such as AICc and BIC can be used when using the script UI
(Hurvich and Tsai, 1989; Schwarz, 1978). The AIC, AICc and BIC equations for
NMR relaxation data were derived in d’Auvergne and Gooley (2003). In most cases,
the list models to choose from should be severely limited. The results will be stored
in a new ‘final’ data pipe and output files placed in the final directory.

Error analysis: Monte Carlo simulations for error propagation is performed on the final
data pipe (see Section 17.2.96 on page 535 as well as the descriptions for all of the
other monte carlo user functions). Model elimination is performed again to remove
the Monte Carlo simulations which have failed.

Output file creation: For each of the models and the final model selection results, the
relax disp.plot disp curves (Section 17.2.170 on page 581), relax disp.plot

exp curves (Section 17.2.171 on page 582), relax disp.write disp curves (Sec-
tion 17.2.182 on page 590), grace.write (Section 17.2.56 on page 485) and value.

write (Section 17.2.269 on page 660) user functions will be called to generate all the
output files you would need. These generate both Grace 2D plots of the data as well
as plain text files. Additional output files can be created after the analysis by using
the user functions manually.

11.9. RELAXATION DISPERSION OPTIMISATION THEORY 187

All these steps will be shown in full detail in the relax logs. You should check very carefully
for any relax warnings as these can be an indication that something has not been set up
correctly.

If you are a power user, you are free to use all of the relax user functions, the relax library,
and the relax data store to implement your own protocol. If you wish, the protocol can be
converted into a new auto-analysis and distributed as part of relax. The relax test suite
will ensure the protocol remains functional for the lifetime of relax.

188 CHAPTER 11. RELAXATION DISPERSION
T
a
b
le

1
1
.3
:
M
o
d
el

n
es
ti
n
g
fo
r
th
e
re
la
x
a
ti
o
n
d
is
p
er
si
o
n
a
u
to
-a
n
a
ly
si
s.

M
o
d
el

N
es
te
d
m
o
d
el
s1

B
a
se

m
o
d
el
s

R
2
e
ff
/
R

′ 1
ρ

-
N
o
R
ex

-

S
in
g
le

q
u
a
n
tu
m

(S
Q
)
C
P
M
G
-t
y
p
e

L
M
6
3

-
L
M
6
3
3
-s
it
e

L
M
6
3

C
R
7
2

N
S
C
P
M
G

2
-s
it
e
ex
p
a
n
d
ed
,
N
S
C
P
M
G

2
-s
it
e
3
D
,
N
S
C
P
M
G

2
-s
it
e
st
a
r,
B
1
4

C
R
7
2
fu
ll

N
S
C
P
M
G

2
-s
it
e
3
D

fu
ll
,
N
S
C
P
M
G

2
-s
it
e
st
a
r
fu
ll
,
B
1
4
fu
ll
,
N
S
C
P
M
G

2
-s
it
e
ex
p
a
n
d
ed
,

N
S
C
P
M
G

2
-s
it
e
3
D
,
N
S
C
P
M
G

2
-s
it
e
st
a
r,
B
1
4
,
C
R
7
2

IT
9
9

-
T
S
M
F
K
0
1

-
B
1
4

N
S
C
P
M
G

2
-s
it
e
ex
p
a
n
d
ed
,
N
S
C
P
M
G

2
-s
it
e
3
D
,
N
S
C
P
M
G

2
-s
it
e
st
a
r,
C
R
7
2

B
1
4
fu
ll

N
S
C
P
M
G

2
-s
it
e
3
D

fu
ll
,
N
S
C
P
M
G

2
-s
it
e
st
a
r
fu
ll
,
C
R
7
2
fu
ll
,
N
S
C
P
M
G

2
-s
it
e
ex
p
a
n
d
ed
,

N
S
C
P
M
G

2
-s
it
e
3
D
,
N
S
C
P
M
G

2
-s
it
e
st
a
r,
B
1
4
,
C
R
7
2

N
S
C
P
M
G

2
-s
it
e
ex
p
a
n
d
ed

N
S
C
P
M
G

2
-s
it
e
3
D
,
N
S
C
P
M
G

2
-s
it
e
st
a
r,
B
1
4
,
C
R
7
2

N
S
C
P
M
G

2
-s
it
e
3
D

N
S
C
P
M
G

2
-s
it
e
ex
p
a
n
d
ed
,
N
S
C
P
M
G

2
-s
it
e
st
a
r,
B
1
4
,
C
R
7
2

N
S
C
P
M
G

2
-s
it
e
3
D

fu
ll

N
S
C
P
M
G

2
-s
it
e
st
a
r
fu
ll
,
B
1
4
fu
ll
,
C
R
7
2
fu
ll
,
N
S
C
P
M
G

2
-s
it
e
ex
p
a
n
d
ed
,
N
S
C
P
M
G

2
-s
it
e
3
D
,

N
S
C
P
M
G

2
-s
it
e
st
a
r,
B
1
4
,
C
R
7
2

N
S
C
P
M
G

2
-s
it
e
st
a
r

N
S
C
P
M
G

2
-s
it
e
ex
p
a
n
d
ed
,
N
S
C
P
M
G

2
-s
it
e
3
D
,
B
1
4
,
C
R
7
2
2

N
S
C
P
M
G

2
-s
it
e
st
a
r
fu
ll

N
S
C
P
M
G

2
-s
it
e
3
D

fu
ll
,
B
1
4
fu
ll
,
C
R
7
2
fu
ll
,
N
S
C
P
M
G

2
-s
it
e
ex
p
a
n
d
ed
,
N
S
C
P
M
G

2
-s
it
e
3
D
,

N
S
C
P
M
G

2
-s
it
e
st
a
r,
B
1
4
,
C
R
7
2

M
M
Q

(S
Q
,
Z
Q
,
D
Q
,
&

M
Q
)
C
P
M
G
-t
y
p
e

M
M
Q

C
R
7
2

N
S
M
M
Q

2
-s
it
e

N
S
M
M
Q

2
-s
it
e

M
M
Q

C
R
7
2

N
S
M
M
Q

3
-s
it
e
li
n
ea
r

N
S
M
M
Q

3
-s
it
e,

N
S
M
M
Q

2
-s
it
e,

M
M
Q

C
R
7
2

N
S
M
M
Q

3
-s
it
e

N
S
M
M
Q

3
-s
it
e
li
n
ea
r,
N
S
M
M
Q

2
-s
it
e,

M
M
Q

C
R
7
2

11.9. RELAXATION DISPERSION OPTIMISATION THEORY 189

T
a
b
le

1
1
.3
:
M
o
d
el

n
es
ti
n
g
fo
r
th
e
re
la
x
a
ti
o
n
d
is
p
er
si
o
n
a
u
to
-a
n
a
ly
si
s.

M
o
d
el

N
es
te
d
m
o
d
el
s1

R
1
ρ
-t
y
p
e

M
6
1

-
M
6
1
sk
ew

-
D
P
L
9
4

-
D
P
L
9
4
R

1
fi
t

-
T
P
0
2

M
P
0
5
,
T
A
P
0
3

T
P
0
2
R

1
fi
t

M
P
0
5
R

1
fi
t,

T
A
P
0
3
R

1
fi
t

T
A
P
0
3

M
P
0
5
,
T
P
0
2

T
A
P
0
3
R

1
fi
t

M
P
0
5
R

1
fi
t,

T
P
0
2
R

1
fi
t

M
P
0
5

T
A
P
0
3
,
T
P
0
2

M
P
0
5
R

1
fi
t

T
A
P
0
3
R

1
fi
t,
T
P
0
2
R

1
fi
t

N
S
R

1
ρ
2
-s
it
e

M
P
0
5
,
T
A
P
0
3
,
T
P
0
2

N
S
R

1
ρ
2
-s
it
e
R

1
fi
t

M
P
0
5
R

1
fi
t,

T
A
P
0
3
R

1
fi
t,
T
P
0
2
R

1
fi
t

N
S
R

1
ρ
3
-s
it
e
li
n
ea
r

N
S
R

1
ρ
2
-s
it
e,

M
P
0
5
,
T
A
P
0
3
,
T
P
0
2

N
S
R

1
ρ
3
-s
it
e

N
S
R

1
ρ
3
-s
it
e
li
n
ea
r,
N
S
R

1
ρ
2
-s
it
e,

M
P
0
5
,
T
A
P
0
3
,
T
P
0
2

1
T
h
e
n
es
te
d

m
o
d
el
s
a
re

o
rd
er
ed

b
y
p
re
fe
re
n
ce
.

T
h
e
ea
rl
ie
st

m
o
d
el

in
th
e
li
st

w
h
ic
h

h
a
s
b
ee
n

o
p
ti
m
is
ed

in
th
e
a
u
to
-a
n
a
ly
si
s
w
il
l
b
e
u
se
d

a
s
th
e
n
es
te
d

m
o
d
el
.

F
o
r
ex

a
m
p
le

fo
r
th
e
’B

1
4
fu
ll
’
m
o
d
el
,
th
e
’C

R
7
2
fu
ll
’
m
o
d
el

is
th
e
fi
rs
t
p
re
fe
re
n
ce
,
fo
ll
ow

ed
b
y
’B

1
4
’,
th
en

th
e
fi
n
a
l
fa
ll
b
a
ck

is
’C

R
7
2
’
is

n
ei
th
er

’C
R
7
2
fu
ll
’
o
r
’B

1
4
’

h
av

e
b
ee
n
o
p
ti
m
is
ed

.
If

n
o
n
e
o
f
th
e
n
es
te
d
m
o
d
el
s
h
av

e
b
ee
n
o
p
ti
m
is
ed

,
th
e
g
ri
d
se
a
rc
h
w
il
l
b
e
p
er
fo
rm

ed
.
In

th
is

ex
a
m
p
le
,
’C

R
7
2
fu
ll
’
is

p
re
fe
rr
ed

a
s
it

h
a
s
p
er
fe
ct

p
a
ra
m
et
er

n
es
ti
n
g
–
a
ll
p
a
ra
m
et
er
s
o
f
’B

1
4
fu
ll
’
a
re

fo
u
n
d
in

’C
R
7
2
fu
ll
’.

T
h
e
B
1
4
a
n
d
C
R
7
2
a
re

fa
ll
b
a
ck
s,

a
n
d
fo
r
th
es
e
R
2
0
A

a
n
d
R
2
0
B

a
re

co
p
ie
d
fr
o
m

R
2
0
so

th
ey

st
a
rt

o
p
ti
m
is
a
ti
o
n
a
s
R
2
0
A

=
=

R
2
0
B
.
H
en

ce
’C

R
7
2
fu
ll
’
w
h
er
eb

y
R
2
0
A

!=
R
2
0
B

is
a
m
u
ch

b
et
te
r
st
a
rt
in
g
p
o
in
t
a
s
R
2
0
A

a
n
d
R
2
0
B

h
av

e
b
ee
n
o
p
ti
m
is
ed

to
d
iff
er
en

t
va

lu
es
.
B
u
t
b
ec
a
u
se

o
f
th
e
la
rg
e
m
o
d
el

in
st
a
b
il
it
y
in

th
e
’C

R
7
2
fu
ll
’
m
o
d
el
,
y
o
u
m
ay

w
is
h
to

in
st
ea
d
st
a
rt

w
it
h
’B

1
4
’.

190 CHAPTER 11. RELAXATION DISPERSION

11.9.2 Dispersion curve insignificance

To avoid severe model failure due to the fitting of statistically insignificant dispersion
curves, the relax disp.insignificance user function can be used. This is activated by
default in the auto-analysis. The user function takes a single insignificance value and if the
difference between the smallest and largest R2eff or R1ρ value for an individual spin for all
dispersion curves is less than this, then that spin will be deselected. See Section 17.2.167
on page 580 for more details.

11.9.3 The relaxation dispersion space

In a dispersion analysis the target function f(θ) is the chi-squared equation

χ2(θ) =

n∑

i=1

(R2eff − R2eff(θ))
2

σ2
i

, (11.91)

where i is the summation index, R2eff is the experimental relaxation data which belongs
to the data set R and includes the R2eff and R1ρ values for all experiments at all magnetic
field strengths, R2eff(θ) is the back calculated relaxation data belonging to the set R(θ),
and σi is the experimental R2eff/R1ρ error. For standard optimisation, the summation
index ranges over the relaxation data of an individual spin. However this can be changed
with clustering whereby the relaxation data from a group of spin systems are optimised
using a shared set of parameters.

11.9.4 The clustered relaxation dispersion analysis

Often in a relaxation dispersion analysis you will wish to fit a number of spin systems
together using global parameters such as kex, pA, etc. This can be achieved through the
concept of clustering. A cluster is defined by an ID string and can contain any number of
spins. Multiple clusters in one analysis can be defined. Any spins not included in a cluster
will be treated as a free spin whereby all parameters of the dispersion model are local to
that spin. Spin clusters can be defined using the relax disp.cluster user function (see
Section 17.2.162 on page 577) or via the spin cluster GUI element.

For the spin clustering, the special relax disp.parameter copy user function has been
designed to help avoid the impossibly large grid search. This user function will copy the
parameters from one non-clustered data pipe to another pipe, taking the median of the
parameters from the first data pipe. Rather than taking the median, the R0

2/R
′
1ρ and ∆ω

related parameters which are independent of the clustering are simply copied.

11.9. RELAXATION DISPERSION OPTIMISATION THEORY 191

11.9.5 Dispersion parameter grid search

One of the most statistically unbiased methods for determining an initial parameter es-
timate prior to optimisation is to perform a grid search. This is performed via the
minimise.grid search user function (see Section 17.2.70 on page 500).

For some dispersion models the grid search can be too computationally expensive. In this
case, some tricks can be used to bypass the parts of the grid search or the whole grid
search:

Model nesting: Using the optimised parameters of a simpler nested model as the starting
point for optimisation.

Model equivalence: Using the optimised solution of an equivalent analytic model as the
starting point for a numeric model.

These tricks are implemented in the relaxation dispersion auto-analysis protocol as de-
scribed above. If you do not use the auto-analysis or the GUI, then you are free to
implement your own solutions.

The grid search lower and upper bounds default to:

5 6 R0
2 6 20, (11.92a)

5 6 R0
2A 6 20, (11.92b)

5 6 R0
2B 6 20, (11.92c)

0 6 Φex 6 10, (11.92d)

0 6 Φex,B 6 10, (11.92e)

0 6 Φex,C 6 10, (11.92f)

0 6 pA∆ω2 6 10, (11.92g)

0 6 ∆ω 6 10, (11.92h)

0 6 ∆ωAB 6 10, (11.92i)

0 6 ∆ωBC 6 10, (11.92j)

0 6 ∆ωH 6 3, (11.92k)

0 6 ∆ωH

AB 6 3, (11.92l)

0 6 ∆ωH

BC 6 3, (11.92m)

0.5 6 pA 6 1, (11.92n)

0.0 6 pB 6 0.5, (11.92o)

1 6 kex 6 1e4, (11.92p)

1 6 kAB
ex 6 1e4, (11.92q)

1 6 kBC
ex 6 1e4, (11.92r)

1 6 kA 6 1e4, (11.92s)

1 6 kB 6 1e4, (11.92t)

0.1 6 kAB 6 20, (11.92u)

1e−4 6 τex 6 1. (11.92v)

192 CHAPTER 11. RELAXATION DISPERSION

For the MMQ models, the grid bounds are slightly different with

−10 6 ∆ω 6 10, (11.93a)

−10 6 ∆ωAB 6 10, (11.93b)

−10 6 ∆ωBC 6 10, (11.93c)

−3 6 ∆ωH 6 3, (11.93d)

−3 6 ∆ωH

AB 6 3, (11.93e)

−3 6 ∆ωH

BC 6 3. (11.93f)

These values can be changed when not using the auto-analysis. Linear constraints can
decrease the number of grid points searched through.

11.9.6 Dispersion parameter optimisation

For a description of gradients and Hessians, see Section 14.3.2 on page 304 and Sec-
tion 14.3.3 on page 304 respectively. The relaxation dispersion model gradients or Hes-
sians have have either not been calculated for the analytic models or cannot be calculated
as the solution is not analytic. Numeric gradients and Hessians could be calculated but
this is too computationally expensive, especially for the numeric models where this adds
a second layer of numeric approximation.

Optimisation in relax is via the minfx package https://sourceforge.net/projects/

minfx/. This allows the Nelder-Mead simplex optimisation technique (see Section 14.4.5
on page 309) and the log-barrier constraint algorithm (see Section 14.5.2 on page 312) to be
used. The advantage of these two techniques is that it enables extremely reliable and high
precision optimisation without the use of gradients or Hessians, hence can significantly
increase optimisation speeds. They however do not avoid the multiple local minimum
problem present in the MMQ models – for that a highly accurate grid search is a reasonable
solution.

11.9.7 Relaxation dispersion parameter constraints

To understand this section, please see Section 14.5 on page 310. For a dispersion analysis,
linear constraints are the most useful type of constraint.

For most models, the linear constraints in the notation of (14.18) for the relaxation rates
are

1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1

·

R0
2

R0
2A

R0
2B

 >

0
−200
0

−200
0

−200

, (11.94)

https://sourceforge.net/projects/minfx/
https://sourceforge.net/projects/minfx/

11.9. RELAXATION DISPERSION OPTIMISATION THEORY 193

for the Φex and ∆ω parameters as

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

·

Φex

Φex,B

Φex,C

pA∆ω2

∆ω
∆ωAB

∆ωBC

∆ωH

∆ωH

AB

∆ωH

BC

>

0
0
0
0
0
0
0
0
0
0

, (11.95)

for the population parameters as

−1 0
1 0
1 0
−1 −1
1 2

·
(
pA
pB

)
>

−1
0.5
0.85
−1
1

, (11.96)

and for the exchange rate and time parameters as

1 0 0 0 0 0 0
−1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 1

·

kex
kAB
ex

kBC
ex

kB
kC
kAB

τex

>

0
−2e6

0
−2e6

0
−2e6

0
−2e6

0
−2e6

0
−100
0

. (11.97)

Through the isolation of each individual element, the constraints can be seen to be equiv-
alent to

0 6 R0
2 6 200, (11.98a)

0 6 R0
2A 6 200, (11.98b)

0 6 R0
2B 6 200, (11.98c)

Φex > 0, (11.98d)

Φex,B > 0, (11.98e)

Φex,C > 0, (11.98f)

∆ω > 0, (11.98g)

∆ωAB > 0, (11.98h)

194 CHAPTER 11. RELAXATION DISPERSION

∆ωBC > 0, (11.98i)

∆ωH > 0, (11.98j)

∆ωH

AB > 0, (11.98k)

∆ωH

BC > 0, (11.98l)

pA∆ω2 > 0, (11.98m)

0 6 pA 6 1, (11.98n)

0 6 pB 6 pA, (11.98o)

0 6 pC 6 pA, (11.98p)

pA > 0.85 (the skewed condition, pA ≫ pB), (11.98q)

0 6 kex 6 2e6, (11.98r)

0 6 kAB
ex 6 2e6, (11.98s)

0 6 kBC
ex 6 2e6, (11.98t)

0 6 kA 6 2e6, (11.98u)

0 6 kB 6 2e6, (11.98v)

0 6 kAB 6 100, (11.98w)

τex > 0. (11.98x)

Note that the ∆ω and ∆ωH constraints are not used for any of the MMQ-type models as
sign differentiation is possible. These constraints are also turned off for the ‘NS R1ρ 3-site
linear’ and ‘NS R1ρ 3-site’ models. And that the pA > 0.85 constraint is used instead
of the pA > 0.5 constraint for all models which require pA ≫ pB. When not using the
auto-analysis, constraints can be modified or turned off.

11.9.8 Relaxation dispersion diagonal scaling

The concept of diagonal scaling is explained in Section 14.6 on page 312.

For the dispersion analysis the scaling factor of 10 is used for the relaxation rates, 1e4 for
the exchange rates, 1e−4 for exchange times, and 1 for all other parameters. The scaling
matrix for the parameters {R0

2, R
0
2A, R

0
2B, Φex, Φex,B, Φex,C, pA∆ω2, ∆ω, ∆ωH, pA, pB,

11.9. RELAXATION DISPERSION OPTIMISATION THEORY 195

kex, kB, kC, kAB, τex} is

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1e4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1e4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1e4 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1e−4

. (11.99)

11.9.9 Relaxation dispersion model elimination

Relaxation dispersion models will often fail. This may be due to data quality and quan-
tity issues, inherent instability in certain models, or the use of analytic models outside
of the range of their defined viability. Model elimination is therefore required to remove
these failed models prior to model selection, as failed models will often fit the experimen-
tal data statistically better than non-failed models. The user function eliminate (see
Section 17.2.41 on page 475) is used to remove the failed models. Model elimination was
implement in relax as described in:

• d’Auvergne, E. J. and Gooley, P. R. (2006). Model-free model elimination: A new
step in the model-free dynamic analysis of NMR relaxation data. J. Biomol. NMR,
35(2), 117–135. (10.1007/s10858-006-9007-z)

The following hard coded rules are used to eliminate models:

pA 6 0.501, (11.100a)

pA > 0.999, (11.100b)

τex > 1.0. (11.100c)

If a parameter falls outside of these limits, the entire spin cluster will be deselected. When
not using the auto-analysis, custom model elimination rules can be defined and used with
the eliminate user function.

11.9.10 Monte Carlo simulation elimination

Just as models can fail, often Monte Carlo simulations will also experience optimisation
failures (see Figure 4 of d’Auvergne and Gooley (2006) for such a failure in the model-free

http://dx.doi.org/10.1007/s10858-006-9007-z

196 CHAPTER 11. RELAXATION DISPERSION

optimisation space). The minimum can be warped so much by the data randomisation
that a new minimum appears at an unreasonable position in the optimisation space. Even
when the original model optimisation is successful, this can affect a small portion of the
simulations. These must be removed prior to calculating the parameter errors otherwise
the errors will be significantly over estimated. The simulation model failures are outliers
which skew the error estimate, introducing a bias. This can result in parameter error
estimates which are too large. The solution is the use of the eliminate user function
when Monte Carlo simulations are turned on – this will automatically deselect simulations
rather than spins using the rules from the previous section. Note that relax is the only
software which provides this feature.

11.9.11 Relaxation dispersion on a computer cluster using OpenMPI

If the optimisation is too slow on a single computer, the dispersion analysis has been
parallelised on the level of both the spin cluster and the Monte Carlo simulation. The
scaling efficiency is very close to perfect so if you have access to a computer cluster and
the OpenMPI protocol, then the calculations can be run much faster. The implementation
uses Gary Thompson’s multi-processor package. See Section 1.3 on page 17 for details on
how to use this.

11.10 To do – dispersion features yet to be implemented

The capabilities of the relaxation dispersion analysis in relax is expansive but it cannot
be called complete. There are a number of features and models yet to be implemented.
Missing features include:

• The handling of off-resonance effects in the models of the numeric solution for
CPMG-type data. This is specifically the ‘NS CPMG 2-site 3D’ and ‘NS CPMG
2-site star’ models and their ‘* full’ equivalents. The necessary infrastructure is in
place, but not activated yet (mainly due to a lack of synthetic data to test against).
Currently only the software CATIA can handle this effect.

• Multi-state data – the handling of data from two sets of peaks from the same spin
system is not properly supported. It is currently handled by assuming each state is
a separate spin system but this means that ∆ω, ∆ωH and related parameters are
not shared as they should be.

• The van’t Hoff analysis of multi-temperature dispersion data (see https://en.

wikipedia.org/wiki/Van_%27t_Hoff_equation).

• The Korzhnev et al. (2005b) correction for constant-time R1ρ experiments for the
analytic models (R1ρ = −λ1 − 1/Trelax log a1, where a1 = 1− pB cos2(θA − θB), and
θA = arctan(ω1/ωA) and θB = arctan(ω1/ωB).

• Calculation of the dispersion α value from Millet et al. (2000).

• Support for CEST-type data.

https://en.wikipedia.org/wiki/Van_%27t_Hoff_equation
https://en.wikipedia.org/wiki/Van_%27t_Hoff_equation

11.11. TUTORIAL FOR ADDING RELAXATION DISPERSION MODELS 197

• Offset support for the ground state chemical shift rather than the observed peak
position. This is really only needed for R1ρ-type data.

If you would like one of these features, please contact the “nmr-relax-devel at
lists.sourceforge.net” mailing list. The most useful would be if you have synthetic data
whereby you know what the true solution should be. This can then be incorporated into
a relax system test and the feature implemented to allow the test to pass. Note that such
data should never be emailed to a public mailing list! Synthetic data, or experimental
data, can be obtained from the literature.

Some of the missing models include:

‘TP04’: The R1ρ-type data Trott and Palmer (2004) N-site analytic equation for all time
scales with parameters {R′

1ρ, . . . , p1, . . . , pN, ω, k12, . . . k1N}.

‘* R1ρ’: All of the 3-site and N-site models as summarised in Table 1 of Palmer and Massi
(2006).

‘BK13’: The R1ρ-type data Baldwin and Kay (2013) off-resonance 2-site equation for all
time scales with parameters {R′

1ρ, . . . , pA,∆ω, kex}. For details and code, see the
archived Gna! support request #3155.

‘BK13 full’: The R1ρ-type data full Baldwin and Kay (2013) off-resonance 2-site equa-
tion for all time scales with parameters {R′

1ρA,R
′
1ρB , . . . , pA,∆ω, kex}. For details

and code, see the archived Gna! support request #3155.

Information for how these can be added is given in the next section.

11.11 Tutorial for adding relaxation dispersion models

As the field of NMR relaxation dispersion has a very long history, it is not possible to
include all analytic and numeric relaxation dispersion models for both CPMG-type or
R1ρ-type experiments in relax. However it is not too difficult to add new models for your
own needs if you have some Python, Matlab, Mathematica, or similar scripting skills.
The steps required are detailed on the relax wiki page http://wiki.nmr-relax.com/

Tutorial_for_adding_relaxation_dispersion_models_to_relax.

11.12 Comparison of dispersion analysis software

Diverse software exists for analysing relaxation dispersion data. The following is a list of
the officially released software which you can use instead of relax:

CPMGFit Art Palmer’s original dispersion analysis software at http://www.palmer.

hs.columbia.edu/software/cpmgfit.html.

cpmg fit Dmitry Korzhnev’s dispersion software available upon request.

https://web.archive.org/https://gna.org/support/?3155
https://web.archive.org/https://gna.org/support/?3155
http://wiki.nmr-relax.com/
http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax
http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax
http://www.palmer.hs.columbia.edu/software/cpmgfit.html
http://www.palmer.hs.columbia.edu/software/cpmgfit.html

198 CHAPTER 11. RELAXATION DISPERSION

CATIA Flemming Hansen’s dispersion software at http://www.biochem.ucl.ac.uk/

hansen/catia/. The reference is Hansen et al. (2008).

NESSY Michael Bieri’s dispersion software at https://sourceforge.net/projects/

nmr-nessy/. The reference is Bieri and Gooley (2011).

GUARDD Ian Kleckner’s dispersion software at http://code.google.com/p/guardd/.
The reference is Kleckner and Foster (2012).

ShereKhan See the web server at http://sherekhan.bionmr.org/. The reference is
Mazur et al. (2013).

GLOVE Peter Wright’s dispersion software at http://www.scripps.edu/wright/. The
reference is Sugase et al. (2013).

chemex Guillaume Bouvignies’ dispersion software which can be found at http://code.
google.com/p/chemex/.

There is currently support in relax for generating the input files for CPMGFit, CATIA,
NESSY, and ShereKhan and for running CPMGFit and CATIA from within relax.

The features of the different software are compared in Table 11.4 on page 199. Note that
this table is likely to be incomplete so please see the websites of the respective software for
an up to date list of features. The aim of this table is to provide a fair comparison between
all of the available dispersion software. Therefore if you do find deficiencies or errors in
this table please report these either to the relax users mailing list at “nmr-relax-users at
lists.sourceforge.net” or submit a bug report (see section 3.4 on page 31) so that the details
can be corrected.

http://www.biochem.ucl.ac.uk/hansen/catia/
http://www.biochem.ucl.ac.uk/hansen/catia/
https://sourceforge.net/projects/nmr-nessy/
https://sourceforge.net/projects/nmr-nessy/
http://code.google.com/p/guardd/
http://sherekhan.bionmr.org/
http://www.scripps.edu/wright/
http://code.google.com/p/chemex/
http://code.google.com/p/chemex/

11.12. COMPARISON OF DISPERSION ANALYSIS SOFTWARE 199

Table 11.4: Comparison of the features for the different dispersion software.

C
PM

G
Fi
t

cp
m
g
fit

C
AT
IA

N
ES
SY

G
U
A
R
D
D

Sh
er
eK
ha
n

G
LO
V
E

ch
em
ex

re
la
x

Dispersion models

Base models

R2eff/R
′

1ρ - - - X X X X - X

No Rex - X - X X - X - X

Single quantum (SQ) CPMG-type

LM63 X - - X - X X - X

LM63 3-site X - - X - - - - X

CR72 X - - X - X X - X

IT99 X - - - - - X - X

TSMFK01 - - - - - - - - X

B14 - - - - - - - - X

NS 2-site - X X - - X ? - X

MMQ (SQ, ZQ, DQ, & MQ) CPMG-type

MMQ CR72 - X - - X - ? - X

NS MMQ 2-site - X - - - - ? - X

NS MMQ 3-site linear - X - - - - ? - X

NS MMQ 3-site - X - - - - ? - X

R1ρ-type

M61 - - - - - - - - X

DPL94 - - - - - - - - X

TP02 - X - - - - - - X

TAP03 - - - - - - - - X

TP04 - - - - - - - - -
MP05 - - - - - - - - X

BK13 - - - - - - - - -
NS R1ρ 2-site - X - - - - ? - X

NS R1ρ 3-site linear - X - - - - - - X

NS R1ρ 3-site - X - - - - - - X

General features

Parallelisation via MPI for running on clusters - - - - - - - - X

Off-resonance effects (CPMG-type data) - - X - - - - - -
Off-resonance effects (R1ρ-type data) - X - - - - - - X

Support for TROSY-type data - - X - - - - - -
Support for CEST-type data - - - - - - - X -
Support for scalar coupling effects - - X - - - - - -
Arrhenius / Van’t Hoff analysis - X - X X - - - -
Dispersion data back calculation (BC) - X - X X - - - X

200 CHAPTER 11. RELAXATION DISPERSION

Table 11.4: Comparison of the features for the different dispersion software.

C
PM

G
Fi
t

cp
m
g
fit

C
AT
IA

N
ES
SY

G
U
A
R
D
D

Sh
er
eK
ha
n

G
LO
V
E

ch
em
ex

re
la
x

User interface

Graphical user interface (GUI) - - - X X - - - X

Web user interface (Web UI) - - - - - X - - -
Scripting user interface (Script UI) - X X - - X X - X

Shell interface X - - - - - - X -
Temperature and field-dependent simulator
UI for experimental planning (data BC) - - - - X - - - -

Optimisation

Grid search algorithm X - - X X X X - X

Grid search (via scripting) - - X - - - - - -
Nelder-Mead simplex algorithm - - - - - - - - X

Levenberg-Maquardt algorithm X X X X - X X X -
Numeric gradient approximation X X X X - X X X -
Logarithmic-barrier constraint algorithm - - - - - - X - X

MATLAB interior-point black magic - - - - X - - - -
Visualisation of the chi-squared space - - - - X - - - X

Error propagation

Covariance matrix (lowest quality) X X X - X X X - -
Jackknife simulations (for missing errors) X - - - - - X - -
Bootstrapping simulations (false errors) - - - - - - - - -
Monte Carlo simulations (gold standard) X - - X X - X X X

Inbuilt statistical comparisons

Akaike’s Information Criterion (AIC) - - - X - - - - X

Small sample size AIC (AICc) - - - X - - - - X

Bayesian Information Criterion (BIC) - - - - - - - - X

F-testing (ANOVA statistics) - - - X X - - - -

Data and model testing

Insignificant dispersion curve tests - - - X - - - - X

Model elimination tests - - - - - - - - X

Programming languages

Python - - - X - X - X X

C - X X - - - X - X

Perl - - - - - - X - -
MATLAB - - - - X - - - -
FORTRAN X - - - - - - - -
Ruby on Rails - - - - - X - - -

Free software licencing

GNU General Public Licence (version 2+) X - - - - - - - -
GNU General Public Licence (version 3+) - - - X X - - X X

Free software infrastructure - - - X X - - X X

Proprietary - X X - - X X - -

11.13. ANALYSING DISPERSION IN THE PROMPT/SCRIPT UI MODE 201

11.13 Analysing dispersion in the prompt/script UI mode

Before reading this section, please read Chapter 4 covering the relax data model first. It
will explain many of the concepts used within the following example script. For detailed
information on how to run a relax script, please see section 1.2.8 on page 12. The dispersion
analysis is parallelised on the level of the spin cluster and Monte Carlo simulations so, if
you have access to an MPI cluster or multi-core system with OpenMPI installed, please
see section 1.3 on page 17 for how to run the calculations much quicker.

11.13.1 Dispersion script mode – the sample script

The following is a verbatim copy of the contents of the sample scripts/relax disp/

cpmg analysis.py file. You will need to first copy this script to a dedicated analysis
directory containing peak lists, a sequence or PDB file and a file listing unresolved spin
systems, and then modify its contents to suit your specific analysis. The script contents
are:

1 """Script for performing a full relaxation dispersion analysis using CPMG-type data."""

2

3

4 # Python module imports.

5 from os import sep

6

7 # relax module imports.

8 from auto_analyses.relax_disp import Relax_disp

9

10

11 # Analysis variables.

12 #####################

13

14 # The dispersion models.

15 MODELS = ['R2eff', 'No Rex', 'CR72', 'N2 CPMG 2-site expanded']

16

17 # The grid search size (the number of increments per dimension).

18 GRID_INC = 11

19

20 # The number of Monte Carlo simulations to be used for error analysis at the end of the

analysis.

21 MC_NUM = 500

22

23 # The results directory.

24 RESULTS_DIR = '.'

25

26 # The model selection technique to use.

27 MODSEL = 'AIC'

28

29 # The flag for only using numeric models in the final model selection.

30 NUMERIC_ONLY = False

31

32 # The R2eff value in rad/s by which to judge insignificance. If the maximum difference

between two points on all dispersion curves for a spin is less than this value, that

spin will be deselected.

202 CHAPTER 11. RELAXATION DISPERSION

33 INSIGNIFICANCE = 1.0

34

35

36

37 # Set up the data pipe.

38 #######################

39

40 # Create the data pipe.

41 pipe_name = 'base pipe'

42 pipe_bundle = 'relax_disp'

43 pipe.create(pipe_name=pipe_name, bundle=pipe_bundle, pipe_type='relax_disp')

44

45 # Load the sequence.

46 sequence.read('fake_sequence.in', res_num_col=1, res_name_col=2)

47

48 # Name the spins so they can be matched to the assignments, and the isotope for field

strength scaling.

49 spin.name(name='N')

50 spin.isotope(isotope='15N')

51

52 # The spectral data - spectrum ID, peak list file name, CPMG frequency (Hz), spectrometer

frequency in Hertz.

53 data = [

54 ['500_reference.in', '500_MHz'+sep+'reference.in_sparky', None, 500e6],

55 ['500_66.667.in', '500_MHz'+sep+'66.667.in_sparky', 66.6666, 500e6],

56 ['500_133.33.in', '500_MHz'+sep+'133.33.in_sparky', 133.3333, 500e6],

57 ['500_133.33.in.bis', '500_MHz'+sep+'133.33.in.bis_sparky', 133.3333, 500e6],

58 ['500_200.in', '500_MHz'+sep+'200.in_sparky', 200.0000, 500e6],

59 ['500_266.67.in', '500_MHz'+sep+'266.67.in_sparky', 266.6666, 500e6],

60 ['500_333.33.in', '500_MHz'+sep+'333.33.in_sparky', 333.3333, 500e6],

61 ['500_400.in', '500_MHz'+sep+'400.in_sparky', 400.0000, 500e6],

62 ['500_466.67.in', '500_MHz'+sep+'466.67.in_sparky', 466.6666, 500e6],

63 ['500_533.33.in', '500_MHz'+sep+'533.33.in_sparky', 533.3333, 500e6],

64 ['500_533.33.in.bis', '500_MHz'+sep+'533.33.in.bis_sparky', 533.3333, 500e6],

65 ['500_600.in', '500_MHz'+sep+'600.in_sparky', 600.0000, 500e6],

66 ['500_666.67.in', '500_MHz'+sep+'666.67.in_sparky', 666.6666, 500e6],

67 ['500_733.33.in', '500_MHz'+sep+'733.33.in_sparky', 733.3333, 500e6],

68 ['500_800.in', '500_MHz'+sep+'800.in_sparky', 800.0000, 500e6],

69 ['500_866.67.in', '500_MHz'+sep+'866.67.in_sparky', 866.6666, 500e6],

70 ['500_933.33.in', '500_MHz'+sep+'933.33.in_sparky', 933.3333, 500e6],

71 ['500_933.33.in.bis', '500_MHz'+sep+'933.33.in.bis_sparky', 933.3333, 500e6],

72 ['500_1000.in', '500_MHz'+sep+'1000.in_sparky', 1000.0000, 500e6],

73 ['800_reference.in', '800_MHz'+sep+'reference.in_sparky', None, 800e6],

74 ['800_66.667.in', '800_MHz'+sep+'66.667.in_sparky', 66.6666, 800e6],

75 ['800_133.33.in', '800_MHz'+sep+'133.33.in_sparky', 133.3333, 800e6],

76 ['800_133.33.in.bis', '800_MHz'+sep+'133.33.in.bis_sparky', 133.3333, 800e6],

77 ['800_200.in', '800_MHz'+sep+'200.in_sparky', 200.0000, 800e6],

78 ['800_266.67.in', '800_MHz'+sep+'266.67.in_sparky', 266.6666, 800e6],

79 ['800_333.33.in', '800_MHz'+sep+'333.33.in_sparky', 333.3333, 800e6],

80 ['800_400.in', '800_MHz'+sep+'400.in_sparky', 400.0000, 800e6],

81 ['800_466.67.in', '800_MHz'+sep+'466.67.in_sparky', 466.6666, 800e6],

82 ['800_533.33.in', '800_MHz'+sep+'533.33.in_sparky', 533.3333, 800e6],

83 ['800_533.33.in.bis', '800_MHz'+sep+'533.33.in.bis_sparky', 533.3333, 800e6],

84 ['800_600.in', '800_MHz'+sep+'600.in_sparky', 600.0000, 800e6],

85 ['800_666.67.in', '800_MHz'+sep+'666.67.in_sparky', 666.6666, 800e6],

86 ['800_733.33.in', '800_MHz'+sep+'733.33.in_sparky', 733.3333, 800e6],

87 ['800_800.in', '800_MHz'+sep+'800.in_sparky', 800.0000, 800e6],

88 ['800_866.67.in', '800_MHz'+sep+'866.67.in_sparky', 866.6666, 800e6],

89 ['800_933.33.in', '800_MHz'+sep+'933.33.in_sparky', 933.3333, 800e6],

90 ['800_933.33.in.bis', '800_MHz'+sep+'933.33.in.bis_sparky', 933.3333, 800e6],

91 ['800_1000.in', '800_MHz'+sep+'1000.in_sparky', 1000.0000, 800e6]

11.13. ANALYSING DISPERSION IN THE PROMPT/SCRIPT UI MODE 203

92]

93

94 # Loop over the spectra.

95 for id, file, cpmg_frq, H_frq in data:

96 # Load the peak intensities.

97 spectrum.read_intensities(file=file, spectrum_id=id, int_method='height')

98

99 # Set the relaxation dispersion experiment type.

100 relax_disp.exp_type(spectrum_id=id, exp_type='SQ CPMG')

101

102 # Set the relaxation dispersion CPMG frequencies.

103 relax_disp.cpmg_setup(spectrum_id=id, cpmg_frq=cpmg_frq)

104

105 # Set the NMR field strength of the spectrum.

106 spectrometer.frequency(id=id, frq=H_frq)

107

108 # Relaxation dispersion CPMG constant time delay T (in s).

109 relax_disp.relax_time(spectrum_id=id, time=0.030)

110

111 # Specify the duplicated spectra.

112 spectrum.replicated(spectrum_ids=['500_133.33.in', '500_133.33.in.bis'])

113 spectrum.replicated(spectrum_ids=['500_533.33.in', '500_533.33.in.bis'])

114 spectrum.replicated(spectrum_ids=['500_933.33.in', '500_933.33.in.bis'])

115 spectrum.replicated(spectrum_ids=['800_133.33.in', '800_133.33.in.bis'])

116 spectrum.replicated(spectrum_ids=['800_533.33.in', '800_533.33.in.bis'])

117 spectrum.replicated(spectrum_ids=['800_933.33.in', '800_933.33.in.bis'])

118

119 # Peak intensity error analysis.

120 spectrum.error_analysis(subset=['500_reference.in', '500_66.667.in', '500_133.33.in', '500

_133.33.in.bis', '500_200.in', '500_266.67.in', '500_333.33.in', '500_400.in', '500

_466.67.in', '500_533.33.in', '500_533.33.in.bis', '500_600.in', '500_666.67.in', '500

_733.33.in', '500_800.in', '500_866.67.in', '500_933.33.in', '500_933.33.in.bis', '500

_1000.in'])

121 spectrum.error_analysis(subset=['800_reference.in', '800_66.667.in', '800_133.33.in', '800

_133.33.in.bis', '800_200.in', '800_266.67.in', '800_333.33.in', '800_400.in', '800

_466.67.in', '800_533.33.in', '800_533.33.in.bis', '800_600.in', '800_666.67.in', '800

_733.33.in', '800_800.in', '800_866.67.in', '800_933.33.in', '800_933.33.in.bis', '800

_1000.in'])

122

123 # Deselect unresolved spins.

124 deselect.read(file='unresolved', dir='500_MHz', res_num_col=1)

125 deselect.read(file='unresolved', dir='800_MHz', res_num_col=1)

126

127

128

129 # Auto-analysis execution.

130 ##########################

131

132 # Do not change!

133 Relax_disp(pipe_name=pipe_name, pipe_bundle=pipe_bundle, results_dir=RESULTS_DIR, models=

MODELS, grid_inc=GRID_INC, mc_sim_num=MC_NUM, modsel=MODSEL, insignificance=

INSIGNIFICANCE, numeric_only=NUMERIC_ONLY)

11.13.2 Dispersion script mode – imports

At the very start of the script are two import statements. This is simply the standard
Python import system for modules. The first will import the sep variable which is the
operating system independent directory separator:

204 CHAPTER 11. RELAXATION DISPERSION

4 # Python module imports.

5 from os import sep

This sep variable will be used later on in the script. The second import is that of the
automated relaxation dispersion class Relax disp which will be used at the very end of the
script to perform the full analysis:

7 # relax module imports.

8 from auto_analyses.relax_disp import Relax_disp

11.13.3 Dispersion script mode – analysis variables

The next part of the script is the definition of a number of analysis variables. As the
example in this section is for CPMG-type experiments, the relaxation dispersion models
which will be used in the auto-analysis are:

14 # The dispersion models.

15 MODELS = ['R2eff', 'No Rex', 'CR72', 'N2 CPMG 2-site expanded']

This list can be expanded to most of the 2-site exchange models, for example as:

MODELS = ['R2eff', 'No Rex', 'LM63', 'CR72', 'IT99', 'TSMFK01', 'NS CPMG 2-site expanded']

But note that the selection of which models to use is incredibly important. Do not use
models which are not suitable for the data as that will cause the final results to contain
rubbish. If you have R1ρ-type off-resonance data, the models could be changed to:

MODELS = ['R2eff', 'No Rex', 'DPL94', 'NS R1rho 2-site']

The next variable affects the optimisation precision:

17 # The grid search size (the number of increments per dimension).

18 GRID_INC = 21

The number of grid search increments may be decreased, but only after careful checking
with a higher number of increments. Setting this value too low may place the initial opti-
misation too far away from the minimum. Although as-of-yet undetected and unpublished,
if multiple local minima do exist then optimisation may not reach the global minimum.
Too little grid search increments can also cause the total optimisation time to increase
as the Nelder-Mead simplex optimisation together with the Logarithmic-barrier penalty
function as used in the auto-analysis may require more time to reach the minimum.

The Monte Carlo simulation number MC NUM variable affects the error estimate precision:

20 # The number of Monte Carlo simulations to be used for error analysis at the end of the

analysis.

21 MC_NUM = 500

For accurate parameter errors this number should not be decreased. Ideally it should be
increased however this will significantly increase the total analysis time. The next variable
allows you to change the directory in which all results files from the auto-analysis will be
saved.

23 # The results directory.

24 RESULTS_DIR = '.'

11.13. ANALYSING DISPERSION IN THE PROMPT/SCRIPT UI MODE 205

The MODSEL variable defines how the best dispersion model for the measured data is chosen:

26 # The model selection technique to use.

27 MODSEL = 'AIC'

For the automated analysis, currently only AIC, AICc, and BIC are supported. For details
about these frequentist model selection techniques and their application to NMR data,
see d’Auvergne and Gooley (2003). Post-analysis comparisons can also be preformed if
desired. The NUMERIC ONLY variable can be used to choose if only numeric or all models
will be used in the model selection for the final results:

29 # The flag for only using numeric models in the final model selection.

30 NUMERIC_ONLY = False

To only use numeric models in the model selection while allowing models such as ’CR72’
to be optimised and used as the starting point for the numeric models, change this variable
to:

NUMERIC_ONLY = True

The last variable allows spins with insignificant dispersion profiles to be deselected:

32 # The R2eff value in rad/s by which to judge insignificance. If the maximum difference

between two points on all dispersion curves for a spin is less than this value, that

spin will be deselected.

33 INSIGNIFICANCE = 1.0

This is often needed due to the errors in the dispersion curves being underestimated, hence
the ’No Rex’ model is not selected when clearly it should be. To use all data in the analysis,
this variable should be set to 0.0.

11.13.4 Dispersion script mode – initialisation of the data pipe

The data pipe is created using the lines:

40 # Create the data pipe.

41 pipe_name = 'base pipe'

42 pipe_bundle = 'relax_disp'

43 pipe.create(pipe_name=pipe_name, bundle=pipe_bundle, pipe_type='relax_disp')

The first two lines define variables for the data pipe name and the pipe bundle name.
The pipe bundle is used to group together all of the data pipes created by the automated
protocol. See section 4.2.1 on page 36 for more details.

The pipe.create user function will then create a relaxation dispersion specific data pipe
labelled with the pipe and bundle names. The third argument sets the pipe type to that
of relaxation dispersion. The rest of the script is used to fill this base data pipe with all
of the data required for a dispersion analysis. The auto-analysis will then copy the data
from this pipe as it sees fit.

206 CHAPTER 11. RELAXATION DISPERSION

11.13.5 Dispersion script mode – setting up the spin systems

The first thing which needs to be completed prior to any spin specific command is to
generate the molecule, residue and spin data structures for storing the spin specific data.
In the sample script above, this is generated from a plain text file with the sequence
information, however a PDB file can be used instead (see the structure.read pdb user
function on page 638 for more details). In the case of the sample script, the command:

45 # Load the sequence.

46 sequence.read('fake_sequence.in', res_num_col=1, res_name_col=2)

will load residue names and numbers from the fake sequence.in file into relax, creating
one spin per residue. Then:

48 # Name the spins so they can be matched to the assignments, and the isotope for field

strength scaling.

49 spin.name(name='N')

50 spin.isotope(isotope='15N')

will set up the spin information required for loading the peak intensity data from Sparky
peak lists and for the analysis of the dispersion data.

11.13.6 Dispersion script mode – loading the data

To load the peak intensities into relax, a large data structure is first defined:

52 # The spectral data - spectrum ID, peak list file name, CPMG frequency (Hz), spectrometer

frequency in Hertz.

53 data = [

54 ['500_reference.in', '500_MHz'+sep+'reference.in_sparky', None, 500e6],

55 ['500_66.667.in', '500_MHz'+sep+'66.667.in_sparky', 66.6666, 500e6],

56 ['500_133.33.in', '500_MHz'+sep+'133.33.in_sparky', 133.3333, 500e6],

57 ['500_133.33.in.bis', '500_MHz'+sep+'133.33.in.bis_sparky', 133.3333, 500e6],

58 ['500_200.in', '500_MHz'+sep+'200.in_sparky', 200.0000, 500e6],

59 ['500_266.67.in', '500_MHz'+sep+'266.67.in_sparky', 266.6666, 500e6],

60 ['500_333.33.in', '500_MHz'+sep+'333.33.in_sparky', 333.3333, 500e6],

61 ['500_400.in', '500_MHz'+sep+'400.in_sparky', 400.0000, 500e6],

62 ['500_466.67.in', '500_MHz'+sep+'466.67.in_sparky', 466.6666, 500e6],

63 ['500_533.33.in', '500_MHz'+sep+'533.33.in_sparky', 533.3333, 500e6],

64 ['500_533.33.in.bis', '500_MHz'+sep+'533.33.in.bis_sparky', 533.3333, 500e6],

65 ['500_600.in', '500_MHz'+sep+'600.in_sparky', 600.0000, 500e6],

66 ['500_666.67.in', '500_MHz'+sep+'666.67.in_sparky', 666.6666, 500e6],

67 ['500_733.33.in', '500_MHz'+sep+'733.33.in_sparky', 733.3333, 500e6],

68 ['500_800.in', '500_MHz'+sep+'800.in_sparky', 800.0000, 500e6],

69 ['500_866.67.in', '500_MHz'+sep+'866.67.in_sparky', 866.6666, 500e6],

70 ['500_933.33.in', '500_MHz'+sep+'933.33.in_sparky', 933.3333, 500e6],

71 ['500_933.33.in.bis', '500_MHz'+sep+'933.33.in.bis_sparky', 933.3333, 500e6],

72 ['500_1000.in', '500_MHz'+sep+'1000.in_sparky', 1000.0000, 500e6],

73 ['800_reference.in', '800_MHz'+sep+'reference.in_sparky', None, 800e6],

74 ['800_66.667.in', '800_MHz'+sep+'66.667.in_sparky', 66.6666, 800e6],

75 ['800_133.33.in', '800_MHz'+sep+'133.33.in_sparky', 133.3333, 800e6],

76 ['800_133.33.in.bis', '800_MHz'+sep+'133.33.in.bis_sparky', 133.3333, 800e6],

77 ['800_200.in', '800_MHz'+sep+'200.in_sparky', 200.0000, 800e6],

78 ['800_266.67.in', '800_MHz'+sep+'266.67.in_sparky', 266.6666, 800e6],

79 ['800_333.33.in', '800_MHz'+sep+'333.33.in_sparky', 333.3333, 800e6],

80 ['800_400.in', '800_MHz'+sep+'400.in_sparky', 400.0000, 800e6],

81 ['800_466.67.in', '800_MHz'+sep+'466.67.in_sparky', 466.6666, 800e6],

11.13. ANALYSING DISPERSION IN THE PROMPT/SCRIPT UI MODE 207

82 ['800_533.33.in', '800_MHz'+sep+'533.33.in_sparky', 533.3333, 800e6],

83 ['800_533.33.in.bis', '800_MHz'+sep+'533.33.in.bis_sparky', 533.3333, 800e6],

84 ['800_600.in', '800_MHz'+sep+'600.in_sparky', 600.0000, 800e6],

85 ['800_666.67.in', '800_MHz'+sep+'666.67.in_sparky', 666.6666, 800e6],

86 ['800_733.33.in', '800_MHz'+sep+'733.33.in_sparky', 733.3333, 800e6],

87 ['800_800.in', '800_MHz'+sep+'800.in_sparky', 800.0000, 800e6],

88 ['800_866.67.in', '800_MHz'+sep+'866.67.in_sparky', 866.6666, 800e6],

89 ['800_933.33.in', '800_MHz'+sep+'933.33.in_sparky', 933.3333, 800e6],

90 ['800_933.33.in.bis', '800_MHz'+sep+'933.33.in.bis_sparky', 933.3333, 800e6],

91 ['800_1000.in', '800_MHz'+sep+'1000.in_sparky', 1000.0000, 800e6]

92]

In Python terminology, this is a list of lists data structure. It is essentially a matrix of
information which is used in the subsequent for loop. The comment explains what each
element is. For R1ρ-type experiments, the CPMG frequency column can be replaced with
the spin-lock field strength. This data structure will need to be tailored to your data. It
can be seen that the sep variable is now being used to specify that the Sparky files are
either located in the 500 MHz or 800 MHz directories. It is used here to make this script
independent of the operating system.

The Python for loop starts with the lines:

94 # Loop over the spectra.

95 for id, file, cpmg_frq, H_frq in data:

and includes all subsequently indented lines. This line of code takes the elements of the
data data structure and splits it into 4 variables. Therefore for the first line, id will be set to
‘500 reference.in’, file will be set to ‘500 MHz/reference.in sparky’ on a GNU/Linux
machine, cpmg frq will be None, and H frq will be 500 MHz. For R1ρ-type data, you could
change the cpmg frq variable to field for example.

The first user function in the block loads the peak intensity data from the peak lists:

96 # Load the peak intensities.

97 spectrum.read_intensities(file=file, spectrum_id=id, int_method='height')

This assumes that peak heights were measured. All data will be tagged with the given ID
string. For examples of peak list formats supported by relax, see Section 5.4.4 on page 59.
The next step is to specify the dispersion experiment type for each spectrum:

99 # Set the relaxation dispersion experiment type.

100 relax_disp.exp_type(spectrum_id=id, exp_type='SQ CPMG')

This can be ‘SQ CPMG’, ‘DQ CPMG’, ‘ZQ CPMG’, ‘MQ CPMG’, ‘1H SQ CPMG’, ‘1H MQ CPMG’ or
‘R1rho’. The next user function sets the CPMG frequencies for each spectrum:

102 # Set the relaxation dispersion CPMG frequencies.

103 relax_disp.cpmg_setup(spectrum_id=id, cpmg_frq=cpmg_frq)

For an R1ρ-type experiment, these lines could be changed to:

Set the relaxation dispersion R1rho spin lock field strength.

relax_disp.spin_lock_field(spectrum_id=id, field=field)

Then the NMR spectrometer field strength is set:

208 CHAPTER 11. RELAXATION DISPERSION

105 # Set the NMR field strength of the spectrum.

106 spectrometer.frequency(id=id, frq=H_frq)

And finally the relaxation time period is set with:

108 # Relaxation dispersion CPMG constant time delay T (in s).

109 relax_disp.relax_time(spectrum_id=id, time=0.030)

If exponential data has been collected rather than fixed time period data, then the data

data structure can have an additional column added for the relaxation times, and then
this same user function can be used. The for loop will need one extra variable for the
times, and this should be passed into this relax disp.relax time user function for the
time argument.

Finally, once the for loop has completed, replicated spectra are defined with the com-
mands:

111 # Specify the duplicated spectra.

112 spectrum.replicated(spectrum_ids=['500_133.33.in', '500_133.33.in.bis'])

113 spectrum.replicated(spectrum_ids=['500_533.33.in', '500_533.33.in.bis'])

114 spectrum.replicated(spectrum_ids=['500_933.33.in', '500_933.33.in.bis'])

115 spectrum.replicated(spectrum_ids=['800_133.33.in', '800_133.33.in.bis'])

116 spectrum.replicated(spectrum_ids=['800_533.33.in', '800_533.33.in.bis'])

117 spectrum.replicated(spectrum_ids=['800_933.33.in', '800_933.33.in.bis'])

11.13.7 Dispersion script mode – the rest of the setup

Once all the peak intensity data has been loaded a few calculations are required prior to
optimisation. Firstly the peak intensities for individual spins needs to be averaged across
replicated spectra. The peak intensity errors also have to be calculated using the standard
deviation formula. These two operations are executed by the user functions:

119 # Peak intensity error analysis.

120 spectrum.error_analysis(subset=['500_reference.in', '500_66.667.in', '500_133.33.in', '500

_133.33.in.bis', '500_200.in', '500_266.67.in', '500_333.33.in', '500_400.in', '500

_466.67.in', '500_533.33.in', '500_533.33.in.bis', '500_600.in', '500_666.67.in', '500

_733.33.in', '500_800.in', '500_866.67.in', '500_933.33.in', '500_933.33.in.bis', '500

_1000.in'])

121 spectrum.error_analysis(subset=['800_reference.in', '800_66.667.in', '800_133.33.in', '800

_133.33.in.bis', '800_200.in', '800_266.67.in', '800_333.33.in', '800_400.in', '800

_466.67.in', '800_533.33.in', '800_533.33.in.bis', '800_600.in', '800_666.67.in', '800

_733.33.in', '800_800.in', '800_866.67.in', '800_933.33.in', '800_933.33.in.bis', '800

_1000.in'])

Here the 500 MHz and 800 MHz peak intensity errors have been calculated separately as
they should not be the same.

Any spins which cannot be resolved due to peak overlap were included in a file called
unresolved. This file can consist of optional columns of the molecule name, the residue
name and number, and the spin name and number. The matching spins are excluded from
the analysis by the user functions:

123 # Deselect unresolved spins.

124 deselect.read(file='unresolved', dir='500_MHz', res_num_col=1)

125 deselect.read(file='unresolved', dir='800_MHz', res_num_col=1)

11.13. ANALYSING DISPERSION IN THE PROMPT/SCRIPT UI MODE 209

11.13.8 Dispersion script mode – execution

Once the data has set up and you have modified your script to match your analysis needs,
then the data pipe, pipe bundle and analysis variables are passed into the Relax disp

class. This is the final lines of the script:

129 # Auto-analysis execution.

130 ##########################

131

132 # Do not change!

133 Relax_disp(pipe_name=pipe_name, pipe_bundle=pipe_bundle, results_dir=RESULTS_DIR, models=

MODELS, grid_inc=GRID_INC, mc_sim_num=MC_NUM, modsel=MODSEL, insignificance=

INSIGNIFICANCE, numeric_only=NUMERIC_ONLY)

This will start the auto-analysis. If you are adventurous, you can replace this line with
your own minimise.grid search, minimise.execute, and monte carlo.* user function
calls and design your own protocol. For ideas in designing your own advanced analysis,
see the auto analysis/relax disp.py file.

210 CHAPTER 11. RELAXATION DISPERSION

11.14 The relaxation dispersion auto-analysis in the GUI

The following demonstration of the relaxation dispersion analysis in the graphical user in-
terface (GUI) uses the experimental single quantum (SQ) CPMG-type data from Flemming
Hansen located in the relax directory test suite/shared data/dispersion/Hansen.
This is the data from the paper:

• Hansen, D. F., Vallurupalli, P., Lundstrom, P., Neudecker, P., and Kay, L. E. (2008).
Probing chemical shifts of invisible states of proteins with relaxation dispersion
NMR spectroscopy: how well can we do? J. Am. Chem. Soc., 130(8), 2667–2675.
(10.1021/ja078337p)

More details can be seen in the README file in that directory. By using the data in this
directory and following the instructions below, a complete dispersion analysis can be per-
formed.

Note that the dispersion analysis in the GUI uses the automated protocol as implemented
in the auto analyses/relax disp.py relax script. If you wish to perform a custom
analysis or implement your own protocol, please use the prompt/scripting user interface
instead to have access to the full flexibility and power of relax.

When running the analysis, it is best to keep a permanent log of all of the printouts,
warnings, errors and messages produced by relax. Such information will be an invaluable
reference when comparing the non-clustered and clustered results, as well as understanding
what happened to each spin system under study. This can be achieved by running relax
with the command line options:

$ relax --log log --gui

All output from relax will then be visible both in the relax controller window (see Figure 1.9
on page 19) and in the log file. Other relax options can be seen by running:

$ relax --help

11.14.1 Dispersion GUI mode – two analyses

To process this test data, two separate analyses will be performed:

• The first analysis will consists of treating all spins independently from each other.
This will use model selection to determine if any statistically significant relaxation
dispersion is present by comparing to the ‘No Rex’ dispersion model.

• The second analysis will consists of clustering spins with similar kinetics and thermo-
dynamics parameters (exchange rates and populations respectively) and optimising
these clusters using a common set of exchange parameters.

In this example, Gary Thompson’s multiprocessor framework (see section 11.9.11 on
page 196) will be used with OpenMPI on a single four-core, hyper-threaded computer
with the command:

http://dx.doi.org/10.1021/ja078337p

11.14. THE RELAXATION DISPERSION AUTO-ANALYSIS IN THE GUI 211

$ mpirun -np 8 /data/relax/relax-trunk/relax --multi=’mpi4py’ --log

∼/tmp/dispersion/log non clustered --gui

Note that the ∼/tmp/dispersion directory should be created before starting relax. If
running on a system where your home directory is not defined as ∼/, MS Windows for
example, the ∼ part will need to be replaced with some other directory. A different
command will be used for the clustered analysis to store the log messages in a separate
file. The two logs will be used to compare the two analysis types at the end.

11.14.2 Dispersion GUI mode – computation time

The time required to complete these two analyses is highly dependent on the computer
being used as well as how many nodes can be used for running the calculations parallelised
with OpenMPI. On a large cluster with many nodes both analyses should be completed
in under an hour. But when running the analyses without OpenMPI on old single core
computer, the analyses could take days and even up to a week.

11.14.3 Dispersion GUI mode – initialisation of the data pipe

After starting relax in the GUI mode, the dispersion analysis should be initialised by
launching the analysis selection wizard (see Figure 1.4 on page 12). The relaxation dis-
persion analysis should be selected and the name changed if multiple dispersion analyses
are to be performed within one relax session. In this case the name “Dispersion - Hansen

(non-clustered)” will be used:

Click on the “Next” button to move to the second wizard page:

212 CHAPTER 11. RELAXATION DISPERSION

Here the values need not be changed. The data pipe bundle will be used to hold all the
separate data pipes for each dispersion model type together.

11.14.4 Dispersion GUI mode – general setup

A blank analysis tab should now be visible:

11.14. THE RELAXATION DISPERSION AUTO-ANALYSIS IN THE GUI 213

The first step will be to change the “Results directory” where all of the automatically created
results file, 2D Grace plots, and relax state files will be saved. The directory ∼/tmp/
dispersion/non clustered will be used for this initial non-clustered analysis.

11.14.5 Dispersion GUI mode – setting up the spin systems

As the relaxation dispersion data is specific to individual nuclear spins, the molecule,
residue and spin data structures need to be set up. For this, the special “Spin systems”
GUI element can be used. The initial state will be “0 spins loaded and selected”. Click on
the “Spin editor” button to launch the spin viewer window. The steps for setting up the
spin containers using PDB files are described in section 4.5.2 on page 42 or for sequence
files in section 4.5.3 on page 45.

In this tutorial, the sequence file fake sequence.in in the test suite/shared data/

dispersion/Hansen directory will be loaded. In the spin loading wizard, which can be
launched by clicking on the “Load spins” button, select the “From a file containing sequence

data” option and click on “Next”. In the sequence.read user function wizard page, select
the fake sequence.in file. As this file only contains residue numbers and names (click
on the “preview” button to see the file contents), edit the “Free format file settings” to set the
residue number and name columns to 1 and 2 respectively and all other columns to blank
values. Click on “Save” to store the free format settings and close the window. Back in the
sequence.read user function wizard page, click on “Next” to load the sequence. Finally
click on “Finish” to close the wizard. Do not close the spin viewer window yet. Back in
the main analysis tab, the “Spin systems” GUI element will now say “73 spins loaded and

selected”.

214 CHAPTER 11. RELAXATION DISPERSION

11.14.6 Dispersion GUI mode – unresolved spins

As in the prompt/script UI section 11.13.7, the spins can be deselected at this point using
the same unresolved files. This is described in detail in section 4.5.5 on page 46.

Within the open spin viewer window, click on the “User functions→deselect→read” menu item.
In the deselect.read user function window, select the file test suite/shared data/

dispersion/Hansen/500 MHz/unresolved. As this file only contains residue number, edit
the “Free format file settings” to set the residue number column to 1 and all other columns
to empty values. Click the “Apply” button rather than “OK” to allow a second file to be
read. The relax controller window may appear and can be closed. Select the new file test
suite/shared data/dispersion/Hansen/800 MHz/unresolved and click on “OK”. Now
all spins from these two files will be deselected and skipped in the analysis.

11.14.7 Dispersion GUI mode – dispersion setup

The next step is to set up the data defining the relaxation dispersion process. This is
performed by clicking on the buttons between the “Spin cluster ID” and “Spectra list” GUI
elements. The buttons are as follows:

Spin isotope: This is needed to specify the spin isotope information for each spin in the
system, for example if the data is from 15N, 13C, 1H, etc. The button launches the
spin.isotope user function (see section 17.2.226 on page 619).

R1 relaxation data: This is used to load a text file containing R1 relaxation data for
each spin of interest (see Chapter 5 for calculating R1 values). The button launches
the relax data.read user function (see section 17.2.155 on page 572). It is cur-
rently only used for handling off-resonance effects in the R1ρ-type dispersion data
but may be extended, in the future, to handle off-resonance effects in the CPMG-type
experiments.

Chemical shift: As with the R1 button, this is for properly handling off-resonance effects
in the R1ρ-type dispersion data. The button launches the chemical shift.read user
function (see section 17.2.23 on page 459).

Interatomic interaction: This button launches the interatom.define user function
(see section 17.2.58 on page 489). This is needed to link, for example, 1H to 15N
spins into a spin system so that MMQ-type data, which relies on a multiple-spin
system, can be handled.

Value setting: When one of the parameters of the dispersion model is already known,
its value can be set by clicking on this button which launches the value.set user
function (see section 17.2.268 on page 656). Setting a parameter value will fix the
parameter in the initial grid search. However it will be free to vary in the non-linear
least squares optimisation used to refine its value.

For SQ CPMG-type dispersion data, only the spin isotope information is required:

11.14. THE RELAXATION DISPERSION AUTO-ANALYSIS IN THE GUI 215

In this case, all spins are 15N. However as no spins are named yet, the text “@N*” cannot
be used. So simply change this to “@*” and click on “OK”. The other buttons can be
ignored.

11.14.8 Dispersion GUI mode – loading the data

The standard way for handling experimental NMR data for starting a relaxation dispersion
analysis in the relax GUI is to load the peak intensity values (either height or volume) from
a peak list. For a list of all the currently supported peak list formats, see the spectrum.

read intensities user function documentation in section 17.2.216 on page 611.

Note that relax also accepts pre-fitted or pre-calculated R2eff or R1ρ values via the relax
disp.r2eff read and relax disp.r2eff read spin user functions (see section 17.2.175
on page 584 and section 17.2.176 on page 585 respectively), however this is not the standard
way of using the GUI. As this is not tested, if you decide to work with pre-calculated relax-
ation rates please report any bugs encountered as described in section 3.4 on page 31. To
access the user functions, click on “User functions→relax disp→r2eff read” or “User functions→
relax disp→r2eff read spin”.

In this tutorial, the Sparky formatted peak lists in the test suite/shared data/

dispersion/Hansen/500 MHz and test suite/shared data/dispersion/Hansen/800

MHz directories will be loaded. First click on the “Add” button in the “Spectra list” GUI
element. A warning message will appear as the spins have not yet been named, spin names
were not present in the fake sequence.in file, hence they cannot be matched to the data
in the peak lists:

216 CHAPTER 11. RELAXATION DISPERSION

Simply click on “Yes” to allow the spins to be named in the next step. The spin.name

user function wizard page should now appear. As all data is from 15N spins and these
spins have been named as “N” in the Sparky peak lists, set the new spin name to “N” and
click on “Next”:

The spectrum.read intensities user function wizard page should appear. To help un-

11.14. THE RELAXATION DISPERSION AUTO-ANALYSIS IN THE GUI 217

derstand the next steps of the peak intensity loading wizard, note the following table which
summarises the peak list metadata for this analysis:

File name Spectrum ID Spectrometer νCPMG Replicate
frq. (MHz) (Hz) IDs

500 MHz/reference.in sparky 500 ref 500.0 None
500 MHz/66.667.in sparky 500 66.667 500.0 66.6666
500 MHz/133.33.in sparky 500 133.33 500.0 133.3333 500 133.33b
500 MHz/133.33.in.bis sparky 500 133.33b 500.0 133.3333 500 133.33
500 MHz/200.in sparky 500 200.00 500.0 200.0000
500 MHz/266.67.in sparky 500 266.67 500.0 266.6666
500 MHz/333.33.in sparky 500 333.33 500.0 333.3333
500 MHz/400.in sparky 500 400.00 500.0 400.0000
500 MHz/466.67.in sparky 500 466.67 500.0 466.6666
500 MHz/533.33.in sparky 500 533.33 500.0 533.3333 500 533.33b
500 MHz/533.33.in.bis sparky 500 533.33b 500.0 533.3333 500 533.33
500 MHz/600.in sparky 500 600.00 500.0 600.0000
500 MHz/666.67.in sparky 500 666.67 500.0 666.6666
500 MHz/733.33.in sparky 500 733.33 500.0 733.3333
500 MHz/800.in sparky 500 800.00 500.0 800.0000
500 MHz/866.67.in sparky 500 866.67 500.0 866.6666
500 MHz/933.33.in sparky 500 933.33 500.0 933.3333 500 933.33b
500 MHz/933.33.in.bis sparky 500 933.33b 500.0 933.3333 500 933.33
500 MHz/1000.in sparky 500 1000.0 500.0 1000.0000

800 MHz/reference.in sparky 800 ref 800.0 None
800 MHz/66.667.in sparky 800 66.667 800.0 66.6666
800 MHz/133.33.in sparky 800 133.33 800.0 133.3333 800 133.33b
800 MHz/133.33.in.bis sparky 800 133.33b 800.0 133.3333 800 133.33
800 MHz/200.in sparky 800 200.00 800.0 200.0000
800 MHz/266.67.in sparky 800 266.67 800.0 266.6666
800 MHz/333.33.in sparky 800 333.33 800.0 333.3333
800 MHz/400.in sparky 800 400.00 800.0 400.0000
800 MHz/466.67.in sparky 800 466.67 800.0 466.6666
800 MHz/533.33.in sparky 800 533.33 800.0 533.3333 800 533.33b
800 MHz/533.33.in.bis sparky 800 533.33b 800.0 533.3333 800 533.33
800 MHz/600.in sparky 800 600.00 800.0 600.0000
800 MHz/666.67.in sparky 800 666.67 800.0 666.6666
800 MHz/733.33.in sparky 800 733.33 800.0 733.3333
800 MHz/800.in sparky 800 800.00 800.0 800.0000
800 MHz/866.67.in sparky 800 866.67 800.0 866.6666
800 MHz/933.33.in sparky 800 933.33 800.0 933.3333 800 933.33b
800 MHz/933.33.in.bis sparky 800 933.33b 800.0 933.3333 800 933.33
800 MHz/1000.in sparky 800 1000.0 800.0 1000.0000

For all of these files, the experiment type is SQ CPMG and the relaxation delay time is
30 ms. All files are located in the test suite/shared data/dispersion/Hansen base
directory.

To simplify the loading of the data, all of the 500 MHz data will be read simultaneously
(followed by all of the 800 MHz data). Firstly, to select all of the 500 MHz files, click on
the button at the end of the “file name(s)” GUI element. This will launch the multiple file
selection window:

218 CHAPTER 11. RELAXATION DISPERSION

Add the first file by typing the file name or clicking on the file selection button to the right
of the file input field and choosing the file. A preview button is included to allow the file
to be checked. Then click on the “Add” button to insert a new file selection item, add the
next file, and continue until completion. You should now see 19 file names:

Click on “OK” to return to the spectrum.read intensities user function wizard page.

11.14. THE RELAXATION DISPERSION AUTO-ANALYSIS IN THE GUI 219

Next, the spectrum IDs should be set. For this, click on the button to the far right of the
“spectrum ID string” GUI element. Click on “Add” and fill in the spectrum IDs corresponding
to the files selected. As 19 files exist for the 500 MHz data, 19 spectrum IDs should be
added. When complete you should see:

Click on “OK” to return to the spectrum.read intensities user function wizard page.

There is a shortcut to these previous steps in that the file names and spectrum IDs can be
manually typed into the input elements of the spectrum.read intensities user function
wizard page. For the file names, assuming relax is installed in the base directory /data/

relax/relax-trunk and a Unix-like system is being used, the following text can be added:

['/data/relax/relax-trunk/test_suite/shared_data/dispersion/Hansen/500_MHz/

reference.in_sparky', '/data/relax/relax-trunk/test_suite/shared_data/dispersion/

Hansen/500_MHz/133.33.in_sparky', '/data/relax/relax-trunk/test_suite/shared_data/

dispersion/Hansen/500_MHz/133.33.in.bis_sparky', '/data/relax/relax-trunk/test_suite/

shared_data/dispersion/Hansen/500_MHz/200.in_sparky', '/data/relax/relax-trunk/

test_suite/shared_data/dispersion/Hansen/500_MHz/266.67.in_sparky', '/data/relax/relax

-trunk/test_suite/shared_data/dispersion/Hansen/500_MHz/333.33.in_sparky', '/data/

relax/relax-trunk/test_suite/shared_data/dispersion/Hansen/500_MHz/400.in_sparky', '/

data/relax/relax-trunk/test_suite/shared_data/dispersion/Hansen/500_MHz/466

.67.in_sparky', '/data/relax/relax-trunk/test_suite/shared_data/dispersion/Hansen/500

_MHz/533.33.in_sparky', '/data/relax/relax-trunk/test_suite/shared_data/dispersion/

Hansen/500_MHz/533.33.in.bis_sparky', '/data/relax/relax-trunk/test_suite/shared_data/

dispersion/Hansen/500_MHz/600.in_sparky', '/data/relax/relax-trunk/test_suite/

shared_data/dispersion/Hansen/500_MHz/66.667.in_sparky', '/data/relax/relax-trunk/

test_suite/shared_data/dispersion/Hansen/500_MHz/666.67.in_sparky', '/data/relax/relax

-trunk/test_suite/shared_data/dispersion/Hansen/500_MHz/733.33.in_sparky', '/data/

relax/relax-trunk/test_suite/shared_data/dispersion/Hansen/500_MHz/800.in_sparky', '/

data/relax/relax-trunk/test_suite/shared_data/dispersion/Hansen/500_MHz/866

.67.in_sparky', '/data/relax/relax-trunk/test_suite/shared_data/dispersion/Hansen/500

_MHz/933.33.in_sparky', '/data/relax/relax-trunk/test_suite/shared_data/dispersion/

Hansen/500_MHz/933.33.in.bis_sparky', '/data/relax/relax-trunk/test_suite/shared_data/

220 CHAPTER 11. RELAXATION DISPERSION

dispersion/Hansen/500_MHz/1000.in_sparky']

The spectrum IDs can be added by copying and pasting the following text, making sure
all text is on one line:

['500_reference', '500_133.33', '500_133.33b', '500_200', '500_266.67', '500_333.33', '500

_400', '500_466.67', '500_533.33', '500_533.33b', '500_600', '500_66.667', '500_666.67

', '500_733.33', '500_800', '500_866.67', '500_933.33', '500_933.33b', '500_1000']

To see if the data has been correctly entered, click on the buttons to the right of the GUI
elements. You should see the files and spectrum IDs correctly listed in the multiple file
selection window and the sequence input window respectively.

For the SQ CPMG data of this tutorial, none of the other settings in the spectrum.read
intensities user function wizard page need to be changed. By clicking on the “Apply”
button, the 500 MHz data will be loaded but the wizard will stay on the same page. Note
that the contents of the main relax window will have changed. Clicking “Apply” rather
than “Next” will allow the 800 MHz data to be loaded next. Change all of the file names
and spectrum IDs for the 800 MHz and click on the “Next” button to read the data and
to move to the next wizard page. This will be the page for specifying the types of errors
to use:

As replicated spectra have been collected, set the value to “Replicated spectra” and then
click the “Next” button. Select the pairs of spectra which have been replicated and click
the “Apply” button to allow all of the replicates to be specified:

11.14. THE RELAXATION DISPERSION AUTO-ANALYSIS IN THE GUI 221

Repeat for each pair of replicates, then click the “Next” button to move to the next wizard
page – the relax disp.exp type user function. Here the tedious operation of labelling
all spectrum IDs as being “Single quantum (SQ) CPMG-type data” must be performed. Select
the spectrum ID and the SQ CPMG data type and click on the “Apply” button, repeating
for each ID:

222 CHAPTER 11. RELAXATION DISPERSION

Click the “Next” button when finished. The next wizard page will be that of the
spectrometer.frequency user function. Here the exact spectrometer frequency values
should be specified. These values should be those of the “sfrq” parameter in the Varian
procpar file or the “SFO1” parameter in the Bruker acqus file. As the exact values are
not known for the data of this tutorial, the values of 500.0 and 800.0 MHz will be used:

Again use the “Apply” button to set the value, repeating for all matching spectrum IDs.
Change the frequency to 800.0 MHz and continue for the next set of matching spectrum
IDs. Finally click on “Next” to move to the next wizard page. If you have not used the
exact values from the files, the relax controller window will appear with the warning:

relax> spectrometer.frequency(id='500_reference', frq=500.0, units='MHz')

RelaxWarning: The precise spectrometer frequency should be supplied, a value such as

500000000 or 5e8 for a 500 MHz machine is not acceptable. Please see the 'sfrq'

parameter in the Varian procpar file or the 'SFO1' parameter in the Bruker acqus file.

The controller window can be safely closed. Though, to avoid frustration when setting
the frequency for all spectrum IDs, it may be better to shift the window to the side of the
screen. The next wizard page is that of the relax disp.relax time user function. Set
the time to 0.03 and click on the “Apply” button for all spectrum IDs, one after the other:

11.14. THE RELAXATION DISPERSION AUTO-ANALYSIS IN THE GUI 223

Click on “Next” to move to the relax disp.cpmg frq user function wizard page. If
R1ρ data has been collected, the relax disp.spin lock field user function wizard page
would appear instead. For the reference spectrum IDs, leave the CPMG frequency value
blank and click on “Apply”:

This will label these spectra as the reference. For all other spectrum IDs, use the CPMG

224 CHAPTER 11. RELAXATION DISPERSION

frequencies as given in the table above, using “Apply” to execute the relax disp.cpmg

frq user function while staying on the same wizard page. Click on “Next” to finish. You
should now see the main relax window:

In this screenshot it can be seen that some of the metadata is missing. This often happens
due to the large amounts of metadata specified in the peak intensity loading wizard and
human error. The missing metadata can now easily be filled in by right clicking on the
corresponding row. For example here the “500 733.33” spectrum ID does not have the
experiment type set. Simply right click and select the “Set the experiment type” menu
entry from the popup menu. For the missing spectrometer frequency for the “500 866.67”
spectrum ID, the “Set the spectrometer frequency” menu entry can be used. For the missing
νCPMG value for the “800 133.33” spectrum ID, the “Set the CPMG pulse frequency νCPMG”
menu entry can be used. All of the metadata should be double and triple checked and fixed
where required using the popup menu. Any errors in this metadata would be catastrophic
for the subsequent dispersion analysis.

11.14.9 Dispersion GUI mode – choosing the models to optimise

The next step is to specify which relaxation dispersion models will be used in the analysis.
The number of models used should be limited based on your knowledge of the problem.
Depending on experimental information, a number of models can be ruled out. For example
for the data used in this tutorial, the exchange is known to be slow. Hence all of the fast
exchange models can be excluded. For the conditions under which the various dispersion
models can be used, please refer to the original references. In relax many dispersion models
are provided, however you should never use them all.

For this tutorial, we will only use the following dispersion models:

11.14. THE RELAXATION DISPERSION AUTO-ANALYSIS IN THE GUI 225

‘R2eff’: This is essential for calculating the R2eff values used as the input data for all
other models (see section 11.2.1 on page 156).

‘No Rex’: This model will be important in the model selection stage to determine if
any statistically significant relaxation dispersion is present in the R2eff data (see
section 11.2.2 on page 158).

‘CR72’: The Carver and Richards model for most time scales (see Section 11.3.4 on
page 162). This is the standard model for slow timescale CPMG-type data (for fast
timescales use the ‘LM63’ model instead and for very slow exchange the ‘TSMFK01’
model).

‘NS CPMG 2-site expanded’: The best and fastest of the numerical models for 2-site
exchange (see Section 11.4.1 on page 166).

To chose which models will be used in the analysis, click on the “Modify” button of the
“Relaxation dispersion models” GUI element in the main relax window and change the model
list to:

The “Pure numerical solution” flag will be left on “False”. But if you prefer to only have results
from the numerical models, this can be changed to “True” by clicking on the “Toggle” button
(note that the ‘CR72’ model should nevertheless be used to speed up optimisation – see
section 11.9.5 on page 191 for details).

11.14.10 Dispersion GUI mode – optimisation settings

The grid search increment number of 21 might be excessive, especially if the multiprocessor
framework is not used to speed up calculations (see section 11.9.11 on page 196). This

226 CHAPTER 11. RELAXATION DISPERSION

value can be changed to 11, as this number is probably sufficient for most dispersion
analyses.

Also for speed, the number of Monte Carlo simulations will be set to 200. However for
real analyses, the minimum number of 500 should be used for accurate parameter error
estimates. The “Per model error analysis” setting will be left to “False”. And the “Insignificance
level” will be left at 1.0 (see section 11.9.2 on page 190).

11.14.11 Dispersion GUI mode – execution of the non-clustered analysis

To start the analysis, simply click the “Execute” button to start the analysis:

If the setup is incomplete, an error window will appear describing the problem. If a
slow computer is used without Gary Thompson’s multiprocessor, the calculation time
could take one to several days. But on a modern, multi-core system using the OpenMPI
multiprocessor, the calculation should only take hours. Once complete, you will see:

11.14. THE RELAXATION DISPERSION AUTO-ANALYSIS IN THE GUI 227

The relax controller window can be closed. At all stages of the analysis, the logs should
be checked for all warnings. For example searching for the text ‘RelaxWarning’ in the
log file ∼/dispersion/log non clustered, the only warnings can be seen at the end of
the analysis. These can be seen to be harmless as they are indicating that certain Grace
2D plots contain no data – specifically those for dispersion parameters not present in the
set of models optimised. Any other warnings should however be very carefully noted and
checked as these could be pointing to a serious problem.

11.14.12 Dispersion GUI mode – inspection of the results

To view the results of the analysis, the relax results window will have been automatically
opened. If it was closed, click on the “View→Results viewer” menu entry or the “Results viewer
window” button in the toolbar to open the window. This window will list all of the *.out
text files and *.agr 2D Grace plots created by the auto-analysis. By double clicking on the
file, these can be opened. The operating specific text editor will be launched for the text
files. For the Grace files, the installed Grace version (Xmgrace, QtGrace, or GraceGTK)
will be launched.

Firstly, to see which models have been chosen for the spin systems and which have no
statistically significant dispersion, find the model.out file and double click on it. You
should see the following:

Parameter description: The dispersion model.

#

mol_name res_num res_name spin_num spin_name value error

None 1 GLY None N 'NS CPMG 2-site expanded' None

None 2 GLY None N 'No Rex' None

None 3 GLY None N 'No Rex' None

None 4 GLY None N 'No Rex' None

None 5 GLY None N 'CR72' None

228 CHAPTER 11. RELAXATION DISPERSION

None 6 GLY None N 'No Rex' None

None 7 GLY None N 'No Rex' None

None 8 GLY None N 'NS CPMG 2-site expanded' None

None 9 GLY None N None None

None 10 GLY None N 'No Rex' None

None 11 GLY None N 'No Rex' None

None 12 GLY None N 'NS CPMG 2-site expanded' None

None 13 GLY None N 'No Rex' None

None 14 GLY None N 'CR72' None

None 15 GLY None N 'No Rex' None

None 16 GLY None N 'No Rex' None

None 17 GLY None N 'No Rex' None

None 18 GLY None N 'No Rex' None

None 19 GLY None N 'No Rex' None

None 20 GLY None N 'No Rex' None

None 21 GLY None N 'CR72' None

None 22 GLY None N 'No Rex' None

None 23 GLY None N 'CR72' None

None 24 GLY None N 'No Rex' None

None 25 GLY None N 'No Rex' None

None 26 GLY None N 'CR72' None

None 27 GLY None N None None

None 28 GLY None N None None

None 29 GLY None N 'No Rex' None

None 30 GLY None N None None

None 31 GLY None N 'NS CPMG 2-site expanded' None

None 32 GLY None N 'NS CPMG 2-site expanded' None

None 33 GLY None N 'No Rex' None

None 34 GLY None N 'NS CPMG 2-site expanded' None

None 35 GLY None N 'No Rex' None

None 36 GLY None N 'No Rex' None

None 37 GLY None N 'No Rex' None

None 38 GLY None N 'NS CPMG 2-site expanded' None

None 39 GLY None N 'NS CPMG 2-site expanded' None

None 40 GLY None N 'No Rex' None

None 41 GLY None N 'No Rex' None

None 42 GLY None N 'NS CPMG 2-site expanded' None

None 43 GLY None N 'No Rex' None

None 44 GLY None N 'No Rex' None

None 45 GLY None N 'NS CPMG 2-site expanded' None

None 46 GLY None N 'NS CPMG 2-site expanded' None

None 47 GLY None N 'NS CPMG 2-site expanded' None

None 48 GLY None N 'No Rex' None

None 49 GLY None N 'No Rex' None

None 50 GLY None N 'No Rex' None

None 51 GLY None N 'CR72' None

None 52 GLY None N 'NS CPMG 2-site expanded' None

None 53 GLY None N 'NS CPMG 2-site expanded' None

None 54 GLY None N None None

None 55 GLY None N 'NS CPMG 2-site expanded' None

None 56 GLY None N 'No Rex' None

None 57 GLY None N 'No Rex' None

None 58 GLY None N 'No Rex' None

None 59 GLY None N 'CR72' None

None 60 GLY None N 'No Rex' None

None 61 GLY None N 'NS CPMG 2-site expanded' None

None 62 GLY None N 'NS CPMG 2-site expanded' None

None 63 GLY None N 'CR72' None

None 64 GLY None N 'CR72' None

None 65 GLY None N 'CR72' None

None 66 GLY None N 'NS CPMG 2-site expanded' None

None 67 GLY None N 'NS CPMG 2-site expanded' None

None 68 GLY None N None None

None 69 GLY None N None None

None 70 GLY None N 'NS CPMG 2-site expanded' None

None 71 GLY None N 'NS CPMG 2-site expanded' None

None 72 GLY None N 'NS CPMG 2-site expanded' None

None 73 GLY None N 'CR72' None

11.14. THE RELAXATION DISPERSION AUTO-ANALYSIS IN THE GUI 229

Excluding the deselected spin systems with the model ‘None’ and those with no statisti-
cally significant dispersion, ‘No Rex’, it can be seen that in some cased the ‘CR72’ model
is selected whereas in others the ‘NS CPMG 2-site expanded’ model is selected. The
differences between the ‘CR72’ analytic model and the ‘NS CPMG 2-site expanded’ nu-
meric model are insignificant. To see this, open the CR72/chi2.out and NS CPMG 2-site

expanded/chi2.out text files in the ∼/dispersion/log non clustered directory and
compare the optimised chi-squared values (this can be performed with the mouse by using
the pipe editor window, changing the current data pipe, and double clicking on the files
in the results viewer window for each data pipe – see below for more details).

To see which spins have been assigned the model ‘No Rex’ due to the R2eff/R1ρ insignifi-
cance level of 1.0 rad/s, search the log messages for ‘insignificance’. You should see:

relax> relax_disp.insignificance(level=1.0)

Deselecting spin ':2@N', the maximum dispersion curve difference for all curves is 0.772528040762 rad/s.

Deselecting spin ':3@N', the maximum dispersion curve difference for all curves is 0.572686080104 rad/s.

Deselecting spin ':4@N', the maximum dispersion curve difference for all curves is 0.20753288407 rad/s.

Deselecting spin ':7@N', the maximum dispersion curve difference for all curves is 0.184120905625 rad/s.

Deselecting spin ':10@N', the maximum dispersion curve difference for all curves is 0.746360942576 rad/s.

Deselecting spin ':11@N', the maximum dispersion curve difference for all curves is 0.372702361421 rad/s.

Deselecting spin ':13@N', the maximum dispersion curve difference for all curves is 0.261522940719 rad/s.

Deselecting spin ':15@N', the maximum dispersion curve difference for all curves is 0.743965404051 rad/s.

Deselecting spin ':16@N', the maximum dispersion curve difference for all curves is 0.198783344901 rad/s.

Deselecting spin ':17@N', the maximum dispersion curve difference for all curves is 0.469568638477 rad/s.

Deselecting spin ':18@N', the maximum dispersion curve difference for all curves is 0.720840385548 rad/s.

Deselecting spin ':19@N', the maximum dispersion curve difference for all curves is 0.290773963568 rad/s.

Deselecting spin ':20@N', the maximum dispersion curve difference for all curves is 0.983669594767 rad/s.

Deselecting spin ':22@N', the maximum dispersion curve difference for all curves is 0.507488886605 rad/s.

Deselecting spin ':24@N', the maximum dispersion curve difference for all curves is 0.984086643389 rad/s.

Deselecting spin ':25@N', the maximum dispersion curve difference for all curves is 0.638104572082 rad/s.

Deselecting spin ':29@N', the maximum dispersion curve difference for all curves is 0.525261970487 rad/s.

Deselecting spin ':33@N', the maximum dispersion curve difference for all curves is 0.822112754666 rad/s.

Deselecting spin ':35@N', the maximum dispersion curve difference for all curves is 0.713976877685 rad/s.

Deselecting spin ':36@N', the maximum dispersion curve difference for all curves is 0.413602640091 rad/s.

Deselecting spin ':37@N', the maximum dispersion curve difference for all curves is 0.302953864843 rad/s.

Deselecting spin ':40@N', the maximum dispersion curve difference for all curves is 0.401535026435 rad/s.

Deselecting spin ':41@N', the maximum dispersion curve difference for all curves is 0.805657060225 rad/s.

Deselecting spin ':43@N', the maximum dispersion curve difference for all curves is 0.582523964429 rad/s.

Deselecting spin ':44@N', the maximum dispersion curve difference for all curves is 0.325638582443 rad/s.

Deselecting spin ':45@N', the maximum dispersion curve difference for all curves is 0.947956877688 rad/s.

Deselecting spin ':49@N', the maximum dispersion curve difference for all curves is 0.872396631779 rad/s.

Deselecting spin ':50@N', the maximum dispersion curve difference for all curves is 0.403543891199 rad/s.

Deselecting spin ':56@N', the maximum dispersion curve difference for all curves is 0.468272490195 rad/s.

Deselecting spin ':57@N', the maximum dispersion curve difference for all curves is 0.634215047495 rad/s.

Deselecting spin ':58@N', the maximum dispersion curve difference for all curves is 0.953109267554 rad/s.

Search for ‘eliminate’ to see which models have been removed due to the model elimination
step (see section 11.9.9 on page 195 for details). For example for the CR72 model:

relax> eliminate(function=None, args=None)

Data pipe 'CR72 - relax_disp (Mon Feb 17 18:00:16 2014)': The pA parameter of 0.50003 is less than 0.50100, eliminating the spin

cluster [':6@N'].

Data pipe 'CR72 - relax_disp (Mon Feb 17 18:00:16 2014)': The pA parameter of 0.50001 is less than 0.50100, eliminating the spin

cluster [':38@N'].

Data pipe 'CR72 - relax_disp (Mon Feb 17 18:00:16 2014)': The pA parameter of 0.50001 is less than 0.50100, eliminating the spin

cluster [':42@N'].

Data pipe 'CR72 - relax_disp (Mon Feb 17 18:00:16 2014)': The pA parameter of 0.50001 is less than 0.50100, eliminating the spin

cluster [':45@N'].

Data pipe 'CR72 - relax_disp (Mon Feb 17 18:00:16 2014)': The pA parameter of 0.50000 is less than 0.50100, eliminating the spin

cluster [':46@N'].

Data pipe 'CR72 - relax_disp (Mon Feb 17 18:00:16 2014)': The pA parameter of 0.50002 is less than 0.50100, eliminating the spin

cluster [':47@N'].

Data pipe 'CR72 - relax_disp (Mon Feb 17 18:00:16 2014)': The pA parameter of 0.50000 is less than 0.50100, eliminating the spin

cluster [':48@N'].

Data pipe 'CR72 - relax_disp (Mon Feb 17 18:00:16 2014)': The pA parameter of 0.50002 is less than 0.50100, eliminating the spin

cluster [':60@N'].

Data pipe 'CR72 - relax_disp (Mon Feb 17 18:00:16 2014)': The pA parameter of 0.50000 is less than 0.50100, eliminating the spin

cluster [':62@N'].

To see the optimised parameter values, double click on the kex.agr file to see the exchange
rates. This will open the grace.view user function window by which the file can be opened.
The default settings produces the following graph:

230 CHAPTER 11. RELAXATION DISPERSION

The exchange rate for most spins experiencing exchange is between 1000 and 2000 s−1.
Opening the pA.agr file, it can be seen that the population of state A is approximately
0.98. A number of spins have much lower values than this, but their errors are huge
meaning that all but 3 are statistically the same as 0.98 (note that a proper ANOVA
statistics analysis would be required to make such statements).

To see one of the dispersion curves, open the disp 64 N.agr file in Grace. The default
settings will produce the graph:

11.14. THE RELAXATION DISPERSION AUTO-ANALYSIS IN THE GUI 231

To improve the appearance of this plot, please refer to the Grace software documentation.

11.14.13 Dispersion GUI mode – comparing models

To compare the results of the different optimised models, the pipe editor window can be
used to switch between the data pipes containing the results of the individual models.
Select the “View→Data pipe editor” menu entry. Right click on the model of interest and
select “Switch to this pipe”:

The results viewer window can then be used to open the text files and Grace plots for that
model. Switch to the data pipe of another model and open the same file to compare the
results.

232 CHAPTER 11. RELAXATION DISPERSION

11.14.14 Dispersion GUI mode – the clustered analysis

Before the second analysis with spin clustering will be performed, the relax state will be
saved in the file state.bz2 and the program closed. To store the details of the second
analysis in a separate log file, relax will be restarted with the command:

$ mpirun -np 8 /data/relax/relax-trunk/relax --multi=’mpi4py’ --log

∼/tmp/dispersion/log clustered --gui

When the GUI has started, load the state.bz2 file. If relax is not restarted, all messages
will be in a single log file.

For the clustered analysis, we will focus on one group of spins – those from residues :59 to
:67. These can be seen to have very similar dynamics:

Parameter description: The population for state A.

#

mol_name res_num res_name spin_num spin_name value error

[snip]

None 59 GLY None N 0.991169677577733 0.0254974551085798

None 60 GLY None N None None

None 61 GLY None N 0.989169345780449 0.000173707304433962

None 62 GLY None N 0.892612114003636 0.156741312688688

None 63 GLY None N 0.991579380015928 0.00101555844987099

None 64 GLY None N 0.983519617639107 0.00141882200997569

None 65 GLY None N 0.993831316342131 0.00840481515172743

None 66 GLY None N 0.996816227018878 0.00495523034494496

None 67 GLY None N 0.987206586948786 0.000217099775069814

[snip]

Parameter description: The exchange rate.

#

mol_name res_num res_name spin_num spin_name value error

[snip]

None 59 GLY None N 1856.39029180567 258.796681611922

None 60 GLY None N None None

None 61 GLY None N 1706.42820099893 79.5779060629935

None 62 GLY None N 1560.77926730839 246.876174669559

None 63 GLY None N 1448.69535431372 121.940593279104

None 64 GLY None N 1922.2405164604 96.0557804598977

None 65 GLY None N 1333.8423680145 168.000554346898

None 66 GLY None N 1243.45993122534 238.215664971556

None 67 GLY None N 1753.32557147779 78.2028166128168

[snip]

All other spins will be deselected.

From the non-clustered results, it could be argued that all spins in the entire system
experience the same dynamic process, i.e. they have the same pA and kex values. Such
an analysis could be performed at a later stage if desired. The dispersion curves for
the residue :60 could also be inspected to see that dispersion is likely to be present and
another clustered analysis including this spin performed. The number of clustered analyses
performed is up to the user – imagination is the only limit.

To start the analysis, open the analysis selection wizard as was performed previously. Name
the analysis as ‘Dispersion - Hansen (clustered :59 to :67)’. Once the analysis is initialised,
change the results directory to ∼/tmp/dispersion/clustered. To use the results of the
previous analysis to speed up this analysis, as clustering will cause the grid search to
be impossibly long, change the “Previous run directory” value to ∼/tmp/dispersion/non
clustered.

11.14. THE RELAXATION DISPERSION AUTO-ANALYSIS IN THE GUI 233

Set up the spin systems as for the non-clustered analysis. This time however deselect all
spins except for those of residues :59 to :67 (excluding :60). This can be performed by
right clicking on the spins in the spin viewer window.

The next step is to cluster these eight spins. In the “Spin cluster IDs” GUI element, click
on the “Cluster” button. This launches the relax disp.cluster user function. Set the
cluster ID to “res 59 to 67”, for example, and the spin ID string to “:59-67” (this says all
residues from :59 to :67, see section 4.2.2 on page 38 for details):

As spin :60 is deselected, that residue will be skipped in the analysis.

Then set the spin isotope and load all of the Sparky peak lists as before. Chose the
models ‘R2eff’, ‘No Rex’, ‘CR72’, and ‘NS CPMG 2-site expanded’. As the ‘CR72’ and
‘NS CPMG 2-site expanded’ were seen as being statistically equivalent in the non-clustered
analysis, click on the “Toggle” button of the “Pure numerical solutions” GUI element to avoid
the ‘CR72’ model in the model selection step. Actually, as the initial parameters for the
‘NS CPMG 2-site expanded’ model in the dispersion auto-analysis will be taken as the
average from the non-clustered analysis, the ‘CR72’ model could be completely skipped.

Ignore the grid search increment setting as this will have no effect. No grid searches
will be performed because the results from the non-clustered analysis will be used as the
optimisation starting point. Set the Monte Carlo simulations to 200. The main window
should now look like:

234 CHAPTER 11. RELAXATION DISPERSION

Start the analysis by clicking on the “Execute” button. You should notice that the spin
cluster printout in the log messages in the relax controller window now show the text:

The spin cluster [':59', ':60', ':61', ':62', ':63', ':64', ':65', ':66', ':67'].

As residue 60 is deselected, it will not be used in the optimisation or any part of the
analysis. The full analysis should take a few hours to complete.

11.14.15 Dispersion GUI mode – comparison of the analyses

To statistically compare the non-clustered and clustered analyses, the advanced
Akaike’s Information Criterion (AIC) as derived in d’Auvergne and Gooley (2003)
can be used. This information is stored within the recorded log files. Open the
∼/tmp/dispersion/log non clustered file and search for the model selection section.
The text for residues 59 to 67 should be:
The spin cluster [':59@N'].

Data pipe Num_params_(k) Num_data_sets_(n) Chi2 Criterion

No Rex - relax_disp (Mon Feb 17 18:00:16 2014) 2 30 1577.42286 1581.42286

CR72 - relax_disp (Mon Feb 17 18:00:16 2014) 5 30 31.48415 41.48415

NS CPMG 2-site expanded - relax_disp (Mon Feb 17 18:00:16 2014) 5 30 31.84758 41.84758

The model from the data pipe 'CR72 - relax_disp (Mon Feb 17 18:00:16 2014)' has been selected.

The spin cluster [':60@N'].

Data pipe Num_params_(k) Num_data_sets_(n) Chi2 Criterion

No Rex - relax_disp (Mon Feb 17 18:00:16 2014) 2 30 2647.97449 2651.97449

The model from the data pipe 'No Rex - relax_disp (Mon Feb 17 18:00:16 2014)' has been selected.

The spin cluster [':61@N'].

Data pipe Num_params_(k) Num_data_sets_(n) Chi2 Criterion

No Rex - relax_disp (Mon Feb 17 18:00:16 2014) 2 30 15019.24382 15023.24382

CR72 - relax_disp (Mon Feb 17 18:00:16 2014) 5 30 77.50622 87.50622

NS CPMG 2-site expanded - relax_disp (Mon Feb 17 18:00:16 2014) 5 30 74.73334 84.73334

The model from the data pipe 'NS CPMG 2-site expanded - relax_disp (Mon Feb 17 18:00:16 2014)' has been selected.

The spin cluster [':62@N'].

11.14. THE RELAXATION DISPERSION AUTO-ANALYSIS IN THE GUI 235

Data pipe Num_params_(k) Num_data_sets_(n) Chi2 Criterion

No Rex - relax_disp (Mon Feb 17 18:00:16 2014) 2 30 722.91592 726.91592

NS CPMG 2-site expanded - relax_disp (Mon Feb 17 18:00:16 2014) 5 30 30.11618 40.11618

The model from the data pipe 'NS CPMG 2-site expanded - relax_disp (Mon Feb 17 18:00:16 2014)' has been selected.

The spin cluster [':63@N'].

Data pipe Num_params_(k) Num_data_sets_(n) Chi2 Criterion

No Rex - relax_disp (Mon Feb 17 18:00:16 2014) 2 30 5455.72135 5459.72135

CR72 - relax_disp (Mon Feb 17 18:00:16 2014) 5 30 58.56731 68.56731

NS CPMG 2-site expanded - relax_disp (Mon Feb 17 18:00:16 2014) 5 30 59.90738 69.90738

The model from the data pipe 'CR72 - relax_disp (Mon Feb 17 18:00:16 2014)' has been selected.

The spin cluster [':64@N'].

Data pipe Num_params_(k) Num_data_sets_(n) Chi2 Criterion

No Rex - relax_disp (Mon Feb 17 18:00:16 2014) 2 30 13736.91051 13740.91051

CR72 - relax_disp (Mon Feb 17 18:00:16 2014) 5 30 28.66223 38.66223

NS CPMG 2-site expanded - relax_disp (Mon Feb 17 18:00:16 2014) 5 30 29.54008 39.54008

The model from the data pipe 'CR72 - relax_disp (Mon Feb 17 18:00:16 2014)' has been selected.

The spin cluster [':65@N'].

Data pipe Num_params_(k) Num_data_sets_(n) Chi2 Criterion

No Rex - relax_disp (Mon Feb 17 18:00:16 2014) 2 30 2498.29408 2502.29408

CR72 - relax_disp (Mon Feb 17 18:00:16 2014) 5 30 35.13518 45.13518

NS CPMG 2-site expanded - relax_disp (Mon Feb 17 18:00:16 2014) 5 30 36.17043 46.17043

The model from the data pipe 'CR72 - relax_disp (Mon Feb 17 18:00:16 2014)' has been selected.

The spin cluster [':66@N'].

Data pipe Num_params_(k) Num_data_sets_(n) Chi2 Criterion

No Rex - relax_disp (Mon Feb 17 18:00:16 2014) 2 30 962.74016 966.74016

CR72 - relax_disp (Mon Feb 17 18:00:16 2014) 5 30 15.02929 25.02929

NS CPMG 2-site expanded - relax_disp (Mon Feb 17 18:00:16 2014) 5 30 15.08439 25.08439

The model from the data pipe 'CR72 - relax_disp (Mon Feb 17 18:00:16 2014)' has been selected.

The spin cluster [':67@N'].

Data pipe Num_params_(k) Num_data_sets_(n) Chi2 Criterion

No Rex - relax_disp (Mon Feb 17 18:00:16 2014) 2 30 16773.20431 16777.20431

CR72 - relax_disp (Mon Feb 17 18:00:16 2014) 5 30 118.17857 128.17857

NS CPMG 2-site expanded - relax_disp (Mon Feb 17 18:00:16 2014) 5 30 111.56710 121.56710

The model from the data pipe 'NS CPMG 2-site expanded - relax_disp (Mon Feb 17 18:00:16 2014)' has been selected.

For the log file from the clustered analysis (the ∼/tmp/dispersion/log clustered file),
the text should be as follows:
The spin cluster [':59', ':60', ':61', ':62', ':63', ':64', ':65', ':66', ':67'].

Data pipe Num_params_(k) Num_data_sets_(n) Chi2 Criterion

No Rex - relax_disp (Sun Feb 23 19:36:51 2014) 16 240 56914.82514 56946.82514

NS CPMG 2-site expanded - relax_disp (Sun Feb 23 19:36:51 2014) 26 240 510.96553 562.96553

The model from the data pipe 'NS CPMG 2-site expanded - relax_disp (Sun Feb 23 19:36:51 2014)' has been selected.

The numbers for the ‘NS CPMG 2-site expanded’ model can be directly compared. This
is because the parameter number, data set number, chi-squared value and AIC value
(labelled as ‘Criterion’ in the logs) can be summed for the non-clustered analysis and then
compared to the clustered values.

Analysis Parameter Data set Chi-squared AIC value
number (k) number (n) value

Non-clustered 40 240 388.966 468.966
Clustered 26 240 510.966 562.966

The Akaike Information Criterion value is much less for the non-clustered analysis. There-
fore this result is the most parsimonious – the result closest to Occam’s razor as defined
by frequentist statistics. Therefore the non-clustered analysis is a statistically better de-
scription of the experimental data for this set of residues. For a different cluster of spins,
the result may be different. If the assumptions of the same dynamics for all spins (both
populations pA and exchange rates kex) is correct, the results of the clustered analysis
are nevertheless useful as it can decrease parameter uncertainty. If the assumption is not

236 CHAPTER 11. RELAXATION DISPERSION

correct, then the decrease in parameter uncertainty will be coupled with a parameter bias
– a shift of the parameter away from reality. This should be avoided at all costs.

To perform a relaxation dispersion analysis on your own system, care in the setup, model
choice and design of the clustering should be taken:

• Inspect the dispersion curves of all spin systems one by one and decide if any spins
should be deselected for the entire analysis (due to the data being of insufficient
quality).

• Depending on the dynamics of the system, the type of data collected (SQ CPMG vs.
MMQ CPMG vs. R1ρ), and personal preferences, chose which limited set of models
will be used in the analysis. For this, the published literature should be consulted.
Only use models for which you are sure are suited to the system being studied.

• Decide on a number of spin clustering schemes to compare to the non-clustered
analysis.

• For deciding which analysis is best for representing the dynamics of the system, a
balance between the statistical significance (based on modern frequentist statistics
such as AIC), the decrease in parameter uncertainty, and the increase in parameter
bias needs to be made.

• All results for all spins should be carefully inspected and compared.

Chapter 12

The ordering of frames

12.1 Introduction of frame ordering

The primary reference for the frame order analysis implemented in relax is:

• d’Auvergne, E. J. and Griesinger, C. (2019). The theory of frame order-
ing: observing motions in calmodulin complexes. Q. Rev. Biophys., 52, e3.
(10.1017/S0033583519000015)

12.1.1 Tensors of frame ordering

The frame order theory is defined as a bridging physics theory for rigid body motions
based on the statistical mechanical ordering of reference frames. It is implemented as a
new analysis type in relax designed for the study of rigid body motions in molecules. The
theory aims to unify all rotational molecular physics techniques via a single statistical
mechanical molecular dynamics (MD) model, by defining a series of rank-2n frame order
tensors. These tensors encapsulate the maximum information content of a rotational
molecular physics experiment, as well as what type of information is contained in the
data. To use the frame order theory, two steps are required:

1. The physics of the experiment should be decomposed into statistically mechanically
averaged product of rotation matrix elements.

2. The MD model should be expressed in terms of a rotation matrix which modu-
lates the motion of the rigid body, within the reference frame matching that of the
experimental data.

12.1.2 Ln3+ aligned RDC and PCS data

For the current implementation in relax, the frame order theory has been derived for
molecules internally aligned using paramagnetic lanthanide ions. The data required for
the analysis includes both residual dipolar couplings (RDCs) and pseudocontact shifts

237

http://dx.doi.org/10.1017/S0033583519000015

238 CHAPTER 12. FRAME ORDER

(PCSs). Both data sets are required as they are complementary, each carrying different
dynamics information:

RDCs: This data is dominated by the amplitudes of the MD motions, and the orientation
of the statical mechanical average structure.

PCSs: These mainly provide information about the directions of the MD motions, and
the orientation and position of the statical mechanical average structure.

For a successful analysis, the data must be of the highest quality. In addition, multiple
alignments are required, either using different lanthanide ions and/or a different attach-
ment point for the lanthanide ion. Note that the current implementation only handles
alignment of one rigid body or domain.

12.2 Frame order theory

12.2.1 Frame order introduction

The ordering of a vector

Let µ(t) be a time dependent vector defined within an arbitrary fixed frame F as

µ(t) = [δx, δy, δz]
T (12.1)

where δi is the time dependent direction cosine between the unit vector and the axis i
of frame F . Key for understanding the statistical mechanics of a second rank rotational
process is the time dependence of the outer product

P (t) = µ(t)⊗ µ(t), (12.2)

=

δ2x δxδy δxδz
δyδx δ2y δyδz
δzδx δzδy δ2z

 . (12.3)

Assuming statistical mechanical ensemble averaging, the observable expected value of the
matrix P (t) is a matrix which defines the ordering of the vector µ(t) within the frame F .
This order matrix is

S(t) ≡ P (t), (12.4a)

= µ(t)⊗ µ(t), (12.4b)

=

δ2x δxδy δxδz
δyδx δ2y δyδz
δzδx δzδy δ2z

, (12.4c)

=

Sxx(t) Sxy(t) Sxz(t)
Syx(t) Syy(t) Syz(t)
Szx(t) Szy(t) Szz(t)

 , (12.4d)

12.2. FRAME ORDER THEORY 239

where
Sij(t) = δiδj . (12.5)

Because of the symmetry Sij(t) = Sji(t), the order matrix has 6 unique elements.

Assuming that the time dependent process modulating µ(t) is much faster than the evo-
lution period tmax of the observed physical interaction, for example the weak molecular
alignment process which induces residual dipolar couplings (RDCs) and pseudo-contact
shifts (PCSs) in NMR, the order matrix which gives rise to the non-isotropic effect is
equation 12.4c at tmax = ∞. Hence the non-zero order matrix is

S(∞) =

Sxx(∞) Sxy(∞) Sxz(∞)
Syx(∞) Syy(∞) Syz(∞)
Szx(∞) Szy(∞) Szz(∞)

 . (12.6)

The ordering of a frame

Let the frame C(t) be time dependent within an arbitrary fixed frame F . After a time
period t the shift from C(0) to C(t) is given by the rotation

R(t) =

cxx cxy cxz
cyx cyy cyz
czx czy czz

 ≡

δxx δxy δxz
δyx δyy δyz
δzx δzy δzz

 , (12.7)

where rotation matrix element cij is equivalent to the direction cosine δij between axis i
of C(t) and axis j of C(0). For second rank physical processes modulated by rotational
motions, analogously to the outer product expected value of 12.4b, the time dependence
of the process is governed by the outer product

d
(2)(t) = R(t)⊗R(t) (12.8)

This is a rank-4, three dimensional rotational tensor defining the ordering of the frame
C(t) after a period t within the original frame C(0). This is the definition of the second
degree frame order tensor.

The matrix form of the second degree frame order tensor in rank-2, 9D Kronecker product
notation is

d
(2)(t) =

δ2xx δxxδxy δxxδxz δxyδxx δ2xy δxyδxz δxzδxx δxzδxy δ2xz
δxxδyx δxxδyy δxxδyz δxyδyx δxyδyy δxyδyz δxzδyx δxzδyy δxzδyz
δxxδzx δxxδzy δxxδzz δxyδzx δxyδzy δxyδzz δxzδzx δxzδzy δxzδzz
δyxδxx δyxδxy δyxδxz δyyδxx δyyδxy δyyδxz δyzδxx δyzδxy δyzδxz
δ2yx δyxδyy δyxδyz δyyδyx δ2yy δyyδyz δyzδyx δyzδyy δ2yz

δyxδzx δyxδzy δyxδzz δyyδzx δyyδzy δyyδzz δyzδzx δyzδzy δyzδzz
δzxδxx δzxδxy δzxδxz δzyδxx δzyδxy δzyδxz δzzδxx δzzδxy δzzδxz
δzxδyx δzxδyy δzxδyz δzyδyx δzyδyy δzyδyz δzzδyx δzzδyy δzzδyz
δ2zx δzxδzy δzxδzz δzyδzx δ2zy δzyδzz δzzδzx δzzδzy δ2zz

,

(12.9)

240 CHAPTER 12. FRAME ORDER

where
δijδkl ≡ cijckl. (12.10)

This is a rank-2, 3D order matrix of rank-2, 3D order matrices. To see this, the T14 rank-4
matrix transpose of d(2) in Kronecker product notation is

d
T14(t) =

δ2xx δyxδxx δzxδxx δxyδxx δyyδxx δzyδxx δxzδxx δyzδxx δzzδxx
δxxδyx δ2yx δzxδyx δxyδyx δyyδyx δzyδyx δxzδyx δyzδyx δzzδyx
δxxδzx δyxδzx δ2zx δxyδzx δyyδzx δzyδzx δxzδzx δyzδzx δzzδzx
δxxδxy δyxδxy δzxδxy δ2xy δyyδxy δzyδxy δxzδxy δyzδxy δzzδxy
δxxδyy δyxδyy δzxδyy δxyδyy δ2yy δzyδyy δxzδyy δyzδyy δzzδyy
δxxδzy δyxδzy δzxδzy δxyδzy δyyδzy δ2zy δxzδzy δyzδzy δzzδzy
δxxδxz δyxδxz δzxδxz δxyδxz δyyδxz δzyδxz δ2xz δyzδxz δzzδxz
δxxδyz δyxδyz δzxδyz δxyδyz δyyδyz δzyδyz δxzδyz δ2yz δzzδyz
δxxδzz δyxδzz δzxδzz δxyδzz δyyδzz δzyδzz δxzδzz δyzδzz δ2zz

.

(12.11)

The 3D matrix in the top left corner is the ordering of the x-axis with itself, the central
matrix is the ordering of the y-axis with itself, and the bottom right is the ordering of
the z-axis with itself. The off-diagonal 3D matrices are the cross-correlations between the
three axes. Using the notation ex, ey and ez for the orthogonal axis system of the time
dependent frame C(t), the second degree frame order matrix can be written as

d
T14(t) =

ex ⊗ ex ex ⊗ ey ex ⊗ ez
ey ⊗ ex ey ⊗ ey ey ⊗ ez
ez ⊗ ex ez ⊗ ey ez ⊗ ez

 . (12.12)

If the rank-2, 3D order matrix between the axes A and B is denoted as

SAB(t) = eA ⊗ eB , (12.13)

then the frame order matrix is

d
T14(t) =

SXX(t) SXY(t) SXZ(t)
SYX(t) SYY(t) SYZ(t)
SZX(t) SZY(t) SZZ(t)

 . (12.14)

The frame order matrix is diagonally symmetric, as can be seen in the T14 transpose of the
matrix in rank-2, 9D Kronecker product form (equation 12.11, hence for the second degree
frame order matrix there are 45 unique elements. For the 9D Kronecker product notation
of equation 12.9, this transformed diagonal symmetry can be schematically represented as

d
(2)(t) = .

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

�
�
�

✁
✁
✁
✁
✁
✁

❅
❅
❅

�
�
�

❆
❆
❆
❆
❆
❆

❅
❅
❅

✟✟✟✟✟✟
�
�
�
�
�
�

❍❍❍❍❍❍

✟✟✟✟✟✟

❅
❅
❅
❅
❅
❅

❍❍❍❍❍❍

�
�
�✁

✁
✁
✁
✁
✁

❅
❅
❅

�
�
�

❆
❆
❆
❆
❆
❆

❅
❅
❅

12.2. FRAME ORDER THEORY 241

When rotational symmetries are present in the time modulation of the frame C(t) then,
according to Perrin (1936), the averages of the double products cijckl where an index
appears only once is zero. In this case, the active frame order matrix elements are

d
(2)(t) =

δ2xx . . . δ2xy . . . δ2xz
. δxxδyy . δxyδyx

. . δxxδzz . . . δxzδzx . .

. δyxδxy . δyyδxx

δ2yx . . . δ2yy . . . δ2yz
. δyyδzz . δyzδzy .

. . δzxδxz . . . δzzδxx . .

. δzyδyz . δzzδyy .

δ2zx . . . δ2zy . . . δ2zz

. (12.15)

This matrix consists of 15 unique elements. It is the weighted sum of the three rank-4
identity matrices I1, I2 and I3.

The fourth rank identity matrices

According to Spencer (1980), the rank-4 identity matrices are defined as

I1 = δijδklei ⊗ ej ⊗ ek ⊗ el, (12.16a)

I2 = δikδjlei ⊗ ej ⊗ ek ⊗ el, (12.16b)

I3 = δilδkjei ⊗ ej ⊗ ek ⊗ el, (12.16c)

where δij is the Kronecker delta and ei are the axes. In general, the identity matrix is

I = (λδijδkl + µδikδjl + νδilδkj) ei ⊗ ej ⊗ ek ⊗ el. (12.17)

Expanding 12.16a to 12.16c to 9D Kronecker product matrix form,

I1 =

1 . . . 1 . . . 1
.
.
.
1 . . . 1 . . . 1
.
.
.
1 . . . 1 . . . 1

, (12.18a)

I2 =

1
. 1
. . 1
. . . 1
. . . . 1
. 1 . . .
. 1 . .
. 1 .
. 1

, (12.18b)

242 CHAPTER 12. FRAME ORDER

I3 =

1
. . . 1
. 1 . .
. 1
. . . . 1
. 1 .
. . 1
. 1 . . .
. 1

. (12.18c)

The identity matrices are related to each other via the rank-4 matrix transposes

I2 = IT14
1 = IT23

1 , (12.19a)

I3 = IT24
1 = IT13

1 . (12.19b)

In the case of unrestricted motions, the time limits of the frame order matrix are

d
(2)(t = 0) = I1, (12.20)

and
d

(2)(t = ∞) = 1
3I2. (12.21)

Tensor power of the frame order

The rank-4, 3D frame order tensor of equation 12.8 on page 239 was derived for second
order rotational physical processes. However this can be generalised for physical processes
of all orders. The tensor power of the time dependent rotation matrix R(t) is defined as

R⊗n(t)
def
= R(t)⊗ · · · ⊗R(t), (12.22)

where the outer product is repeated n times. Therefore let the frame order tensor be
defined as

d
(n)(t) = R⊗n(t), (12.23)

where n is the order of the physical process. The rank of the 3D tensors is 2n. The first
few frame order tensors of rank-2, rank-4, rank-6, and rank-8 are

d
(1)(t) = R(t), (12.24a)

d
(2)(t) = R(t)⊗R(t), (12.24b)

d
(3)(t) = R(t)⊗R(t)⊗R(t), (12.24c)

d
(4)(t) = R(t)⊗R(t)⊗R(t)⊗R(t). (12.24d)

In index and direction cosine notation,

d
(1)
ij (t) = δij , (12.25a)

d
(2)
ijkl(t) = δijδkl, (12.25b)

d
(3)
ijklmn(t) = δijδklδmn, (12.25c)

d
(4)
ijklmnop(t) = δijδklδmnδop. (12.25d)

12.2. FRAME ORDER THEORY 243

The frame order motional eigenframe

The rotation matrices of the general frame order tensor of equation 12.23 can be decom-
posed into a time dependent and time independent component. The original frame F
can be defined as the motional eigenframe of the system and a new arbitrary frame F ′

introduced. The forward rotation from the reference frame F ′ to the motional eigenframe
F will be denoted as Reigen. The rotation matrix decomposition is

R′(t) = Reigen · R(t) · RT
eigen. (12.26)

Hence the second degree frame order tensor is

d
(2) = R′(t)⊗R′(t), (12.27)

Using the mixed product property

AC ⊗BD = (A⊗B)(C ⊗D), (12.28)

the arbitrary frame, second degree frame order matrix is

d
(2) =

(
Reigen ·R(t) ·RT

eigen

)
⊗
(
Reigen ·R(t) ·RT

eigen

)
, (12.29a)

= (Reigen ⊗Reigen) ·
(
R(t) · RT

eigen

)
⊗
(
R(t) ·RT

eigen

)
, (12.29b)

= (Reigen ⊗Reigen) · (R(t)⊗R(t)) ·
(
RT

eigen ⊗RT
eigen

)
, (12.29c)

= (Reigen ⊗Reigen) · (R(t)⊗R(t)) ·
(
RT

eigen ⊗RT
eigen

)
. (12.29d)

Generalising from the 2nd to the nth-order, the generalised frame order tensor rotation is

d
(n)(t) = R⊗n

eigen · R⊗n(t) · RT⊗n
eigen. (12.30)

Rotation to the average position frame of the rigid body

For the modelling aspect of the frame order theory, one more rotation is required. In
equation 12.30, it is assumed that the starting position for the moving rigid body is that
of its motional average. However in the initial 3D structure, this is not the case and an
additional rotation to the average position Rave is required. Taking this into account, the
generalised frame order tensor is defined as

d
(n)(t) = R⊗n

eigen · R⊗n(t) ·RT⊗n
eigen ·RT⊗n

ave , (12.31)

where Reigen is the eigenframe rotation matrix, R(t) is the time dependent rotation matrix,
Rave is the rotation from the average domain position to the motional eigenframe, and ⊗n
is the nth tensor power. In applications to physical processes which require numerical
integration, pre-rotating the rigid body by Rave to the average position is equivalent but
more numerically efficient. Therefore the Rave can be dropped and equation 12.30 used
instead.

244 CHAPTER 12. FRAME ORDER

12.2.2 Frame order and the alignment tensor

The RDC and PCS

For the residual dipolar coupling (RDC) and pseudo-contact shift (PCS) NMR phenomena,
both effects are governed by the partial molecular alignment tensor A. For a two domain
molecular system, when one domain is internally aligned with for example a paramagnetic
lanthanide ion within a magnetic field, the other domain experiences a reduced alignment
A due to the interdomain motions.

The RDC The residual dipolar coupling is given by

D = d r̂T ·A · r̂, (12.32)

where r̂ is the internuclear unit vector, d is the dipolar constant defined as

d = − 3

2π

µ0

4π

γIγS~

〈r〉3 , (12.33)

µ0 is the permeability of free space, γi is the gyromagnetic ratio of the nucleus i, ~ is
Planck’s constant divided by 2π, 〈r〉 is the time averaged internuclear distance, the factor
of 1

2π is to convert the constant from radians per second to Hertz, and the factor of three
is associated with the alignment tensor. In the presence of an alignment tensor reduction,
and assuming that the fast vibrational and librational internal motions of the vector are
statistically self-decoupled from the rigid body motions, the RDC is simply

D = d r̂T ·A · r̂, (12.34)

as the vector r̂ is considered time independent in the molecular reference frame.

The PCS The pseudo-contact shift equation is simply

δ =
µ0

4π

15kT

B2
0

1

|r|5
r̂T ·A · r̂, (12.35a)

=
c

|r|5
r̂T · A · r̂, (12.35b)

=
1

4π

1

|r|5
r̂T · χ · r̂, (12.35c)

where A is the alignment tensor, χ is the magnetic susceptibility tensor, r̂ is the lanthanide
to nuclear unit vector, and c is the PCS constant defined as

c =
µ0

4π

15kT

B2
0

. (12.36)

The alignment tensor reduction process is complicated by the inverse |r|5 normalisation
factor, as r is not time independent in the molecular reference frame.

12.2. FRAME ORDER THEORY 245

Alignment tensor reduction

The statistical mechanics behind the alignment tensor reduction can be expressed as

A =

〈∫ tmax

0
R−1(Ωt) · A · R(Ωt) dt

〉
, (12.37)

where the angular brackets denote the ensemble averaging, the time integration is for a
single molecule over the evolution period of the physical interaction, Ωt are the SO(3)
rotational angles describing the change in position of the moving rigid body, and A is the
full alignment tensor. Here the alignment tensor has been created by an averaging of the
partially restricted Brownian diffusion process of the non-moving component, again both
over the ensemble and time, as

A =

〈∫ tmax

0
R−1(Ωt) · F ·R(Ωt) dt

〉
, (12.38)

where F is the molecular frame. It is assumed that the alignment process of the non-
moving domain and the motions of the moving domain are decoupled.

Using the ergodic hypothesis, the averaging process which generates the reduced alignment
tensor can be simplified as

A = R−1 ·A ·R, (12.39a)

= RT · A · R. (12.39b)

The index notation for a tensor rotation is

T ′
ij =

∑

kl

RkiRljTkl. (12.40)

Therefore the reduced alignment tensor in index notation is

Aij =
∑

kl

ckicljAkl, (12.41)

=
∑

kl

d
(2)
kiljAkl, (12.42)

where d(2) is a rank-4, 3D orientational tensor which will be called the frame order tensor.

Expanding the sum,

Aij = dxixjAxx +dxiyjAxy +dxizjAxz

+dyixjAyx +dyiyjAyy +dyizjAyz

+dzixjAzx +dziyjAzy +dzizjAzz. (12.43)

As

Aij = Aji, (12.44a)

Azz = −Axx −Ayy, (12.44b)

246 CHAPTER 12. FRAME ORDER

equation 12.43 becomes

Aij =
(
dxixj −dzizj

)
Axx +

(
dyiyj −dzizj

)
Ayy

+
(
dxiyj +dyixj

)
Axy +

(
dxizj +dzixj

)
Axz +

(
dyizj +dziyj

)
Ayz. (12.45)

A single element of the reduced tensor is simply a linear combination of all elements of the
original tensor multiplied by constants consisting of different combinations of frame order
matrix components.

Converting from the rank-2, 3D, symmetric and traceless space of alignment tensors to
the rank-1, 5D space, a non-linear frame order superoperator can be written as

A = d
(2)
5D ·A. (12.46)

In matrix notation, this is

Axx

Ayy

Axy

Axz

Ayz

 =

d
xxxx

− d
zxzx

d
yxyx

−d
zxzx

d
xxyx

+ d
yxxx

d
xxzx

+ d
zxxx

d
yxzx

+ d
zxyx

d
xyxy

− d
zyzy

d
yyyy

−d
zyzy

d
xyyy

+ d
yyxy

d
xyzy

+ d
zyxy

d
yyzy

+ d
zyyy

d
xxxy

− d
zxzy

d
yxyy

−d
zxzy

d
xxyy

+ d
yxxy

d
xxzy

+ d
zxxy

d
yxzy

+ d
zxyy

d
xxxz

− d
zxzz

d
yxyz

−d
zxzz

d
xxyz

+ d
yxxz

d
xxzz

+ d
zxxz

d
yxzz

+ d
zxyz

d
xyxz

− d
zyzz

d
yyyz

−d
zyzz

d
xyyz

+ d
yyxz

d
xyzz

+ d
zyxz

d
yyzz

+ d
zyyz

·

Axx

Ayy

Axy

Axz

Ayz

 .

(12.47)

Let
{A0, A1, A2, A3, A4} = {Axx, Ayy, Axy, Axz, Ayz} , (12.48)

and assuming the rank-2, 9D Kronecker product form of d
(2)
ij using numerical indices where

{i, j} = 0, 1, . . . , 8, then

A0

A1

A2

A3

A4

=

d00 −d80 d40 −d80 d10 +d30 d20 +d60 d50 +d70
d04 −d84 d44 −d84 d14 +d34 d24 +d64 d54 +d74
d01 −d81 d41 −d81 d11 +d31 d21 +d61 d51 +d71
d02 −d82 d42 −d82 d12 +d32 d22 +d62 d52 +d72

d05 −d85 d45 −d85 d15 +d35 d25 +d65 d55 +d75

·

A0

A1

A2

A3

A4

. (12.49)

For the alignment tensor, the 81 elements of the frame order matrix have recombined into
25 unique scaling factors.

The alignment tensor is the anisotropic part of a frame order matrix

The alignment tensor is related to the orientational probability tensor by

A = P − 1
3I. (12.50)

The P probability tensor is the average orientation position of the molecule, hence is the
average molecular frame F . As this frame is simply the rotation matrix relative to the

12.2. FRAME ORDER THEORY 247

laboratory frame, then

P = F, (12.51a)

= R, (12.51b)

= d(1). (12.51c)

Therefore the alignment tensor can then be written as the anisotropic part of the first
degree frame order matrix

A = d(1) − 1
3I. (12.52)

12.2.3 Single pivoted motions

Atomic level mechanics of the single pivot

For the PCS, the lanthanide ion to nuclear vector is

r = pN − pLn3+ , (12.53)

where pN is the Cartesian coordinates of the nucleus of interest and pLn3+ is the position
of the aligning lanthanide ion. r is defined in the alignment frame, and pLn3+ is constant
in this frame. After a forward rotation to the discrete state i, the new atomic position in
the reference frame is

p′N = Ri · (pN − pP) + pP. (12.54)

where pP is the pivot point of the rotation. Hence the transformed vector is

ri = piN − pLn3+ , (12.55a)

= Ri · (pN − pP) + pP − pLn3+ . (12.55b)

The set of three vectors are defining this pivoted system are

rLN = pN − pLn3+ , (12.56a)

rPN = pN − pP, (12.56b)

rLP = pP − pLn3+ . (12.56c)

Let the pre-rotation vectors be

r
(0)
LN = r

(0)
LP + r

(0)
PN, (12.57a)

r
(0)
PN, (12.57b)

r
(0)
LP. (12.57c)

The post-rotation vectors are

r
(1)
LN = r

(0)
LP +R

(1)
i · r(0)PN, (12.58a)

r
(1)
PN = R

(1)
i · r(0)PN, (12.58b)

r
(1)
LP = r

(0)
LP. (12.58c)

The vector rPN is independent of alignment so can be calculated once per atom, and rLP
is independent of alignment and atom position so can be calculate once.

248 CHAPTER 12. FRAME ORDER

PCS and single pivoted motions

For a single state i, the PCS value when substituting 12.55b into 12.35 is

δ =
c

|ri|5
rTi · A · ri. (12.59)

Expanding for the single motion of the lanthanide-atom vector r
(1)
LN, this becomes

δ =
c∣∣∣r(1)LN

∣∣∣
5 r

(1)T

LN ·A · r(1)LN, (12.60a)

δ =
c∣∣∣r(1)LN

∣∣∣
5

(
r
(0)
LP +R

(1)
i · r(0)PN

)T
·A ·

(
r
(0)
LP +R

(1)
i · r(0)PN

)
, (12.60b)

δ =
c∣∣∣r(1)LN

∣∣∣
5

(
r
(0)T

LP + r
(0)T

PN ·R(1)T

i

)
·A ·

(
r
(0)
LP +R

(1)
i · r(0)PN

)
, (12.60c)

δ =
c∣∣∣r(1)LN

∣∣∣
5

[
r
(0)T

PN ·R(1)T

i · A · R(1)
i · r(0)PN

+ r
(0)T

LP · A · r(0)PN + r
(0)T

PN ·A · r(0)LP

+ r
(0)T

LP · A · r(0)LP

]
. (12.60d)

Due to the distance normalisation factor in these equations, the symbolic integration for
the modelling of specific motional modes is currently intractable.

12.2.4 Double pivoted motions

When the motion of a multiple rigid body system can be described as two rotations about
two different pivots, the modulation of the PCS becomes more complicated. Figure 12.1
shows this motion for a single lanthanide to atom vector.

Atomic level mechanics of the double pivot

The six vectors at the original position are

r
(0)
LN = r

(0)
LP2

+ r
(0)
P2P1

+ r
(0)
P1N

, (12.61a)

r
(0)
P2N

= r
(0)
P2P1

+ r
(0)
P1N

, (12.61b)

r
(0)
P1N

, (12.61c)

r
(0)
LP1

= r
(0)
LP2

+ r
(0)
P2P1

, (12.61d)

r
(0)
P2P1

, (12.61e)

r
(0)
LP2

. (12.61f)

12.2. FRAME ORDER THEORY 249

rP2P1

(0,1)

rP2P1

(2)

rLP2

(0,1,2)

rP1N
(0)

rP1N
(1)

rP1N
(2)

rP2N
(0)

rP2N
(1)

rP2N
(2)

rLP1

(0,1)

rLP1

(2)

rLN
(0)

rLN
(1)

rLN
(2)

Key

Original state

First rotation

Second rotation

Ln3+ to Piv2 vector (rLP2
)

Piv2 to Piv1 vector (rP2P1
)

Piv1 to 15N vector (rP1N)

15N

Piv1

Piv2

Ln3+

Piv2 to 15N vector (rP2N)

Ln3+ to Piv1 vector (rLP1
)

Ln3+ to 15N vector (rLN)

Ln3+

15N

15N

15N

Piv2

Piv1

Piv1

Figure 12.1: Frame order in the double pivot system. The lanthanide position is denoted
by Ln3+ or simply L, the position of the first pivot by Piv1, the position of the second
pivot by Piv2, and the position of the nucleus of interest by 15N. In the vector notation
these are L, P1, P2 and N. The original position is denoted by (0), the position after the
first rotation by (1), and the position after the second rotation by (2).

250 CHAPTER 12. FRAME ORDER

The six vectors after the first rotation for state i, R
(1)
i , are

r
(1)
LN = r

(0)
LP2

+ r
(0)
P2P1

+R
(1)
i · r(0)P1N

, (12.62a)

r
(1)
P2N

= r
(0)
P2P1

+R
(1)
i · r(0)P1N

, (12.62b)

r
(1)
P1N

= R
(1)
i · r(0)P1N

, (12.62c)

r
(1)
LP1

= r
(0)
LP2

+ r
(0)
P2P1

, (12.62d)

r
(1)
P2P1

= r
(0)
P2P1

, (12.62e)

r
(1)
LP2

= r
(0)
LP2

. (12.62f)

The six vectors after the second rotation for state i, R
(2)
i , are

r
(2)
LN = r

(1)
LP2

+R
(2)
i · r(1)P2P1

+R
(2)
i · r(1)P1N

, (12.63a)

r
(2)
P2N

= R
(2)
i · r(1)P2P1

+R
(2)
i · r(1)P1N

, (12.63b)

r
(2)
P1N

= R
(2)
i · r(1)P1N

, (12.63c)

r
(2)
LP1

= r
(1)
LP2

+R
(2)
i · r(1)P2P1

, (12.63d)

r
(2)
P2P1

= R
(2)
i · r(1)P2P1

, (12.63e)

r
(2)
LP2

= r
(1)
LP2

. (12.63f)

PCS and double pivoted motions

As defined in equation 12.59 on page 248, the PCS for state i is

δ =
c

|ri|5
rTi · A · ri. (12.64)

For the double motion of the lanthanide-atom vector r
(2)
LN, this becomes

δ =
c∣∣∣r(2)LN

∣∣∣
5 r

(2)T

LN ·A · r(2)LN, (12.65a)

=
c∣∣∣r(2)LN

∣∣∣
5

(
r
(1)
LP2

+R
(2)
i · r(1)P2P1

+R
(2)
i · r(1)P1N

)T
· A ·

(
r
(1)
LP2

+R
(2)
i · r(1)P2P1

+R
(2)
i · r(1)P1N

)
,

(12.65b)

=
c∣∣∣r(2)LN

∣∣∣
5

(
r
(0)
LP2

+R
(2)
i · r(0)P2P1

+R
(2)
i ·R(1)

i · r(0)P1N

)T
·A ·

(
r
(0)
LP2

+R
(2)
i · r(0)P2P1

+R
(2)
i ·R(1)

i · r(0)P1N

)
.

(12.65c)

12.2. FRAME ORDER THEORY 251

12.2.5 Frame order in rotational Brownian diffusion and NMR relax-
ation

Free ellipsoidal Brownian diffusion

In Perrin’s equations for free ellipsoidal Brownian diffusion (Perrin, 1934, 1936), the second
degree frame order matrix elements cijckl are an essential step of the derivation. From
Perrin (1936), the solution for the ellipsoidal diffusion equation is

cjjckk + cjkckj = e−(4Di+Dj+Dk)t, (12.66)

c2ii =
1
3 + 1

6 (2 + µi) e
−6

(

Diso−
√

D2
iso−L2

)

t
+ 1

6 (2− µi) e
−6

(

Diso+
√

D2
iso−L2

)

t
, (12.67)

c2jk = 1
3 − 1

6 (1− µi) e
−6

(

Diso−
√

D2
iso−L2

)

t − 1
6 (1 + µi) e

−6
(

Diso+
√

D2
iso−L2

)

t
, (12.68)

where

µi =
Di −Diso√
D2

iso − L2
, (12.69)

Diso =
1
3

∑

i

Di, (12.70)

L2 = 1
3

∑

i<j

DiDj, (12.71)

Di are the three diffusion rates, and cij are the direction cosines in the diffusion frame.
According to Perrin (1936), because of the symmetry of the rotation the averages of the
double-products cijckl where an index appears only once are zero and the second degree
frame order matrix is represented by equation 12.15 on page 241. At time t = 0, the frame
order matrix simplifies to

d
(n)(0) = I1, (12.72)

and at time t = ∞ the matrix decays to

d
(n)(∞) = 1

3I2. (12.73)

NMR relaxation

The free ellipsoid Brownian diffusion equations form the base theory for interpreting NMR
relaxation data - the spheroidal and spherical diffusion equations are simply parametric
restrictions of the full ellipsoid equations. As they are the definition of the frame or-
der matrix, the frame order tensor can be seen as the modulator of all NMR relaxation
processes.

252 CHAPTER 12. FRAME ORDER

12.3 Frame order modelling

12.3.1 Rigid body motions for a two domain system

Ball and socket joint

For a molecule consisting of two rigid bodies with pivoted inter-domain or inter-segment
motions, the most natural mechanical description of the motion would be that of the
spherical joint. This is also known as the ball and socket joint. The mechanical system
consists of a single pivot point and three rotational degrees of freedom.

Tilt and torsion angles from robotics

To describe the motional mechanics of a ball and socket joint, the Euler angle system is a
poor representation as the angles do not correspond to the mechanical modes of motion.
In the field of robotics, many different orientation parameter sets have been developed
for describing three degree-of-freedom joint systems. For the spherical joint description of
intra-molecular rigid body motions, an angle system for describing symmetrical spherical
parallel mechanisms (SPMs), a parallel manipulator, was found to be ideal. This is the ‘tilt-
and-torsion’ angle system (Huang et al., 1999; Bonev and Gosselin, 2006). These angles
were derived independently a number of times to model human joint mechanics, originally
as the ‘halfplane-deviation-twist’ angles (Korein, 1985), and then as the ‘tilt/twist’ angles
(Crawford et al., 1999).

In the tilt-and-torsion angle system, the rigid body is first tilted by the angle θ about the
horizontal axis a. The axis a, which lies in the xy-plane, is defined by the azimuthal angle
φ (the angle is between the rotated z’ axis projection onto the xy-plane and the x-axis).
The tilt component is hence defined by both θ and φ. Finally the domain is rotated about
the z’ axis by the torsion angle σ. The resultant rotation matrix is

R(θ, φ, σ) = Rz(φ)Ry(θ)Rz(σ − φ), (12.74a)

= Rzyz(σ − φ, θ, φ), (12.74b)

=

cφcθcσ−φ − sφsσ−φ −cφcθsσ−φ − sφcσ−φ cφsθ
sφcθcσ−φ + cφsσ−φ −sφcθsσ−φ + cφcσ−φ sφsθ

−sθcσ−φ sθsσ−φ cθ

 , (12.74c)

where cη = cos(η) and sη = sin(η) and Rzyz is the Euler rotation in zyz axis rotation
notation where

α = σ − φ, (12.75a)

β = θ, (12.75b)

γ = φ. (12.75c)

As σ = α + γ, it can be seen that both these Euler angles influence the torsion angle,
demonstrating the problem with this parameterisation.

12.3. FRAME ORDER MODELLING 253

Modelling torsion An advantage of this angle system is that the tilt and torsion com-
ponents can be treated separately in the modelling of domain motions. The simplest model
for the torsion angle would be the restriction

−σmax ≤ σ ≤ σmax. (12.76)

The angle can be completely restricted as σmax = 0 to create torsionless models. In this
case, the tilt and torsion rotation matrix simplifies to

R(θ, φ, 0) = Rz(φ)Ry(θ)Rz(−φ), (12.77a)

= Rzyz(−φ, θ, φ), (12.77b)

=

c2φcθ + s2φ cφsφcθ − cφsφ cφsθ
cφsφcθ − cφsφ s2φcθ + c2φ sφsθ

−cφsθ −sφsθ cθ

 . (12.77c)

Modelling tilt The tilt angles θ and φ are related to spherical angles, hence the mod-
elling of this component relates to a distribution on the surface of a sphere. At the simplest
level, this can be modelled as both isotropic and anisotropic cones of uniform distribution.

Model list

For the modelling of the ordering of the motional frame, the tilt and torsion angle system
will be used together with uniform distributions of rigid body position. For the torsion
angle σmax, this can be modelled as being rigid (σmax = 0), being a free rotor (σmax = π),
or as having a torsional restriction (0 < σmax < π). For the θ and φ angles of the tilt
component, the rigid body motion can be modelled as being rigid (θ = 0), as moving in an
isotropic cone, or moving anisotropically in a pseudo-elliptic cone. Both single and double
modes of motion have been modelled. The total list of models so far implemented are:

1. Rigid

2. Rotor

3. Free rotor

4. Isotropic cone

5. Isotropic cone, torsionless

6. Isotropic cone, free rotor

7. Pseudo-ellipse

8. Pseudo-ellipse, torsionless

9. Pseudo-ellipse, free rotor

10. Double rotor

The equations for these models are derived in Chapter 16 on page 375.

254 CHAPTER 12. FRAME ORDER

12.3.2 Frame order axis permutations

Multiple local minima exist in the optimisation space for the isotropic and pseudo-elliptic
cone frame order models. In the case of the pseudo-ellipse, the eigenframes at each mini-
mum are identical, however the θx, θx, and σmax half-angles are permuted. Because of the
constraint θx ≤ θy in the pseudo-ellipse model, there are exactly three local minima (out
of 6 possible permutations). In the isotropic cone, the θx ≡ θy condition collapses this
to two. The multiple minima correspond to permutations of the motional system - the
eigenframe x, y and z-axes as well as the cone opening angles θx, θy, and σmax associated
with these axes. But as the mechanics of the cone angles is not identical to that of the
torsion angle, only one of the three local minima is the global minimum.

As the minfx library used in the frame order analysis currently only implements local
optimisation algorithms, and because a global optimiser cannot be guaranteed to converge
to the correct minima, a different approach is required:

• Optimise to one solution.

• Duplicate the data pipe for the model as ‘permutation A’.

• Permute the axes and amplitude parameters to jump from one local minimum to the
other.

• Optimise the new permuted model, as the permuted parameters will not be exactly
at the minimum.

• Repeat for the remaining ‘permutation B’ solution (only for the pseudo-ellipse mod-
els).

These steps have been incorporated into the automated analysis protocol.

The permutation step has been implemented as the frame order.permute axes user func-
tion. It is complicated by the fact that θx is defined as a rotation about the y-axis and θy
is about the x-axis. See table 12.1 on page 257 for the pseudo-ellipse model permutations.
These are also illustrated in figure 12.2 on page 255.

For the isotropic cone model, the same permutations exist but with some differences:

• The x and y axes are not defined in the x-y plane, therefore there are only two
permutations (the first solution and ‘permutation A’).

• Any axis in the x-y plane can be used for the permutation, however different axes
will result in different χ2 values.

• As θx ≡ θy, the condition θx ≤ σmax ≤ θy can only exist if the torsion and cone
angles are identical.

• Permutations A and B create identical cones as the x and y axes are equivalent.

The new isotropic cone angle is defined as

θ′ =
θ′x + θ′y

2
. (12.78)

The isotropic cone axis permutations are shown in figure 12.3 on page 256.

https://sourceforge.net/projects/minfx/

12.3. FRAME ORDER MODELLING 255

Figure 12.2: Pseudo-ellipse axis permutations. This uses synthetic data for a rotor model
applied to CaM, with the rotor axis defined as being between the centre of the two helices
between the domains (the centre of all cones in the figure) and the centre of mass of the
C-terminal domain, and the rotor half-angle set to 30◦. The condition θx ≤ θy ≤ σmax is
shown in A and B. The condition θx ≤ σmax ≤ θy is shown in C and D. The condition
σmax ≤ θx ≤ θy is shown in E and F. A, C, and E are the axis permutations for a set
of starting half-angles and B, D, and F are the results after low quality optimisation
demonstrating the presence of the multiple local minima.

256 CHAPTER 12. FRAME ORDER

Figure 12.3: Isotropic cone axis permutations. This uses synthetic data for a rotor model
applied to CaM, with the rotor axis defined as being between the centre of the two helices
between the domains (the centre of all cones in the figure) and the centre of mass of the
C-terminal domain, and the rotor half-angle set to 30◦. The condition θ ≤ σmax is shown in
A and B. The condition σmax ≤ θ is shown in C and D. A and C are the axis permutations
for a set of starting half-angles and B and D are the results after low quality optimisation
demonstrating the presence of the multiple local minima.

12.3. FRAME ORDER MODELLING 257

Table 12.1: The pseudo-ellipse motional eigenframe and half-angle permutations imple-
mented in the frame order.permute axes user function.

Condition Permutation name Cone half-angles Axes
[θ′x, θ

′
y, σ

′
max] [x′, y′, z′]

θx ≤ θy ≤ σmax Self1 [θx, θy, σmax] [x, y, z]
A [θx, σmax, θy] [−z, y, x]
B [θy, σmax, θx] [z, x, y]

θx ≤ σmax ≤ θy Self1 [θx, θy, σmax] [x, y, z]
A [θx, σmax, θy] [−z, y, x]
B [σmax, θy, θx] [x,−z, y]

σmax ≤ θx ≤ θy Self1 [θx, θy, σmax] [x, y, z]
A [σmax, θx, θy] [y, z, x]
B [σmax, θy, θx] [x,−z, y]

1 The first optimised solution.

12.3.3 Linear constraints for the frame order models

Linear constraints are implemented for the frame order models using the log-barrier con-
straint algorithm in minfx, as this does not require the derivation of gradients.

The pivot point and average domain position parameter constraints in Ångstrom are:

−500 6 Px 6 500, (12.79a)

−500 6 Py 6 500, (12.79b)

−500 6 Py 6 500, (12.79c)

−999 6 px 6 999, (12.79d)

−999 6 py 6 999, (12.79e)

−999 6 pz 6 999. (12.79f)

These translation parameter restrictions are simply to stop the optimisation in the case
of model failures. Converting these to the A · x > b matrix notation required for the
optimisation constraint algorithm, the constraints become

1 0 0 0 0 0
−1 0 0 0 0 0
0 1 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 −1 0
0 0 0 0 0 1
0 0 0 0 0 −1

·

Px

Py

Pz

px
py
pz

>

−500
−500
−500
−500
−500
−500
−999
−999
−999
−999
−999
−999

(12.80)

https://sourceforge.net/projects/minfx/

258 CHAPTER 12. FRAME ORDER

For the order or motional amplitude parameters of the set S, the constraints used are

0 6 θ 6 π, (12.81a)

0 6 θx 6 θy 6 π, (12.81b)

0 6 σmax 6 π, (12.81c)

0 6 σmax,2 6 π. (12.81d)

These reflect the range of validity of these parameters. Converting to the A·x > b notation,
the constraints are

1 0 0 0 0
−1 0 0 0 0
0 1 0 0 0
0 −1 0 0 0
0 −1 1 0 0
0 0 1 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 −1 0
0 0 0 0 1
0 0 0 0 −1

·

θ
θx
θy

σmax

σmax,2

>

0
−π
0
−π
0
0
−π
0
−π
0
−π

(12.82)

The pseudo-elliptic cone model constraint θx > θy is used to simplify the optimisation
space by eliminating symmetry.

12.4 Computation time and the numerical integration of the

PCS

The numerical integration of the PCS using standard quadratic integration for the frame
order models is impractical and cannot be used. A rough estimate for the computation
time required for a full analysis of all the frame order models is in the order of 1e7 years.
Therefore a number of tricks have been implemented to speed up the calculations.

12.4.1 Numerical integration techniques

The numerical integration is approximated as

∫
f dV ≈ V 〈f〉 ± V

√
〈f2〉 − 〈f〉2

N
, (12.83)

where the angular brackets are the means. As the average PCS value in the frame order
models is defined as

δ =

∫

S
δ dS

/∫

S
dS, (12.84)

12.4. COMPUTATION TIME AND THE NUMERICAL INTEGRATIONOF THE PCS259

then

δ ≈ 〈f〉 ±
√

〈f2〉 − 〈f〉2
N

. (12.85)

This simply means that the average PCS value of a set of N domain positions which satisfy
the constraints of the current model parameter values can be used as the back-calculated
PCS value for the model.

The simplest method to calculate the PCS value would be to generate a uniform distribu-
tion of domain positions. The PCS value is calculated for each state in the distribution of
N structures and then averaged. However this technique has non-ideal convergence prop-
erties, hence the number N needs to be high to obtain a reasonable estimate of the PCS
value. Two techniques with better convergence properties are the Monte Carlo integration
algorithm and the quasi-random integration algorithms.

Monte Carlo numerical integration

As the convergence properties are better than that of a uniform distribution, the Monte
Carlo integration algorithm is a viable option for using the PCS in the frame order analysis.
Less states N are required for a reasonable estimate of the back-calculated PCS value. By
randomly selecting N orientations of the domain which lie within the cone half-angle limits,
back-calculating the PCS value for each state, and then averaging over all N states, the
PCS value for the model can be numerically integrated. The original implementation used
this technique.

Quasi-random numerical integration – Sobol’ point sequence

Although the Monte Carlo numerical integration algorithm is a huge improvement on both
the quadratic integration and the uniform distribution numerical integration techniques,
it was nevertheless still too slow for optimising the frame order models. Therefore the
quasi-random integration techniques were investigated, specifically using the Sobol’ point
sequence (Sobol’, 1967).

To implement the numerical integration of the PCS using the quasi-random Sobol’
sequence, the LGPL licenced Sobol library of John Burkardt and Corrado Chis-
ari from http://people.sc.fsu.edu/~jburkardt/py_src/sobol/sobol.html was inte-
grated into the relax library.

For each point coordinate si, the following functions were used to translate from linear
space sampling to rotational space

θ = arccos(2si − 1), (12.86a)

φ = 2πsi, (12.86b)

σ = 2π(si − 1
2), (12.86c)

where θ is the frame order tilt angle (the angle of rotation about the x-y plane rotation
axis), φ is the angle defining the x-y plane rotation axis, and σ is the torsion angle (the
angle of rotation about the z’ axis). Each frame order model uses a different set of θ, φ,
and σ angles, therefore 1D, 2D, and 3D Sobol’ sequences are generated.

http://people.sc.fsu.edu/~jburkardt/py_src/sobol/sobol.html

260 CHAPTER 12. FRAME ORDER

Oversampling the Sobol’ sequence points

As generating Sobol’ points is computationally expensive, for speed this operation occurs
during target function initialisation prior to optimisation. Hence the Sobol’ points are
not dynamically generated and a special algorithm is required to ensure adequate 1D, 2D
and 3D sampling in the torsion-tilt angle space. The problem is that as the number of
dimensions M increases, the density of a fixed N number of points in the M dimensions
decreases. For example if a fixed value of N is chosen so that the pseudo-ellipse model is
properly sampled, then the rotor model will be severely oversampled and take far too long
to optimise. The protocol implemented to avoid this problem is:

• Generate N.Ov.10M points, where N is the maximum number of Sobol’ points to be
used, Ov is the oversampling factor defaulting to 1, and M is the dimensions of the
torsion-tilt angle space.

• Convert all Sobol’ points into torsion-tilt angles.

• Convert all angles to rotation matrices.

During optimisation, the following two checks are implemented:

• Skip points outside of the limits of the current parameter values.

• Terminate the loop over the Sobol’ points once N is reached.

For most cases, N should be reached. However if the cone or torsion half-angles are
extremely small, then the points used may be less than N. This is therefore monitored and
printed out after each optimisation step. For these cases, Ov can be increased for better
sampling. This is implemented in the frame order.sobol setup user function.

12.4.2 Parallelization and running on a cluster

Four different attempts at parallelizing the calculations using the MPI 2 protocol resulted
in no speeds up. In each case, the calculations were up to 2 times slower. It appears as
though the data transfer of the PCS, atomics positions, vectors, etc. between nodes is
slower than the calculations. As parallelization for speeding up the calculations can only
achieve around two orders of magnitude faster calculations, the technique was abandoned.

12.4.3 Frame order model nesting

The concept of model nesting is used to hugely speed up the optimisation in the automated
protocol. The most complex models have 15 independent parameters, and performing a
grid search over 15 dimensions of the pseudo-ellipse frame order model is not feasible when
using PCS numerical integration. The idea is to use the optimised parameters of a simpler
model as the starting point for a more complex model, avoiding the need for a grid search
for those copied parameters. This appears to work as the PCS value is dominated by
the average domain position, hence the average domain parameters are very similar in all
models.

12.4. COMPUTATION TIME AND THE NUMERICAL INTEGRATIONOF THE PCS261

Model categories

The modelling of the σ torsion angle gives a number of categories of related models, those
with no torsion, those with restricted torsion, and the free rotors.

No torsion When σ = 0, the following models are defined:

• Rigid,

• Isotropic cone, torsionless,

• Pseudo-ellipse, torsionless.

Restricted torsion When 0 < σ < π, the following models are defined:

• Rotor,

• Isotropic cone,

• Pseudo-ellipse.

Free rotors When σ = π, i.e. there is no torsional restriction, the following models are
defined:

• Free rotor,

• Isotropic cone, free rotor,

• Pseudo-ellipse, free rotor.

Multiple torsion angles This covers a single model – the double rotor.

Parameter categories

There are three major parameter categories – the average domain position, the eigenframe
of the motion, and the amplitude of the motion.

Average domain position Let the translational parameters be

T = {Px, Py, Pz} , (12.87)

and the rotational or orientational parameters be

O = {Pα, Pβ , Pγ} . (12.88)

Two full average position parameter sets used in the frame order models are

P = T+O = {Px, Py , Pz, Pα, Pβ , Pγ} , (12.89a)

P′ = {Px, Py, Pz , Pβ , Pγ} . (12.89b)

262 CHAPTER 12. FRAME ORDER

Table 12.2: The nesting of frame order model parameters and the resultant grid search
dimensionality. The boxes highlight parameter sets which are optimised in the initial grid
search. The start of each train of arrows are the optimised parameters which will be
copied for the more complex model and excluded from the grid search. The non-nested
gird search dimensionality is given in brackets.

Model Parameter sets Order parameters Grid search
dimensionality

Rigid P - - - - - - - 6 (6)

Rotor P Eα
ax p1 - - - σmax - 5 (11)

Isotropic cone P Eax p1 - θ - σmax - 1 (13)

Pseudo-ellipse P Eαβγ p1 - θx θy σmax - 4 (15)

Isotropic cone, torsionless P Eax p1 - θ - - - 0 (12)

Pseudo-ellipse, torsionless P Eαβγ p1 - θx θy - - 0 (14)

Free rotor P′ Eα
ax p1 - - - - - 5 (9)

Isotropic cone, free rotor P′ Eax p1 - θ - - - 0 (11)

Pseudo-ellipse, free rotor P′ Eαβγ p1 - θx θy - - 0 (13)

Double rotor P Eαβγ p1 p2 - - σmax σmax,2 3 (15)

The motional eigenframe This consists of either the full eigenframe or a single axis,
combined with the pivot point(s) defining the origin of the frame(s) within the PDB space.
The eigenframe parameters themselves are

Eαβγ = {Eα, Eβ, Eγ} , (12.90a)

Eax = {Eθ, Eφ} , (12.90b)

Eα
ax = {Eax

α } . (12.90c)

The pivot parameter sets are

p1 = {px, py, pz} , (12.91a)

p2 = {pd} , (12.91b)

The rigid body ordering The parameters of order are

S = {θ, θx, θy, σmax, σmax,2} . (12.92)

Frame order parameter nesting in the automated protocol

The parameter nesting used in the automated protocol is shown in table 12.2. This
massively collapses the dimensionality of the initial grid search.

12.4. COMPUTATION TIME AND THE NUMERICAL INTEGRATIONOF THE PCS263

12.4.4 PCS subset

Another trick that can be used to speed up the optimisation is to use a subset of all PCS
values. The PCS data for a rigid domain can consist of hundreds of data points. Rather
than using all these values, a very small subset of data points well chosen throughout the
3D structure – far apart, in rigid locations, and all nearby atoms having a similar value –
can be used for the initial grid search and optimisation. As the PCS is most sensitive to the
average domain position and less to the amplitude of motions, if the subset of atoms is well
chosen the optimisation minimum for the subset should be very close to the optimisation
minimum for the full data set. The subset minimum optimisation should be about two
orders of magnitude faster as the number of PCS data points are linearly correlated with
computation time. At the end of the analysis, a final stage of slower optimisation using
all PCS data can be performed to find the full data set minimum.

In the case of the CaM analyses, a subset of five points was used. In the peptide bound
calmodulin analyses, the H data of residues {Tyr 99, Val 108, Glu 114, Glu 119, Arg 126}
was used. As data was not available for the same residues in the free calmodulin analysis,
instead the proton data for residues {Tyr 99, Met 109, Lys 115, Glu 119, Glu 127} was
used.

12.4.5 Optimisation of the frame order models

Due to the numerical integration of the PCS, optimisation is extremely slow. A number of
optimisation techniques can help speed up this part including using a low precision initial
grid search, a zooming grid search, an alternating grid search, and zooming precision
optimisation.

Low precision grid search

Using 10,000 Sobol’ points appears to be the minimum while still delivering about 2-3
decimal places of accuracy for the frame order models (when values are not close to zero).
But rather than using this number of points, 100 can be used in the initial grid search.
This is not accurate enough from the parameter perspective, but is close enough to the real
minimum (local or global, see section 12.3.2 on page 254). This speeds up the calculation
by two orders of magnitude.

The zooming grid search

This is implemented in relax rather than in the minfx optimisation library. As the grid
search is parallelised to run on a cluster using OpenMPI, it can sometimes be advantageous
to use a fine grid search to find a better optimisation starting position for the Nelder-Mead
simplex algorithm. Rather than simply increasing the number of increments in the grid
search, iteratively performing the grid search while zooming into the optimised parameter
values is a more efficient alternative. This zooming grid search can be seen in the frame
order optimisation script on page 268.

https://sourceforge.net/projects/minfx/

264 CHAPTER 12. FRAME ORDER

The alternating grid search

For finding the average domain position in the rigid frame order model, an alternating grid
search has been implemented in the automated analysis protocol. The idea is to speed
up the slow 6D grid search by first searching over the 3D rotational space, then the 3D
translational space. The grid is then zoomed by one level and alternating grid search is
repeated. As this technique does not guarantee convergence, it is not turned on by default.
The results from the alternation should be carefully checked and the technique avoided if
the average domain position is not reasonable.

Zooming precision optimisation

One trick is to perform an iterative optimisation whereby each iteration increases in pre-
cision. For this the function tolerance cutoff for optimisation is used. But the use of the
amount of sampling through the Sobol’ sequence can result in much greater speed ups.
The reason is because each point in the Sobol’ sequence requires a fixed amount of time to
calculate the PCSs for all spins, so time is linearly correlated with the number of points.

Using synthetic CaM data found in test suite/shared data/frame order/cam/, the
ideal number of Sobol’ points was found to be {100, 1000, 10000}. This is combined with
a function tolerance cutoff of {1e−2, 1e−3, 1e−4}.

12.4.6 Error analysis

Low precision Monte Carlo simulations

The propagation of errors via Monte Carlo simulation, which is extremely computationally
expensive, can also be sped up. By only using a small number of simulations (50 to 100),
100 Sobol’ points, and a function tolerance of 1e-3, the computational time required for
Monte Carlo simulations can be dramatically reduced. However, despite using the lower
quality settings, with the current implementation of the frame order theory this error
analysis is currently not computationally feasible.

12.5 The frame order data analysis

12.5.1 Introduction to frame order data analysis

The analysis consists of two parts. The first is the single structure or ensemble analysis of
the combined RDC and PCS alignment tensor for the non-moving paramagnetically aligned
domain or rigid body. The resultant alignment tensor and optimised paramagnetic Ln3+

position is then used as input into the frame order analysis.

12.5. THE FRAME ORDER DATA ANALYSIS 265

12.5.2 The N-state model analysis scripts

For determining the alignment tensor and paramagnetic Ln3+ position from the RDC and
PCS data, the N-state model or ensemble analysis should be used. The script is:

1 # Python imports.

2 from numpy import array

3

4 # relax imports.

5 from lib.physical_constants import NH_BOND_LENGTH_RDC

6

7

8 # Create a data pipe for all the data.

9 pipe.create('CaM N-dom', 'N-state')

10

11 # Load the CaM structure.

12 structure.read_pdb('2BE6_core_II_III.pdb', dir='../../../../structures/2BE6_superimpose/

Ndom_II_III', set_mol_name=['CaM_A', 'IQ_A', 'Metals_A', 'CaM_B', 'IQ_B', 'Metals_B',

'CaM_C', 'IQ_C', 'Metals_C'])

13

14 # Load the spins.

15 structure.load_spins('@N', from_mols=['CaM_A', 'CaM_B', 'CaM_C'], mol_name_target='CaM',

ave_pos=False)

16 structure.load_spins('@H', from_mols=['CaM_A', 'CaM_B', 'CaM_C'], mol_name_target='CaM',

ave_pos=False)

17

18 # Select only the superimposed spins (skipping mobile residues :2-4,42,56-57,76-80,

identified from model-free order parameters).

19 select.spin(':17-41,43-55,58-67', change_all=True)

20 select.display()

21

22 # Define the magnetic dipole-dipole relaxation interaction.

23 interatom.define(spin_id1='@N', spin_id2='@H', direct_bond=True)

24 interatom.set_dist(spin_id1='@N', spin_id2='@H', ave_dist=NH_BOND_LENGTH_RDC)

25 interatom.unit_vectors(ave=False)

26

27 # Set the nuclear isotope and element.

28 spin.isotope(isotope='15N', spin_id='@N')

29 spin.isotope(isotope='1H', spin_id='@H')

30

31 # The alignment data.

32 align_data = [

33 ['dy', 'RDC_DY_111011_spinID.txt', 'PCS_DY_200911.txt', 900.00423401],

34 ['tb', 'RDC_TB_111011_spinID.txt', 'PCS_TB_200911.txt', 900.00423381],

35 ['tm', 'RDC_TM_111011_spinID.txt', 'PCS_TM_200911.txt', 900.00423431],

36 ['er', 'RDC_ER_111011_spinID.txt', 'PCS_ER_200911.txt', 899.90423151],

37 ['yb', 'RDC_YB_110112_spinID.txt', 'PCS_YB_211111.txt', 899.90423111],

38 ['ho', 'RDC_HO_300512_spinID.txt', 'PCS_HO_300412.txt', 899.80423481]

39]

40

41 # Loop over the alignments.

42 for i in range(len(align_data)):

43 # Alias the data.

44 TAG = align_data[i][0]

45 RDC_FILE = align_data[i][1]

46 PCS_FILE = align_data[i][2]

47 FRQ = align_data[i][3]

48

49 # RDCs.

266 CHAPTER 12. FRAME ORDER

50 rdc.read(align_id=TAG, file=RDC_FILE, dir='../..', data_type='D', spin_id1_col=1,

spin_id2_col=2, data_col=3, error_col=4)

51

52 # PCSs.

53 pcs.read(align_id=TAG, file=PCS_FILE, dir='../..', res_num_col=1, data_col=2,

error_col=4, spin_id='@N')

54 pcs.read(align_id=TAG, file=PCS_FILE, dir='../..', res_num_col=1, data_col=3,

error_col=4, spin_id='@H')

55

56 # The temperature.

57 spectrometer.temperature(id=TAG, temp=303.0)

58

59 # The frequency.

60 spectrometer.frequency(id=TAG, frq=FRQ, units='MHz')

61

62 # The paramagnetic centre (average Ca2+ position).

63 ave = array([7.608, 5.402, 16.725]) + array([7.295, 4.684, 16.168]) + array([7.338, 5.275,

16.086])

64 ave = ave / 3

65 paramag.centre(pos=ave)

66

67 # Set up the model.

68 n_state_model.select_model('fixed')

69

70 # Tensor optimisation.

71 print("\n\n# Tensor optimisation.\n\n")

72 minimise.grid_search(inc=5)

73 minimise.execute('newton', constraints=False)

74 state.save('tensor_only_fit', force=True)

75

76 # Optimisation of everything.

77 paramag.centre(fix=False)

78 minimise.execute('bfgs', constraints=False)

79

80 # PCS structural noise.

81 print("\n\n# Tensor optimisation with PCS structural noise.\n\n")

82 pcs.structural_noise(rmsd=0.3, sim_num=10000, file='structural_noise.agr', force=True)

83

84 # Optimisation of everything.

85 paramag.centre(fix=False)

86 minimise.execute('bfgs', constraints=False)

87

88 # Monte Carlo simulations.

89 monte_carlo.setup(number=500)

90 monte_carlo.create_data()

91 monte_carlo.initial_values()

92 minimise.execute('bfgs', constraints=False)

93 monte_carlo.error_analysis()

94

95 # Show the tensors.

96 align_tensor.display()

97

98 # Q-factors.

99 rdc.calc_q_factors()

100 pcs.calc_q_factors()

101

102 # Correlation plots.

103 rdc.corr_plot(file="rdc_corr.agr", force=True)

104 pcs.corr_plot(file="pcs_corr.agr", force=True)

105

106 # Save the program state.

12.5. THE FRAME ORDER DATA ANALYSIS 267

10 15 20 25 30 35 40 45

Ln
3+

to spin distance (Angstrom)

0

0.1

0.2

0.3

0.4

P
C

S
 s

ta
n
d
ar

d
 d

ev
ia

ti
o
n
 (

p
p
m

)

dy

tb
tm
er
yb

ho

PCS structural noise
0.3 Angstrom structural noise

Figure 12.4: Structural noise simulation using the 2BE6 CaM-IQ X-ray ABC ensemble
as an example. The simulated structural error, with the atom position uncertainty set
to 0.3 Å, is an extra contribution to the measured PCS error. The PCS structural error
is compared to the distance from the paramagnetic centre to illustrate the relationship
between the two. The atomic positions were randomised 10,000 times with the lanthanide
position assumed fixed, the PCS value back-calculated using a pre-fit alignment tensor,
and the PCS standard deviations calculated.

107 state.save('tensor_fit', force=True)

The calculation of the additional PCS error due to structural noise is very important for
the subsequent frame order analysis. A plot of such a calculation is shown in Figure 12.4

Statistics for the tensors, including the matrix or inter-tensor angles, the singular value
decomposition (SVD) values and condition number, and a printout of the tensors for
copying directly in the frame order analysis script, are obtained via the script:

1 # Script for determining the tensor angles and SVD values of the CaM-IQ tensors.

2

3 # Load the state.

4 state.load('tensor_fit')

5

6 # Loop over the alignment tensors, producing a string of relax user function commands.

7 print("\nTensor strings for relax input:")

8 string = ""

9 for A in cdp.align_tensors:

10 string += "align_tensor.init(tensor='%s', params=(%s, %s, %s, %s, %s), param_types=2)\

n" % (A.name, A.Axx, A.Ayy, A.Axy, A.Axz, A.Ayz)

268 CHAPTER 12. FRAME ORDER

11 string += "align_tensor.init(tensor='%s', params=(%s, %s, %s, %s, %s), param_types=2,

errors=True)\n" % (A.name, A.Axx_err, A.Ayy_err, A.Axy_err, A.Axz_err, A.Ayz_err)

12 print(string)

13

14 # The matrix angles.

15 align_tensor.matrix_angles(basis_set=0)

16 align_tensor.matrix_angles(basis_set=1)

17

18 # The SVD analysis.

19 align_tensor.svd(basis_set=0)

20 align_tensor.svd(basis_set=1)

12.5.3 The frame order analysis scripts

The following is the example frame order analysis script located at
sample scripts/frame order/full analysis.py:

1 """Script for black-box Frame Order analysis.

2

3 This is for the CaM-IQ data.

4

5 The free rotor pseudo-elliptic cone model is not used in this script as the cone X and Y

opening angles cannot be differentiated with simply RDC and PCS data, hence this model

is perfectly approximated by the free rotor isotropic cone.

6 """

7

8 # Python module imports.

9 from numpy import array

10 from time import asctime, localtime

11

12 # relax module imports.

13 from auto_analyses.frame_order import Frame_order_analysis, Optimisation_settings

14

15

16 # Analysis variables.

17 #####################

18

19 # The frame order models to use.

20 MODELS = [

21 'rigid',

22 'rotor',

23 'iso cone',

24 'pseudo-ellipse',

25 'iso cone, torsionless',

26 'pseudo-ellipse, torsionless',

27 'double rotor'

28]

29

30 # The number of Monte Carlo simulations to be used for error analysis at the end of the

protocol.

31 MC_NUM = 10

32

33 # Rigid model optimisation setup.

34 OPT_RIGID = Optimisation_settings()

35 OPT_RIGID.add_grid(inc=21, zoom=0)

36 OPT_RIGID.add_grid(inc=21, zoom=1)

37 OPT_RIGID.add_grid(inc=21, zoom=2)

38 OPT_RIGID.add_grid(inc=21, zoom=3)

12.5. THE FRAME ORDER DATA ANALYSIS 269

39 OPT_RIGID.add_min(min_algor='simplex')

40

41 # PCS subset optimisation setup.

42 OPT_SUBSET = Optimisation_settings()

43 OPT_SUBSET.add_grid(inc=11, zoom=0, sobol_max_points=100)

44 OPT_SUBSET.add_grid(inc=11, zoom=1, sobol_max_points=100)

45 OPT_SUBSET.add_grid(inc=11, zoom=2, sobol_max_points=100)

46 OPT_SUBSET.add_min(min_algor='simplex', func_tol=1e-2, sobol_max_points=100)

47

48 # Full data set optimisation setup.

49 OPT_FULL = Optimisation_settings()

50 OPT_FULL.add_grid(inc=11, zoom=2, sobol_max_points=100)

51 OPT_FULL.add_grid(inc=11, zoom=3, sobol_max_points=100)

52 OPT_FULL.add_min(min_algor='simplex', func_tol=1e-2, sobol_max_points=100)

53 OPT_FULL.add_min(min_algor='simplex', func_tol=1e-3, sobol_max_points=1000)

54 OPT_FULL.add_min(min_algor='simplex', func_tol=1e-4, sobol_max_points=10000)

55

56 # Monte Carlo simulation optimisation setup.

57 OPT_MC = Optimisation_settings()

58 OPT_MC.add_min(min_algor='simplex', func_tol=1e-3, sobol_max_points=100)

59

60

61 # Set up the base data pipes.

62 #############################

63

64 # The data pipe bundle to group all data pipes.

65 PIPE_BUNDLE = "Frame Order (%s)" % asctime(localtime())

66

67 # Create the base data pipe containing only a subset of the PCS data.

68 SUBSET = "Data subset - " + PIPE_BUNDLE

69 pipe.create(pipe_name=SUBSET, pipe_type='frame order', bundle=PIPE_BUNDLE)

70

71 # Read the structures.

72 structure.read_pdb('2BE6_ndom_truncN.pdb', dir='../../../structures/2BE6_superimpose',

set_mol_name='N-dom')

73 structure.read_pdb('2BE6_cdom_truncC.pdb', dir='../../../structures/2BE6_superimpose',

set_mol_name='C-dom')

74

75 # Set up the 15N and 1H spins.

76 structure.load_spins(spin_id='@N', mol_name_target='CaM', ave_pos=False)

77 structure.load_spins(spin_id='@H', mol_name_target='CaM', ave_pos=False)

78 spin.isotope(isotope='15N', spin_id='@N')

79 spin.isotope(isotope='1H', spin_id='@H')

80

81 # Define the magnetic dipole-dipole relaxation interaction.

82 interatom.define(spin_id1='@N', spin_id2='@H', direct_bond=True)

83 interatom.set_dist(spin_id1='@N', spin_id2='@H', ave_dist=1.041 * 1e-10)

84 interatom.unit_vectors()

85

86 # Deselect mobile spins and vectors (from the CaM model-free order parameters from the

BMRB).

87 deselect.spin(':2-4')

88 deselect.spin(':42')

89 deselect.spin(':56-57')

90 deselect.spin(':76-82')

91 deselect.spin(':114-117')

92 deselect.spin(':129-130')

93 deselect.spin(':146-148')

94 deselect.interatom(':2-4')

95 deselect.interatom(':42')

96 deselect.interatom(':56-57')

270 CHAPTER 12. FRAME ORDER

97 deselect.interatom(':76-82')

98 deselect.interatom(':114-117')

99 deselect.interatom(':129-130')

100 deselect.interatom(':146-148')

101

102 # The lanthanides and data files.

103 ln = ['dy', 'tb', 'tm', 'er', 'yb', 'ho']

104 pcs_files = [

105 'PCS_DY_200911.txt',

106 'PCS_TB_200911.txt',

107 'PCS_TM_200911.txt',

108 'PCS_ER_200911.txt',

109 'PCS_YB_211111.txt',

110 'PCS_HO_300412.txt'

111]

112 pcs_files_subset = [

113 'PCS_DY_200911_subset.txt',

114 'PCS_TB_200911_subset.txt',

115 'PCS_TM_200911_subset.txt',

116 'PCS_ER_200911_subset.txt',

117 'PCS_YB_211111_subset.txt',

118 'PCS_HO_300412_subset.txt'

119]

120 rdc_files = [

121 'RDC_DY_111011_spinID.txt',

122 'RDC_TB_111011_spinID.txt',

123 'RDC_TM_111011_spinID.txt',

124 'RDC_ER_111011_spinID.txt',

125 'RDC_YB_110112_spinID.txt',

126 'RDC_HO_300512_spinID.txt'

127]

128

129 # The spectrometer frequencies for Luigi's measurements (matching the above lanthanide

ordering, taken from the acqus SFO1 parameter).

130 pcs_frq = [

131 701.2533001, # Dy3+.

132 701.2533002, # Tb3+.

133 701.2533005, # Tm3+.

134 701.2533003, # Er3+.

135 701.2533004, # Yb3+.

136 701.2533005 # Ho3+.

137]

138 rdc_frq = [

139 900.00423401, # Dy3+.

140 900.00423381, # Tb3+.

141 900.00423431, # Tm3+.

142 899.90423151, # Er3+.

143 899.90423111, # Yb3+.

144 899.80423481, # Ho3+.

145]

146

147 # Loop over the alignments.

148 for i in range(len(ln)):

149 # Load the RDCs.

150 rdc.read(align_id=ln[i], file=rdc_files[i], dir='../../../align_data/CaM_IQ/',

spin_id1_col=1, spin_id2_col=2, data_col=3, error_col=4)

151

152 # The 1H PCS (only a subset of ~5 spins for fast initial optimisations).

153 pcs.read(align_id=ln[i], file=pcs_files_subset[i], dir='../../../align_data/CaM_IQ/',

res_num_col=1, data_col=3, error_col=4, spin_id='@H')

154

12.5. THE FRAME ORDER DATA ANALYSIS 271

155 # The temperature and field strength.

156 spectrometer.temperature(id=ln[i], temp=303.0)

157 spectrometer.frequency(id=ln[i], frq=rdc_frq[i], units="MHz")

158

159 # Set up the tensors from the CaM-IQ ABC :6-74@N,CA,C,O N-state model fit.

160 align_tensor.init(tensor='Dy N-dom', align_id='dy', params=(-0.000895122969134, 0

.000200206126748, 0.000350783562498, 0.000789321179176, -0.000185956794915),

param_types=2)

161 align_tensor.init(tensor='Dy N-dom', align_id='dy', params=(1.2293468401e-05, 1

.74966511177e-05, 1.07296910627e-05, 1.21471537359e-05, 9.98472771055e-06),

param_types=2, errors=True)

162 align_tensor.init(tensor='Tb N-dom', align_id='tb', params=(-0.000386773980249, -0

.000252229451755, 0.000289345115245, 0.00077454551221, -0.000411564842864),

param_types=2)

163 align_tensor.init(tensor='Tb N-dom', align_id='tb', params=(9.08568851197e-06, 1

.25046911688e-05, 9.13279347879e-06, 8.66699785438e-06, 8.17084290029e-06),

param_types=2, errors=True)

164 align_tensor.init(tensor='Tm N-dom', align_id='tm', params=(0.000138832563763, 0

.00019276873546, -0.000401761891364, -0.00053984778662, 0.000385156710458),

param_types=2)

165 align_tensor.init(tensor='Tm N-dom', align_id='tm', params=(7.45028293534e-06, 1

.15087527652e-05, 7.80160598908e-06, 7.48687231235e-06, 8.44077530542e-06),

param_types=2, errors=True)

166 align_tensor.init(tensor='Er N-dom', align_id='er', params=(0.00013266928235, 6

.08491225722e-05, -0.000249892897607, -0.000344865388853, 0.000118692962249),

param_types=2)

167 align_tensor.init(tensor='Er N-dom', align_id='er', params=(6.24728334522e-06, 8

.68937486363e-06, 7.96726504939e-06, 6.43064935791e-06, 1.00354375045e-05),

param_types=2, errors=True)

168 align_tensor.init(tensor='Yb N-dom', align_id='yb', params=(0.000150564392882, -7

.59743643441e-05, -0.00013958907081, -0.000188379895441, 0.000102722198261),

param_types=2)

169 align_tensor.init(tensor='Yb N-dom', align_id='yb', params=(4.42731599871e-06, 5

.1565091874e-06, 5.18051425981e-06, 3.9225664592e-06, 4.49007020445e-06), param_types

=2, errors=True)

170 align_tensor.init(tensor='Ho N-dom', align_id='ho', params=(-0.000307522207243, 2

.76511812842e-05, 0.000152789357344, 0.000307999279733, -0.000235201851074),

param_types=2)

171 align_tensor.init(tensor='Ho N-dom', align_id='ho', params=(6.56971189673e-06, 1

.0420422445e-05, 8.05282585054e-06, 7.42469124453e-06, 7.25413636142e-06), param_types

=2, errors=True)

172

173 # Define the domains.

174 domain(id='N', spin_id=":1-78")

175 domain(id='C', spin_id=":80-148")

176

177 # The tensor domains and reductions.

178 full = ['Dy N-dom', 'Tb N-dom', 'Tm N-dom', 'Er N-dom', 'Yb N-dom', 'Ho N-dom']

179 red = ['Dy C-dom', 'Tb C-dom', 'Tm C-dom', 'Er C-dom', 'Yb C-dom', 'Ho C-dom']

180 ids = ['dy', 'tb', 'tm', 'er', 'yb', 'ho']

181 for i in range(len(full)):

182 # Initialise the reduced tensors (fitted during optimisation).

183 align_tensor.init(tensor=red[i], align_id=ids[i], params=(0, 0, 0, 0, 0))

184

185 # Set the domain info.

186 align_tensor.set_domain(tensor=full[i], domain='N')

187 align_tensor.set_domain(tensor=red[i], domain='C')

188

189 # Specify which tensor is reduced.

190 align_tensor.reduction(full_tensor=full[i], red_tensor=red[i])

191

272 CHAPTER 12. FRAME ORDER

192 # Set the reference domain.

193 frame_order.ref_domain('N')

194

195 # Set the initial pivot point.

196 pivot = array([21.863, 5.270, 5.934])

197 frame_order.pivot(pivot, fix=False)

198

199 # Set the paramagnetic centre position.

200 paramag.centre(pos=[6.518, 8.520, 13.767])

201

202 # Duplicate the PCS data subset data pipe to create a data pipe containing all the PCS

data.

203 DATA = "Data - " + PIPE_BUNDLE

204 pipe.copy(pipe_from=SUBSET, pipe_to=DATA, bundle_to=PIPE_BUNDLE)

205 pipe.switch(DATA)

206

207 # Load the complete PCS data into the already filled data pipe.

208 for i in range(len(ln)):

209 # The 15N PCS.

210 pcs.read(align_id=ln[i], file=pcs_files[i], dir='../../../align_data/CaM_IQ/',

res_num_col=1, data_col=2, error_col=4, spin_id='@N')

211

212 # The 1H PCS.

213 pcs.read(align_id=ln[i], file=pcs_files[i], dir='../../../align_data/CaM_IQ/',

res_num_col=1, data_col=3, error_col=4, spin_id='@H')

214

215

216 # Execution.

217 ############

218

219 # Do not change!

220 Frame_order_analysis(data_pipe_full=DATA, data_pipe_subset=SUBSET, pipe_bundle=PIPE_BUNDLE

, results_dir=None, opt_rigid=OPT_RIGID, opt_subset=OPT_SUBSET, opt_full=OPT_FULL,

opt_mc=OPT_MC, mc_sim_num=MC_NUM, models=MODELS)

Once this analysis has been completed then, a refinement step is required. This is due
to the low amount of motion in the system which causes the pivot point to be less well
defined and hence strongly affected by artifacts of discrete sampling of a continuous and
uniform distribution. The collapse of certain cone open half-angles and torsion angles to
zero also causes the number of Sobol’ points N to sometimes be zero. The refinement
script is:

1 """Script for black-box Frame Order analysis.

2

3 This is for the CaM-IQ data.

4

5 The free rotor pseudo-elliptic cone model is not used in this script as the cone X and Y

opening angles cannot be differentiated with simply RDC and PCS data, hence this model

is perfectly approximated by the free rotor isotropic cone.

6 """

7

8 # Python module imports.

9 from time import asctime, localtime

10

11 # relax module imports.

12 from auto_analyses.frame_order import Frame_order_analysis, Optimisation_settings

13

14

15 # Analysis variables.

16 #####################

12.5. THE FRAME ORDER DATA ANALYSIS 273

17

18 # The frame order models to use.

19 MODELS = [

20 'rigid',

21 'rotor',

22 'iso cone',

23 'pseudo-ellipse',

24 'iso cone, torsionless',

25 'pseudo-ellipse, torsionless',

26 'double rotor'

27]

28

29 # The number of Monte Carlo simulations to be used for error analysis at the end of the

protocol.

30 MC_NUM = 10

31

32 # Full data set optimisation setup.

33 OPT_FULL = Optimisation_settings()

34 OPT_FULL.add_min(min_algor='simplex', func_tol=1e-4, quad_int=True)

35

36 # Monte Carlo simulation optimisation setup.

37 OPT_MC = Optimisation_settings()

38 OPT_MC.add_min(min_algor='simplex', func_tol=1e-3, quad_int=True)

39

40

41 # Set up the base data pipes.

42 #############################

43

44 # The data pipe bundle to group all data pipes.

45 PIPE_BUNDLE = "Frame Order (%s)" % asctime(localtime())

46

47

48 # Execution.

49 ############

50

51 # Do not change!

52 Frame_order_analysis(pipe_bundle=PIPE_BUNDLE, results_dir='refinement', pre_run_dir='.',

opt_full=OPT_FULL, opt_mc=OPT_MC, mc_sim_num=MC_NUM, models=MODELS)

12.5.4 Computation times

It should be noted that computation times are currently very long, in the order of months.
This depends on the models chosen, the amount and quality of the input data, and the
refinement step. This is due to the numeric integration for the PCS data. Calculations
can range from one to six months on a very fast computer. Unfortunately parallelization
was not possible, but multiple analyses can be performed simultaneously on multiple core
or multiple CPU systems. A dedicated machine with a reliable UPS system is highly
recommended.

274 CHAPTER 12. FRAME ORDER

Part III

Power users

275

Chapter 13

relax development

This chapter is for developers or those who would like to extend the functionality of relax.
It is not required for using relax. If you would like to make modifications to the relax
source code please subscribe to all the relax mailing lists (see section 3.3 on page 30).
Announcements are sent to “nmr-relax-announce at lists.sourceforge.net” whereas “nmr-
relax-users at lists.sourceforge.net” is the list where discussions about the usage of relax
should be posted. “nmr-relax-devel at lists.sourceforge.net” is where all discussions about
the development of relax including feature requests, program design, or any other discus-
sions relating to relax’s structure or code should be posted. Finally, “nmr-relax-commits
at lists.sourceforge.net” is where all changes to relax’s code and documentation, as well
as changes to the web pages, are automatically sent to. Anyone interested in joining the
project should subscribe to all four lists.

13.1 The relax source code repositories

Although the downloadable distribution archives can be modified, it is best that the most
current and up to date code from relax’s version control repositories be modified instead.

13.1.1 relax repositories

The source and data files for relax are stored in version control repositories. This allows
every single change which has ever been made to be recorded within the repository. Orig-
inally a single Subversion repository was used to hold the source code and webpages but,
since the Gna! free software infrastructure shutdown, the sources and data were migrated
to git repositories (see Section 3.1 on page 29 for a detailed history). If not already in-
stalled, you can download git from https://git-scm.com/downloads. More information
about the basics of version control and how this is implemented in git can be found in the
git reference manual.

The source and data files are currently organised into the following repositories:

• The relax source code git repository, viewable at https://sourceforge.net/p/

nmr-relax/code/ci/master/tree/.

277

https://git-scm.com/downloads
https://git-scm.com/docs
https://sourceforge.net/p/nmr-relax/code/ci/master/tree/
https://sourceforge.net/p/nmr-relax/code/ci/master/tree/

278 CHAPTER 13. RELAX DEVELOPMENT

• The relax website git repository, viewable at https://sourceforge.net/p/

nmr-relax/website/ci/master/tree/.

• The relax demonstration file git repository, viewable at https://sourceforge.net/
p/nmr-relax/relax-demo/ci/master/tree/.

• The archived relax source code and website SVN repository, viewable at https://
sourceforge.net/p/nmr-relax/code-svn-archive/HEAD/tree/.

13.1.2 Primary relax repository

relax is currently hosted on the SourceForge open source infrastructure. For more infor-
mation see the free software infrastructure chapter 3 on page 29.

If you are not currently a relax developer you can obtain the repository by typing

$ git clone git://git.code.sf.net/p/nmr-relax/code relax

Otherwise, if you already are a developer, type

$ git clone ssh://[username]@git.code.sf.net/p/nmr-relax/code relax

replacing [username] with your registered SourceForge login name. If your version is out
of date, it can be updated to the latest commit by typing

$ git pull

If you are not currently a registered relax developer, changes can be made to forks of the
repository (all details are below)

13.1.3 Mirrors of the relax repository

The relax developers are expected to push all changes to the primary relax repository
currently located at SourceForge. However, for the future longevity of relax, this repository
is mirrored on multiple free software/open source infrastructures. This should ensure
access to relax for decades to come. The web interfaces to the current mirrors are:

• nmr-relax at Bitbucket

• nmr-relax at GitHub

• nmr-relax at GitLab

• nmr-relax at SourceForge

As a relax developer, you can set the mirrored repositories as remotes and push all changes
to all mirrors. Firstly rename the default remote name origin with

$ git remote rename origin sf

Then add all remotes not already present by typing

https://sourceforge.net/p/nmr-relax/website/ci/master/tree/
https://sourceforge.net/p/nmr-relax/website/ci/master/tree/
https://sourceforge.net/p/nmr-relax/relax-demo/ci/master/tree/
https://sourceforge.net/p/nmr-relax/relax-demo/ci/master/tree/
https://sourceforge.net/p/nmr-relax/code-svn-archive/HEAD/tree/
https://sourceforge.net/p/nmr-relax/code-svn-archive/HEAD/tree/
https://bitbucket.org/nmr-relax/
https://github.com/nmr-relax
https://gitlab.com/nmr-relax
https://sourceforge.net/projects/nmr-relax/

13.2. CODING CONVENTIONS 279

$ git remote add bb git@bitbucket.org:nmr-relax/relax.git

$ git remote add gh git@github.com:nmr-relax/relax.git

$ git remote add gl git@gitlab.com:nmr-relax/relax.git

$ git remote add sf ssh://[username]@git.code.sf.net/p/nmr-relax/codet

You will need to be registered at these sites to be able to push to them:

• Bitbucket account registration

• GitHub account registration

• GitLab account registration

• SourceForge account registration

Other mirrors may be added in the future. To push all changes to the mirrors, type

$ git push bb

$ git push gh

$ git push gl

$ git push sf

$ git push --tags bb

$ git push --tags gh

$ git push --tags gl

$ git push --tags sf

The first commands only push the changes present on the currently checked out branch
(creating the remote branch if necessary), and the second set push all tags. This can be
simplified by using a git alias set in the git configuration file. For example on POSIX
systems, in the file .gitconfig add

[alias]

pushremotes = !git remote | grep -v local_backup | xargs -L1 git push

Then instead type

$ git pushremotes

$ git pushremotes --tags

To download any changes present in any one of the mirrors, type

$ git fetch --all

13.2 Coding conventions

The following conventions should be followed at all times for any code to be accepted into
the relax repository. A Python script which tests if code meets relax’s coding conventions
is distributed with relax and is located at scripts/code validator. The main reason
for these conventions is for readability. By using a consistent coding style and a high
comment ratio, the code becomes much easier to read for non-coders and those new to
Python. It significantly decreases the barrier of entry into the relax source code for NMR
spectroscopists.

https://bitbucket.org/account/signup/
https://github.com/join
https://gitlab.com/users/sign_in#register-pane
https://sourceforge.net/user/registration

280 CHAPTER 13. RELAX DEVELOPMENT

13.2.1 Indentation

Indentation should be set to four spaces rather than a tab character. This is the rec-
ommendation given in the Python style guide found at http://www.python.org/doc/

essays/styleguide.html. Emacs should automatically set the tabstop correctly. For vi
add the following lines to the vimrc file:

set tabstop=4

set shiftwidth=4

set expandtab

For UNIX systems, including GNU/Linux and Mac OS X, the vimrc file is ∼/.vimrc
whereas in MS Windows the file is $VIM/ vimrc which is usually C:\Program Files\vim\
vimrc. Certain versions of vim, those within the 6.2 series, contain a bug where the tabstop
value cannot be changed using the vimrc file (although typing “:set tabstop=4” in vim
will fix it). One solution is to edit the file python.vim which on GNU/Linux systems is
located in the path /usr/share/vim/ftplugin/. It contains the two lines

" Python always uses a ‘tabstop’ of 8.

setlocal ts=8

If these lines are deleted the bug will be removed. Another way to fix the problem is to
install newer versions of the run-time files (which will do the same thing).

13.2.2 Doc strings

The following are relax’s conventions for docstrings. Many of these are Python conventions.

• The standard Python convention of a one line description separated from a detailed
description by an empty line should be adhered to. This line must start with a
capital letter and end in a period. This convention is required for certain docstring
parsers (see the Python docs).

• All functions should have a docstring describing in detail the function, structure,
and organisation of the code.

• A docstring should be followed by an empty line.

• Indentation of the docstring should be the same as that of the first line of code,
excluding indented lists, etc.

An example of a single line docstring is:

1 def delete(self):

2 """Function for deleting all model-free data."""

An example of a multiline docstring is:

1 def aic(chi2, k, n):

2 """Akaike's Information Criteria (AIC).

3

4 The formula is::

http://www.python.org/doc/essays/styleguide.html
http://www.python.org/doc/essays/styleguide.html

13.2. CODING CONVENTIONS 281

5

6 AIC = chi2 + 2k

7

8

9 @param chi2: The minimised chi-squared value.

10 @type chi2: float

11 @param k: The number of parameters in the model.

12 @type k: int

13 @param n: The dimension of the relaxation data set.

14 @type n: int

15 @return: The AIC value.

16 @rtype: float

17 """

18

19 return chi2 + 2.0*k

In addition to the text descriptions, the docstrings use the Epydoc markup language to
describe arguments, return values, and other information about the code. See http://

epydoc.sourceforge.net/fields.html for a listing of all the epydoc fields allowed. This
markup language is important for the creation of the API documentation and to help
developers understand the purpose and operation of the code.

13.2.3 Variable, function, and class names

In relax a mixture of both camel case (e.g. CamelCase) and lower case with underscores
is used. Despite the variability there are fixed rules which should be adhered to. These
naming conventions should be observed at all times.

Variables and functions

For both variables and functions lower case with underscores between words is always used.
This is for readability as the convention is much more fluent than camel case. A few rare
exceptions exist, an example is the Brownian diffusion tensor parameter of anisotropy Da

which is referenced as cdp.diff tensor.Da. As a rule though all new variable or function
names should be kept as lower case. An example of this convention for both the variable
name and function name is:

1 def assemble_param_vector(self, spin=None, spin_id=None, sim_index=None, model_type=

None):

2 """Assemble the model-free parameter vector (as numpy array).

3

4 If the spin argument is supplied, then the spin_id argument will be ignored.

5

6 @keyword spin: The spin data container.

7 @type spin: SpinContainer instance

8 @keyword spin_id: The spin identification string.

9 @type spin_id: str

10 @keyword sim_index: The optional MC simulation index.

11 @type sim_index: int

12 @keyword model_type: The optional parameter set, one of 'all', 'diff', 'mf', or

'local_tm'.

13 @type model_type: str or None

14 @return: An array of the parameter values of the model-free model.

15 @rtype: numpy array

http://epydoc.sourceforge.net/
http://epydoc.sourceforge.net/fields.html
http://epydoc.sourceforge.net/fields.html
http://www.nmr-relax.com/api/

282 CHAPTER 13. RELAX DEVELOPMENT

16 """

17

18 # Initialise.

19 param_vector = []

20

21 # Determine the model type.

22 if not model_type:

23 model_type = self.determine_param_set_type()

24

25 # Diffusion tensor parameters.

26 if model_type == 'diff' or model_type == 'all':

27 # Normal parameters.

28 if sim_index == None:

29 # Spherical diffusion.

30 if cdp.diff_tensor.type == 'sphere':

31 param_vector.append(cdp.diff_tensor.tm)

Classes

For classes relax uses a mix of camel case (for example all the RelaxError objects) and
underscores (for example Model free). The first letter in all cases is always capitalised.
Generally the camel case is reserved for very low level classes which are involved in the
program’s infrastructure. Examples include the RelaxError code, the threading code,
and the relax data store code. All the data analysis specific code, data pipe control code,
interface code, etc. uses underscores between the words with only the first letter capitalised.
One exception is the space mapping class OpenDX, the reason being that the program is
called OpenDX. An example is:

1 class Model_free_main:

2 """Class containing functions specific to model-free analysis."""

3

4 def are_mf_params_set(self, spin):

5 """Test if the model-free parameter values are set.

6

7 @param spin: The spin container object.

8 @type spin: SpinContainer instance

9 @return: The name of the first parameter in the parameter list in which the

corresponding parameter value is None. If all parameters are set, then None is

returned.

10 @rtype: str or None

11 """

12

13 # Deselected residue.

14 if spin.select == 0:

15 return

Long names

If you have a look at a few relax source files, you will notice that the variable,
function, and class names can be quite long. For example the model-free function
disassemble param vector() and the RelaxError class RelaxNoSequenceError. While this
is not normal for coding, it is an important component of relax as it facilitates the reading
of the source code by a non-coder or someone not familiar with the codebase. Iteration

13.2. CODING CONVENTIONS 283

counters can be single letter variables such as i, j, k, etc., however for all other vari-
ables, functions, and classes please attempt to use descriptive names which are instantly
identifiable. Please minimise the amount of abbreviations used and only use those which
are obvious. For example naming the parameter vector self.param vector, the relaxation
data relax data, the model selection class class Model selection, the type of spheroidal
diffusion spheroid type, etc.

13.2.4 Whitespace

The following conventions are for general code cleanliness and readability:

• Trailing whitespace is to be avoided.

• All functions should be preceded by two empty lines. The only exception is the first
function of the class definition.

• Function arguments should be separated by a comma followed by a single space.

• The assignment operator should be surrounded by spaces, for exam-
ple tm = 1e-8. The exception is function arguments, for example
self.classic_colour(res_num=None, width=0.3).

• The comparison operators should also be surrounded by spaces, e.g. < , > , == ,
 <= , => , <> , = !, is , and in .

An example which shows most of these conventions is:

1 class Internal:

2 """The internal relax structural data object.

3

4 The structural data object for this class is a container possessing a number of

different arrays corresponding to different structural information. These objects are

described in the structural container docstring.

5 """

6

7 def _bonded_atom(self, attached_atom, index, mol):

8 """Find the atom named attached_atom directly bonded to the atom located at the

index.

9

10 @param attached_atom: The name of the attached atom to return.

11 @type attached_atom: str

12 @param index: The index of the atom which the attached atom is attached

to.

13 @type index: int

14 @param mol: The molecule container.

15 @type mol: MolContainer instance

16 @return: A tuple of information about the bonded atom.

17 @rtype: tuple consisting of the atom number (int), atom name (str)

, element name (str), and atomic position (Numeric array of len 3)

18 """

19

20 # Init.

21 bonded_found = False

22

23 # No bonded atoms, so determine the connectivities.

284 CHAPTER 13. RELAX DEVELOPMENT

24 if not mol.bonded[index]:

25 # Determine the molecule type if needed.

26 if not hasattr(mol, 'type'):

27 self._mol_type(mol)

13.2.5 Comments

Comments are a very important component within relax. In the current source code the
percentage of comment lines relative to lines of code ranges from 15% to over 30% for
different files. The average comment density is close to 25%. The purpose of having so
many comment lines, much more than you would expect from source code, is so that
the relax’s code is fully self documented. It allows someone who is not familiar with the
codebase to read the code and quickly understand what is happening. It simplifies the
process of learning and allows NMR spectroscopists who are not coders to dive into the
code. When writing code for relax, please attempt to maintain the tradition by aiming
towards a 25% comment ratio. The comment should be descriptive and explain the intent
of the code below. The script scripts/code validator can be used to check the comment
density.

13.3 Committers

13.3.1 Becoming a committer

Anyone can become a relax developer and obtain commit access to the relax repository.
Some criteria for selection by the relax developers include:

• To show good judgement.

• Competence in producing good patches.

• Compliance with the coding and commit log conventions.

• Comportment on and usage of the mailing lists.

• Not producing too many bugs.

• Only taking on challenges which can be handled.

• Being able to judge your own abilities.

You will also need to have an understanding of the concepts of version control specifically
those relating to git. The git reference manual at https://git-scm.com/docs contains
all the information you will need. After a number of commits have been accepted and
merged, any of the relax developers can propose that you receive commit access to the
parent repository. If a number of developers agree while no one says no then commit access
will be offered.

One area where coding ability can be demonstrated is within the relax test suite. The
addition of tests, especially those where the relax internal data structures of the relax data

https://git-scm.com/docs

13.3. COMMITTERS 285

store are scrutinised, can be a good starting point for learning the structure of relax. This
is because development within the test suite is isolate from normal program execution.
Hence the relax test suite is an ideal sandbox.

If skills in only certain areas of relax development, for example in creation of the docu-
mentation, an understanding of C but not python, an understanding of solely the code
of the user interface, or an understanding of the code specific to a certain type of data
analysis methodology, then partial commit access may be granted. Although you will have
the ability to make modifications to any part of the repository please make modifications
only those areas for which you have permission.

13.3.2 Register for a relax infrastructure account

The first step in becoming a relax committer is to create a SourceForge account. Simply go
to https://sourceforge.net/user/registration and fill in the required details (many
parts are optional). You will then receive a confirmation email.

13.3.3 Joining the relax project

The second step in becoming a committer is to ask to become a member of the relax
project. Simply send an email to the relax development mailing list (see Section 3.3.3 on
page 31). Note that as a relax developer, you are expected to subscribe to all of the relax
mailing lists.

13.3.4 Format of the commit logs

If you are a relax developer and you have commit access to the repository the following
conventions should be followed for all commit messages.

• The length of all lines in the commit log should never exceed 100 characters. This is
so that the log message viewed in either emails or by the command prompt command
git log is legible. In vim, for example, this can be set in the vimrc file with the
line au FileType gitcommit set tw=100.

• The first line of the commit log should be a short description or synopsis of the
changes. If the change relates to a bug or a task, include the bug and task number
using the notation type #num where type is either bug, task or support and num is
the id number (for example bug #6503). Also include a link to the tracker.

• The second line should be blank.

• If the commit is a bug fix reported by a non-committer or if the commit originates
from a patch posted by a non-committer the next lines should be reserved for credit-
ing. The name of the person and their obfuscated email address (for example edward
at nmr-relax dot com) should be included in the message.

• Next should be another blank line.

https://sourceforge.net/user/registration

286 CHAPTER 13. RELAX DEVELOPMENT

• If the commit relates to an entry in the bug tracker or to a discussion on the mail-
ing lists then the web address of either the bug report or the mailing list archive
message should be cited in the next section (separated from the synopsis or credit
section by a blank line). All relevant links should be included to allow easy nav-
igation between the repository, mailing lists, bug tracker, etc. An example is the
old bug #5559 which is now archived at https://web.archive.org/web/https://
gna.org/bugs/?func=detailitem&item_id=5559 and the post to the relax devel-
opment mailing list describing the fix to that bug which is archived at http://www.
nmr-relax.com/mail.gna.org/public/relax-devel/2006-03/msg00013.html.

• A full description with all the details can follow. This description should follow a
blank line, can itself be sectioned using blank lines, and finally the log is terminated
by one blank line at the end of the message.

Example commit logs

Note these are old commit logs prior to the switch from SVN to git and prior to the Gna!
shutdown (see Section 3.1 on page 29). An example of a commit message for the closure
of a bug is:

Fixing the rest of bug #7241 (https://gna.org/bugs/?7241).

Bug #7241 was thought to be fixed in in r2591 and r2593, the commit messages describing the solution

being located at https://mail.gna.org/public/relax-commits/2006-09/msg00064.html (Message-id:

<E1GTgBi-0000R6-4h@subversion.gna.org>) for r2591 and

https://mail.gna.org/public/relax-commits/2006-10/msg00001.html (Message-id:

<E1GTt6C-0005rk-8q@subversion.gna.org>) for r2593.

However this was not the only place that the Scientific Python PDB data structure peptide_chains was

being accessed. The chains were being accessed in the file ’generic_fns/sequence.py’ when the

sequence was being read out of the PDB file. This has now been modified with changes similar to

r2591 and r2593.

An example of a commit message for changes relating to a task is:

This change implements half of task #3630 (https://gna.org/task/?3630).

The docstring in the generic optimisation function has been modified to clear up the ambiguity cased

by supplying the option ’None’ together with Newton optimisation.

One last commit message example is:

Added the API documentation creation (using Epydoc) to the Scons scripts.

The Scons target to create the HTML API documentation is called ’api_manual_html’. The

documentation can be created by typing:

$ scons api_manual_html

The function ’compile_api_manual_html()’ was added to the ’scons/manuals.py’ file. This function

runs the ’epydoc’ command. All the Epydoc options are specified in that function.

https://web.archive.org/web/https://gna.org/bugs/?func=detailitem&item_id=5559
https://web.archive.org/web/https://gna.org/bugs/?func=detailitem&item_id=5559
http://www.nmr-relax.com/mail.gna.org/public/relax-devel/2006-03/msg00013.html
http://www.nmr-relax.com/mail.gna.org/public/relax-devel/2006-03/msg00013.html

13.4. SUBMITTING CHANGES TO THE RELAX PROJECT 287

13.3.5 Discussing major changes

If you are contemplating major changes, either for a bug fix, to add a completely new
feature or user function for your own work, to improve the behaviour of part the program,
or any other potentially disruptive modifications, please discuss these ideas on the relax
development mailing list. If the planned changes have the potential to introduce problems,
the creation of a branch may be suggested.

13.4 Submitting changes to the relax project

If you are not currently registered as a relax developer, to have your changes incorporated
into relax you will either need to create patches or push your changes from your local
repository to a fork of the primary or mirror relax repositories. These changes need to be
committed to a dedicated development branch.

13.4.1 Development branches

When making changes to the relax git repository, you should never commit changes to the
master branch. Instead a dedicated development branch must be used. For example to
create a branch from the main development line, the master branch, called molmol macros

whereby new Molmol macros are to be written, type

$ git checkout master

This is to firstly switch master branch if not already there. Then create and switch to
your new development branch by typing

$ git branch molmol macros/r1

$ git checkout molmol macros/r1

The reason for the */r1 suffix will be discussed later. The master branch should be kept
clean, either by tracking the primary or mirror repository’s master branch directly, or only
performing mergers from that branch (as forks should do). Modifications can be made to
this copy while normal development continues on the master branch.

13.4.2 Keeping the branch up to date

As you develop your branch, changes will be occurring simultaneously within the master
branch. These changes should be incorporated into your branch on a regular basis to avoid
large incompatible changes from forming between the two branches. For your changes to
be incorporated into relax’s master branch, the ‘git rebase’ concept and not ‘git merge’
should be used.

Versioning git branches

If you have already pushed your changes to a remote repository, you will need to create a
new version of your branch. You should never rebase a branch that is tracking a remote

288 CHAPTER 13. RELAX DEVELOPMENT

branch (unless you subsequently rename the rebased branch and untrack the remote).
In the above example, the molmol macros/r1 branch is using such a manual versioning
system. The second version of your branch can be created by typing

$ git checkout molmol macros/r1

$ git branch molmol macros/r2

$ git checkout molmol macros/r2

You can then leave the molmol macros/r1 branch untouched and instead rebase the new
molmol macros/r2 branch.

Rebasing to the master branch

Assuming you have not already pushed your branch to a remote repository, you can rebase
your branch to the master branch. Firstly make sure your local copy of the master branch
is fully up to date, then type

$ git rebase -i master

Or fetch all changes from the primary SourceForge remote (or a mirror) and rebase to the
remote master branch with

$ git fetch sf

$ git rebase -i sf/master

If conflicts have occurred please refer to the git reference manual for information on how
to resolve the problem. To avoid accidental loss of your changes when major conflicts
occur, version control of your branch can be used to preserve the current set of changes
(see Section 13.4.2). For example if the current branch is named my branch/r4, increment
to the fifth version of the branch with

$ git checkout my branch/r4

$ git branch my branch/r5

$ git checkout my branch/r5

Then you can perform the risky rebase on the new my branch/r5 branch, knowing that
the changes in my branch/r4 remain safe. This process is a lot less stressful than having
to deal with ‘git reflog’ when things go wrong.

13.4.3 Submitting patches

Although not recommended, if you wish you can submit your changes as patches. You
will need to have a local git repository and have your changes saved as git commits in a
dedicated development branch. For details, see the git reference manual. You will need
to first make sure that your branch is fully up to date (Section 13.4.2 on page 287). The
patches are then created by typing

$ git format-patch master

This will create one *.patch file per branch commit. These files can then be emailed to
the nmr-relax-devel at lists.sourceforge.net mailing list (this requires a subscription).

https://git-scm.com/docs
https://git-scm.com/docs
https://sourceforge.net/projects/nmr-relax/lists/nmr-relax-devel

13.4. SUBMITTING CHANGES TO THE RELAX PROJECT 289

13.4.4 Repository forks

A simpler process than submitting patches is to push your development branch to a fork
of the relax repository. You can then send an email to the relax development mailing
list (see Section 3.3.3 on page 31) describing and naming the branch and providing a web
accessible URL to the git repository.

Web interface fork creation

The simplest way to create a relax fork is to use the web interface for the relax repository
at SourceForge or one of the mirrors:

• relax source code repository at Bitbucket

• relax source code repository at GitHub

• relax source code repository at GitLab

• relax source code repository at SourceForge

Simply click on the ‘fork’ button or link and follow the instructions (Bitbucket requires
a click on the plus symbol to see the fork link). This requires user registration at one of
these sites (see Section 13.1.3 on page 278).

Once the repository is forked, you can clone that repository, create a versioned development
branch, and push the branch. Or if you have a preexisting cloned relax repository you
have worked on, set the fork as a remote and push the development branch to the new
remote.

Pushing to an empty git repository

Alternatively, you can push your already cloned repository to a new git repository any-
where you wish. For example if you have your own server and create an empty bare
repository accessible from git@my domain.com/relax/relax.git, in the local clone type

$ git remote add my remote git@my domain.com/relax/relax.git

$ git push --all my remote

$ git push --tags my remote

This will push all branches and tags to the empty repository.

13.4.5 Merging the branch back into the main line

Once the changes have been accepted, possibly after a few revisions of the branch, it can
be merged by one of the relax developers back into the primary relax repository. Taking
the MOLMOL macro example again, assuming seven revisions of that branch, the relax
developer will add your remote git repository as a remote and pull in the branch. Then it
will be rebased and merged to master with

https://bitbucket.org/nmr-relax/relax/src/master/
https://github.com/nmr-relax/relax
https://gitlab.com/nmr-relax/relax
https://sourceforge.net/p/nmr-relax/code/ci/master/tree/

290 CHAPTER 13. RELAX DEVELOPMENT

$ git checkout molmol macros/r7

$ git rebase -i master

$ git checkout master

$ git merge molmol macros/r7

This ensures a clean and linear history for the master branch. If the rebase process
results in conflicts that the relax developer cannot fix, you will be asked to create a new
molmol macros/r8 branch and perform the rebase and conflict resolution yourself.

Note that web interface ‘pull requests’ or ‘merge requests’ will not be used, and that it is
better to send an email to the relax developer mailing list rather than to use these features
of the web interface (which may be missed by the relax developers, especially when a relax
mirror is used).

13.5 The SCons build system

The SCons build system was chosen over other build systems including make as it is a
cross-platform build system which can be used in Unix, GNU/Linux, Mac OS X, and even
MS Windows (the correct compilers are nevertheless required). Various components of the
program relax can be created using the SCons utility. This includes C module compilation,
manual creation, distribution creation, and cleaning up and removing certain files. The
file sconstruct in the base relax directory, which consists of python code, directs the
operation of SCons for the various functions.

13.5.1 SCons help

Multiple functions have been built into the sconstruct script and the modules of the
scons directory. Each of these can be selected by specifying different “targets” when
running SCons. A description of each target is given by the SCons help system which is
accessible by typing scons --help in the base relax directory.

13.5.2 C module compilation

As described in the installation chapter, typing scons in the base directory will create the
shared objects or dll files which are imported into Python as modules.

13.5.3 Compilation of the user manual (PDF version)

To create the PDF version of the relax user manual type

$ scons user manual pdf

in the base directory. SCons will then run a series of shell commands to create the manual
from the LATEX sources located in the docs/latex directory. This is dependent on the
programs latex, makeindex, dvips, and ps2pdf being located within the environment’s
path.

http://www.scons.org/

13.5. THE SCONS BUILD SYSTEM 291

13.5.4 Compilation of the user manual (HTML version)

The HTML version of the relax user manual is made by typing

$ scons user manual html

in the base directory. One command calling the program latex2html will be executed
which will create HTML pages from the LATEX sources.

13.5.5 Compilation of the API documentation (HTML version)

The HTML version of the relax API documentation is made by typing

$ scons api manual html

in the base directory. The programs Epydoc and Graphviz are required for creating this
documentation. The resultant HTML pages will be located in the directory docs/api.

13.5.6 Making distribution archives

Two types of distribution archive can be created from the current sources – the source
and binary distributions. To create the source distribution type

$ scons source dist

To create the binary distribution, whereby the C modules are compiled and the resultant
shared objects are included in the bzipped tar file, type

$ scons binary dist

If a binary distribution does not exist for your architecture feel free to create it yourself
and contribute the archive to be included on the download pages. To do this you will need
to check out the appropriate tag from the relax repository. If the current stable release is
called 4.0.3, check out that tag by typing

$ git checkout 4.0.3

This requires you to be in a directory of a local copy of the relax git repository (see
Section 13.1 on page 277).

Then build the binary distribution and send a message to the relax development mailing
list. If compilation does not work please submit a bug to the bug tracker system at
https://sourceforge.net/p/nmr-relax/tickets/search/ detailing the relax version,
operation system, architecture, and any other information you believe will help to solve
the problem. More information about donating binary distributions to the relax project
is given in the free software infrastructure chapter (Chapter 3, page 29).

13.5.7 Cleaning up

If the command

$ scons clean

https://sourceforge.net/p/nmr-relax/tickets/search/

292 CHAPTER 13. RELAX DEVELOPMENT

is run in the base directory all Python byte compiled files *.pyc, all C object files *.o and
*.os, and any backup files with the extension *.bak are removed from all sub-directories.
In addition any temporary LATEX compilation files are removed from the docs/latex

directory.

The more powerful command

$ scons clean all

will, in addition to all the files removed by the clean target, remove all compiled C shared
object files (*.so, *.dylib, *.pyd) and the build and dist directories created when
building the Mac OS X application.

13.6 The core design of relax

To enable flexibility, the internal structure of relax has been designed to be highly mod-
ular. By construction the large collection of independent data analysis tools can be used
individually and relatively easily by any new code implementing other forms of data anal-
ysis or even by other programs. The core modular design of the program is shown in
Figure 13.1.

13.6.1 The divisions of relax’s source code

relax’s source code can be divided into a few major categories: the initialisation code, the
user interface (UI) code, the functional code, the number crunching code, the code storing
the program state, the multi-processor, the auto-analyses, and the test suite.

Initialisation: The code belonging to this section initialises the program, processes the
command-line arguments, and determines what mode the program will be run in
including the choice of the UI.

UI: The current UI modes in relax include the prompt, the script and the GUI modes.
These consist of separate code paths, all sitting on top of the underlying functional
code. It includes the user function code with is shared by all UIs.

Functional code: This code is the main part of the program. It includes anything which
does not fit into the other sections and comprises the data pipe control code, the
specific analysis code, and the relax library.

Number crunching: The computationally expensive code belongs in this section. This
also includes parts of the relax library as used by the target functions.

Program state: Most of the state of the program is contained within the relax data store
which is accessible from all parts of the program as a singleton object. Additional
non-persistent state information is held in the relax status singleton object.

Multi-processor: All relax execution passes through this interface which allows for uni-
processor and OpenMPI multi-processor operations on code that has been specifically
parallelised for this task.

13.6. THE CORE DESIGN OF RELAX 293

Auto-analyses: Although not shown in Figure 13.1, these are essentially advanced relax
scripts to simplify data analyses for users.

Test suite: This is where the majority of relax code is located. The relax test suite covers
almost 100% of the functionality of relax. If code paths in relax are not tested in the
test suite, they are considered equivalent to not existing. The extensive and almost
complete coverage ensures that relax will be future-proof and continue to operate as
expected.

13.6.2 The major components of relax

Each of the boxes in Figure 13.1 represents a different grouping of code.

relax: The top level module. This initialises the entire program, tests the dependencies,
sets up the multi-processor framework and specific processor fabric, and prints the
program’s introduction message.

Command line arguments: This code processes the arguments supplied to the program
and decides whether to print the help message, initialise the prompt, execute a script,
initialise a different UI, run the program in test mode, or run the program as a slave
thread.

Prompt: The user interface consisting of highly modified Python prompt. The names-
pace of the interpreter contains the various user functions which are front ends to the
functional code. The auto-generated user function front end tests the supplied ar-
guments to make sure they are of the correct type (string, integer, list, or any other
type) before sending the values to the functional code. The code for the prompt
is located in the prompt/ directory and the user function front ends in the user

functions/ directory.

Script: If a script is supplied on the command line or executed within another user
interface it will be run in the same namespace as that of the prompt. Hence the
script has access to all the user functions available at the relax prompt. This allows
commands which are typed at the prompt to be pasted directly and unmodified into
a text file to be run as a script. The code sits alongside the prompt user interface in
the prompt/ directory.

GUI: The graphical user interface code base is located in the gui/ directory. It is im-
plemented using wxPython so that relax uses the native widgets of the operating
system.

Other interfaces: Any number of interfaces (for example a web-based interface or an
ncurses interface) could be added to relax with minimal modification of the rest
of relax. This must be, without question, developed within the relax source code
repository otherwise the code will not be maintainable in the future and will be
almost impossible to merge back into relax later on. Due to the almost complete
test suite coverage, relax is continually being refactored for modularity, flexibility,
and speed hence any out-of-tree code that is not safeguarded by the test suite will
quickly suffer bit-rot and depreciate in a short period of time.

https://wxpython.org/

294 CHAPTER 13. RELAX DEVELOPMENT

Number crunching

UIs

Initialisation

Functional

code

Program state

relax

Command line

arguments

Prompt GUI
(not coded)

Other interfaces

Pipe control

code

Specific analyses

API

relax data

store

Target

functions

(Python or C)

relax

library

Script

Figure 13.1: The core design of relax.

13.7. THE MAILING LISTS FOR DEVELOPMENT 295

Pipe control code: This code includes classes and functions which are independent of
the UI and not specific to a certain data pipe type or ‘specific analysis’. Pipe
control is about managing the relax data store and it is located in the pipe control/

directory.

Specific analyses API: This is the code which is specific to the data pipe type – model-
free analysis, relaxation curve-fitting, reduced spectral density mapping, the NOE
calculation, consistency testing, the N-state or ensemble model analysis, relaxation
dispersion, and the frame order analysis. Each type is located in a separate directory
(Python package) within the specific analyses/ directory.

The relax library: This is a diverse collection of functions located within the lib/ di-
rectory. Most independent functions that do not touch the relax data store or are
not part of the internal relax API should be located within the relax library. This
standalone library can be used independently of relax and it is used by all parts of
relax. The relax data store combined with the relax library creates a development
environment rivalling Mathematica, Matlab, Maxima, Octave, etc. but with a strong
focus on NMR. This includes support for handling 3D molecular structures (or no
structure), spectral data input, NMR phenomenon and many mathematics functions
specific for NMR, and data visualization.

Target functions: This is reserved for CPU intensive code involved in optimisations and
calculations. Most of relax’s execution time when performing an analysis is spent
here. An optimisation algorithm feeds in different parameter values into a ‘target
function’ in its attempt to minimise the single value returned by that target function
(often a χ2 value). The code may be written in Python however C code can be used
to increase the speed of the calculations. Note that good design and the use of
numpy can be orders of magnitude more important for speed than the choice of
programming language. For optimisation the code can include function evaluations,
calculation of gradients, and calculation of Hessians. These functions are located in
the target functions/ directory.

Data: The program state is stored in the relax data store singleton object. This class
contains all the program data and is accessed solely by the pipe control and specific
analysis code. The data structures are located in the data store/ directory. Note
that some temporary program execution information is stored in the relax status
singleton object (located in status.py).

13.7 The mailing lists for development

13.7.1 Private vs. public messages

If you would like to start a private discussion, please label your email as such. Private
messages are however strongly discouraged, only start a private conversation if you really
must.

If you receive a reply to a message you have sent, a bug report you have filed, etc. which
has not been sent to the mailing list and has not been labelled as private, then the most
likely explanation is that “reply-to-all” has not been used and hence the mailing list has

296 CHAPTER 13. RELAX DEVELOPMENT

not been included on the CC list. If this occurs, please ask the person if the message was
meant to be private and refrain from discussing any of the comments within the post. Save
these comments until after the person responds by saying that the message was private or
re-sends the message to the mailing list. Try to encourage public messages if you think
that the post need not be private and if you think that it would be useful for the mailing
list archives.

For thread consistency, if you send a message which accidentally misses the mailing list,
please do not then forward the previously sent message to the list. For better readability
of the mailing list archives, it is best that you create an entirely new message responding
to the original post. Just cut and paste your miss-directed message into your new message.
That way the thread will be continuous – there will not be any messages missing from the
middle of the thread in between the original post and your forwarded message.

To simplify the process of checking if the message was supposed to be private, you could
copy-and-paste the following message (modifying it as you see fit):

Sorry in advance, but the following is the standard pre-composed response to a post not

sent to the relax mailing lists and not labelled as private. If you would like to start

a private conversation about relax, please label your message as such. If you really

must start a private exchange, please respond to this message saying so. If your message

was meant to be sent to the relax mailing list, please send the message again. For this,

please copy-and-paste your message, replying to the original (i.e. no forwarding), and

making sure that the mailing list is in the CC field by clicking on ‘‘reply-to-all’’.

13.8 The bug, task, and support request trackers

relax’s infrastructure includes three different issue trackers. These are the:

• Bug tracker.

• Support request tracker.

• Task tracker.

13.8.1 Submitting a bug report

If someone reports a bug to one of the relax mailing lists, ask that person if they would
like to create a bug report for that problem, pointing them to the submission web page:
https://sourceforge.net/p/nmr-relax/tickets/new/. This is a good starting point
to allow the person to become more involved in the relax project. If they do not respond
or say that they would prefer not to, then you can create bug report for the issue linking
to the original message and crediting the person for reporting the issue.

13.8.2 Assigning an issue to yourself

If you are a relax committer and see an issue which you would like to solve, please assign
that issue to yourself before you start work on it. The assignment will prevent duplicated

https://sourceforge.net/p/nmr-relax/tickets/
https://sourceforge.net/p/nmr-relax/tickets-support/
https://sourceforge.net/p/nmr-relax/tickets-tasks/
https://sourceforge.net/p/nmr-relax/tickets/new/

13.9. LINKS, LINKS, AND MORE LINKS 297

efforts. If you can see an area where relax needs work, feel free to create a report within
task tracker and then assign the task to yourself.

13.8.3 Closing an issue

When closing an issue (whether a bug report, a task, or a support request) a number of
steps need to be taken. The tracker status should be edited and changed to “closed”. In
addition, a message should be included that identifies the commits in which the issue was
solved. If multiple commits were required, then include all the revisions and as many links
as possible (if a task required many commits, the relax-commits links could be skipped).
An example is bug #1, the first bug report on the SourceForge infrastructure, where the
closing comment was:

This is fixed with commit [dee4fd3622158fb859c950a163017ac797b61ae9](https://sourceforge.

net/p/nmr-relax/code/ci/dee4fd3622158fb859c950a163017ac797b61ae9).

13.9 Links, links, and more links

Creating links throughout the relax infrastructure is important for two major reasons –
navigation and search engine indexing.

13.9.1 Navigation

To be able to easily navigate between the relax infrastructure components – the bug
tracker, the task tracker, the support request tracker, the mailing lists, the commit logs,
and the git repositories – try to include as many links as possible.

For example a bug may first be reported on the relax-users mailing list, then placed within
the bug tracker, discussed on relax-devel, a fix committed to the repository, and finally
the bug report closed. To be able to follow this chain, links are very important. When the
bug is first added to the bug tracker, a link to the relax-users mailing list archive message
should be included. If you start a discussion on relax-devel, try to include links to the
bug tracker entry and the relax-users message. When committing a fix to the repository,
include links to the bug report, to the start of the thread in the mailing list archive, and the
original message to relax-users. Then when the bug report is closed, include the commit
ID of the fix and a link to the relax-commits archive message. By having all these links, it
is then very easy for someone else to jump between the systems and follow the progression
of the bug fix.

If you send a message referring to an old post which was sent the relax mailing lists, an old
bug report, or any other archived information, please take the time to find that original
information in the archives and include a link to it. It is much more efficient for a single
person to hunt down that message than for the many recipients of your post to search for
the message themselves. By including the link, you decrease the overhead of following the
mailing list.

https://sourceforge.net/p/nmr-relax/tickets/1/
https://sourceforge.net/p/nmr-relax/code/ci/dee4fd3622158fb859c950a163017ac797b61ae9
https://sourceforge.net/p/nmr-relax/code/ci/dee4fd3622158fb859c950a163017ac797b61ae9

298 CHAPTER 13. RELAX DEVELOPMENT

13.9.2 Search engine indexing

Having a large web of links across relax’s infrastructure aids in the search engine indexing
of the mailing list archives and the http://www.nmr-relax.com web site. The web of links
is useful for catching those search engine bots. That way the searching of the mailing
list archives will be more up to date (see the communication web page). However to
increase the search engine ranking of the web site, links to http://www.nmr-relax.com

from external sites is required. This is one reason why relax can be found at a number of
sites across the web:

SourceForge: Free software/open source software hosting site. See https://

sourceforge.net/projects/nmr-relax/.

Bitbucket: Free software/open source software hosting site. See https://bitbucket.

org/nmr-relax/.

GitHub: Free software/open source software hosting site. See https://github.com/

nmr-relax.

GitLab: Free software/open source software hosting site. See https://gitlab.com/

nmr-relax.

The mail archive: This site archives all of the relax mailing lists, including
relax-announce, relax-users, relax-devel, and relax-commits.

MARC - Mailing list ARChives: This site archives all of the relax mailing lists, in-
cluding relax-announce, relax-users, relax-devel, and relax-commits.

Free Software Directory: This is the Free Software Foundation’s (FSF) listing of free
software. The relax page is https://directory.fsf.org/wiki/relax.

OpenHUB: OpenHUB, previously known as Ohloh, is a free public directory of Free and
Open Source Software and the contributors who create and maintain it. This site
provides a lot of useful statistical information about relax’s development. The relax
page is https://www.openhub.net/p/nmr-relax.

LinuxLinks.com: LinuxLinks.com, the Linux portal, is a website listing many Linux
software projects. relax can be found on the Software:Scientific:Biology:Proteins
page.

Softpedia: This is the encyclopedia of free software downloads. The relax page on Softpe-
dia is http://linux.softpedia.com/get/Science/relax-22351.shtml. The re-
lax developers pages are: Edward d’Auvergne.

Pro-Linux: Diese ist eine der größten deutschsprachigen Seiten zum Thema Linux. The
relax page is http://www.pro-linux.de/cgi-bin/DBApp/check.cgi?ShowApp..

10010.100.

Open Source Software Directory: Use the Open Source Software Directory to find
the best free and open-source software for home and business. relax is currently
listed in the molecule editors category.

http://www.nmr-relax.com
http://www.nmr-relax.com/communication.html
http://www.nmr-relax.com
https://sourceforge.net/projects/nmr-relax/
https://sourceforge.net/projects/nmr-relax/
https://bitbucket.org/nmr-relax/
https://bitbucket.org/nmr-relax/
https://github.com/nmr-relax
https://github.com/nmr-relax
https://gitlab.com/nmr-relax
https://gitlab.com/nmr-relax
http://mail-archive.com/relax-announce@gna.org/
http://mail-archive.com/relax-users@gna.org/
http://mail-archive.com/relax-devel@gna.org/
http://mail-archive.com/relax-commits@gna.org/
http://marc.info/?l=relax-announce&r=1&w=2
http://marc.info/?l=relax-users&r=1&w=2
http://marc.info/?l=relax-devel&r=1&w=2
http://marc.info/?l=relax-commits&r=1&w=2
https://directory.fsf.org/wiki/relax
https://www.openhub.net/p/nmr-relax
http://linuxlinks.com/Software/Scientific/Biology/Proteins/
http://linux.softpedia.com/get/Science/relax-22351.shtml
http://linux.softpedia.com/developer/Edward-d-039-Auvergne-5136.html
http://www.pro-linux.de/cgi-bin/DBApp/check.cgi?ShowApp..10010.100
http://www.pro-linux.de/cgi-bin/DBApp/check.cgi?ShowApp..10010.100
https://opensourcesoftwaredirectory.com/Scientific/Molecule-Editors

Part IV

Advanced topics

299

Chapter 14

Optimisation

14.1 Implementation

14.1.1 The interface

Optimisation or minimisation is available in relax via the minimise.grid search and
minimise.execute user functions. The mathematical model optimised depends on the
current data pipe type – it is implemented differently for each specific analysis. For
analyses such as the steady state NOE (Chapter 6) or reduced spectral density mapping
(Chapter 8), the solution can be found by direct calculation rather than optimisation. In
these cases, the minimise.calculate user function should be used instead.

14.1.2 The minfx package

To minimise target functions within relax, the minfx optimisation library is used
(https://sourceforge.net/projects/minfx/). This Python package is bundled with the of-
ficial relax distribution archives. If you are using a version of relax checked out directly
from the source code repository, you will need to manually install minfx as a standard
Python package.

The minfx library originated as one of relax’s packages, but has been spun off as its
own project for the benefit of other scientific, analytical, or numerical projects. Minfx is
complete, very stable, well tested. Numerous optimisation algorithms are supported and
can be clustered into three major categories – the line search methods, the trust-region
methods, and the conjugate gradient methods.

The supported line search methods include:

• Steepest descent,

• Back-and-forth coordinate descent,

• Quasi-Newton BFGS,

• Newton,

301

https://sourceforge.net/projects/minfx/

302 CHAPTER 14. OPTIMISATION

• Newton-CG.

The supported trust-region methods include:

• Cauchy point,

• Dogleg,

• CG-Steihaug,

• Exact trust region.

The supported conjugate gradient methods include:

• Fletcher-Reeves,

• Polak-Ribière,

• Polak-Ribière +,

• Hestenes-Stiefel.

In addition, the following miscellaneous algorithms are implemented:

• Grid search,

• Nelder-Mead simplex,

• Levenberg-Marquardt.

The step selection subalgorithms include:

• Backtracking line search,

• Nocedal and Wright interpolation based line search,

• Nocedal and Wright line search for the Wolfe conditions,

• More and Thuente line search,

• No line search.

The Hessian modification subalgorithms include:

• Unmodified Hessian,

• Eigenvalue modification,

• Cholesky with added multiple of the identity,

• The Gill, Murray, and Wright modified Cholesky algorithm,

14.2. THE OPTIMISATION SPACE 303

• The Schnabel and Eskow 1999 algorithm.

All methods can be constrained by:

• The Method of Multipliers (also known as the Augmented Lagrangian),

• The logarithmic barrier function.

These lists may be out of date, so please see the minfx website for additional information.

14.2 The optimisation space

The optimisation of the parameters of an arbitrary model is dependent on a function f
which takes the current parameter values θ ∈ R

n and returns a single real value f(θ) ∈ R

corresponding to position θ in the n-dimensional space. For it is that single value which
is minimised as

θ̂ = argmin
θ

f(θ), (14.1)

where θ̂ is the parameter vector which is equal to the argument which minimises the
function f(θ). In most analyses in relax, f(θ) is the chi-squared equation

χ2(θ) =

n∑

i=1

(yi − yi(θ))
2

σ2
i

, (14.2)

where i is the summation index over all data, yi is the experimental data, yi(θ) is the back
calculated data, and σi is the experimental error.

14.3 Topology of the space

The problem of finding the minimum is complicated by the fact that optimisation algo-
rithms are blind to the curvature of the complete space. Instead they rely on topological
information about the current and, sometimes, the previous parameter positions in the
space. The techniques use this information to walk iteratively downhill to the minimum.

14.3.1 The function value

At the simplest level all minimisation techniques require at least a function which will
supply a single value for different parameter values θ. Conceptually this is the height of
the space at the current position. For certain algorithms, such a simplex minimisation,
this single value suffices.

304 CHAPTER 14. OPTIMISATION

14.3.2 The gradient

Most techniques also utilise the gradient at the current position. Although symbolically
complex in the case of model-free analysis, for example, the gradient can simply be calcu-
lated as the vector of first partial derivatives of the chi-squared equation with respect to
each parameter. It is defined as

∇ =

∂
∂θ1
∂

∂θ2
...
∂

∂θn

(14.3)

where n is the total number of parameters in the model.

The gradient is supplied as a second function to the algorithm which is then utilised in
diverse ways by different optimisation techniques. The function value together with the
gradient can be combined to construct a linear or planar description of the space at the
current parameter position by first-order Taylor series approximation

f(θk + x) ≈ fk + xT∇fk, (14.4)

where fk is the function value at the current parameter position θk, ∇fk is the gradient at
the same position, and x is an arbitrary vector. By accumulating information from previous
parameter positions a more comprehensive geometric description of the curvature of the
space can be exploited by the algorithm for more efficient optimisation.

An example of a powerful algorithm which requires both the value and gradient at current
parameter values is the BFGS quasi-Newton minimisation. The gradient is also essen-
tial for the use of the Method of Multipliers constraints algorithm (also known as the
Augmented Lagrangian algorithm).

14.3.3 The Hessian

The best and most comprehensive description of the space is given by the quadratic ap-
proximation of the topology which is generated from the combination of the function
value, the gradient, and the Hessian. From the second-order Taylor series expansion the
quadratic model of the space is

f(θk + x) ≈ fk + xT∇fk +
1
2x

T∇2fkx, (14.5)

where ∇2fk is the Hessian, which is the symmetric matrix of second partial derivatives of
the function, at the position θk. The Hessian is the matrix of second partial derivatives
and is defined as

∇2 =

∂2

∂θ1
2

∂2

∂θ1·∂θ2
. . . ∂2

∂θ1·∂θn
∂2

∂θ2·∂θ1
∂2

∂θ2
2 . . . ∂2

∂θ2·∂θn
...

...
. . .

...
∂2

∂θn·∂θ1
∂2

∂θn·∂θ2
. . . ∂2

∂θn
2

. (14.6)

14.4. OPTIMISATION ALGORITHMS 305

The order in which the partial derivatives are calculated is inconsequential, hence the
Hessian is symmetric.

As the Hessian is computationally expensive a number of optimisation algorithms try
to approximate it, the BFGS algorithm being a notable example. The most powerful
minimisation algorithm for model-free analysis – Newton optimisation – requires the value,
gradient, and Hessian at the current parameter values.

14.4 Optimisation algorithms

Prior to minimisation, all optimisation algorithms require a starting position within the
optimisation space. This initial parameter vector is found by employing a coarse grid
search – chi-squared values at regular positions spanning the space are calculated and the
grid point with the lowest value becomes the starting position. The grid search itself is an
optimisation technique. As it is computationally expensive the number of grid points needs
to be kept to a minimum. Hence the initial parameter values are a rough and imprecise
approximation of the local minimum.

Once the starting position has been determined by the grid search the optimisation al-
gorithm can be executed. The number of algorithms developed within the mathematical
field of optimisation is considerable. They can nevertheless be grouped into one of a small
number of major categories based on the fundamental principles of the technique. These
include the line search methods, the trust region methods, and the conjugate gradient
methods. For more details on the algorithms described below see Nocedal and Wright
(1999).

14.4.1 Line search methods

The defining characteristic of a line search algorithm is to choose a search direction pk
and then to find the minimum along that vector starting from θk (Nocedal and Wright,
1999). The distance travelled along pk is the step length αk and the parameter values for
the next iteration are

θk+1 = θk + αkpk. (14.7)

The line search algorithm determines the search direction pk whereas the value of αk is
found using an auxiliary step-length selection algorithm.

The steepest descent algorithm

One of the simplest line search methods is the steepest descent algorithm. The search
direction is simply the negative gradient, pk = −∇fk, and hence the direction of maximal
descent is always followed. This method is inefficient – the linear rate of convergence
requires many iterations of the algorithm to reach the minimum and it is susceptible to
being trapped on saddle points within the space.

306 CHAPTER 14. OPTIMISATION

The coordinate descent algorithm

The coordinate descent algorithms are a simplistic group of line search methods whereby
the search directions alternate between vectors parallel to the parameter axes. For
the back-and-forth coordinate descent the search directions cycle in one direction and
then back again. For example for a three parameter model the search directions cycle
θ1, θ2, θ3, θ2, θ1, θ2, . . ., which means that each parameter of the model is optimised one by
one. The method becomes less efficient when approaching the minimum as the step length
αk continually decreases (ibid.).

The BFGS algorithm

The quasi-Newton methods begin with an initial guess of the Hessian and update it at
each iteration using the function value and gradient. Therefore the benefits of using the
quadratic model of (14.5) are obtained without calculating the computationally expensive
Hessian. The Hessian approximation Bk is updated using various formulae, the most
common being the BFGS formula (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno,
1970). The search direction is given by the equation pk = −B−1

k ∇fk. The quasi-Newton
algorithms can attain a superlinear rate of convergence, being superior to the steepest
descent or coordinate descent methods.

The Newton algorithm

The most powerful line search method when close to the minimum is the Newton search
direction

pk = −∇2f−1
k ∇fk. (14.8)

This direction is obtained from the derivative of (14.5) which is assumed to be zero at
the minimum of the quadratic model. The vector pk points from the current position
to the exact minimum of the quadratic model of the space. The rate of convergence is
quadratic, being superior to both linear and superlinear convergence. The technique is
computationally expensive due to the calculation of the Hessian. It is also susceptible to
failure when optimisation commences from distant positions in the space as the Hessian
may not be positive definite and hence not convex, a condition required for the search
direction both to point downhill and to be reasonably oriented. In these cases the quadratic
model is a poor description of the space. This algorithm is also known as the Newton-
Raphson method.

The Newton conjugate gradient algorithm

A practical Newton algorithm which is robust for distant starting points is the Newton
conjugate gradient method (Newton-CG). This line search method, which is also called the
truncated Newton algorithm, finds an approximate solution to Equation (14.8) by using
a conjugate gradient (CG) sub-algorithm. Retaining the performance of the pure Newton
algorithm, the CG sub-algorithm guarantees that the search direction is always downhill
as the method terminates when negative curvature is encountered.

14.4. OPTIMISATION ALGORITHMS 307

The auxiliary step-length selection algorithm

Once the search direction has been determined by the above algorithms the minimum
along that direction needs to be determined. Not to be confused with the methodology
for determining the search direction pk, the line search itself is performed by an auxiliary
step-length selection algorithm to find the value αk. A number of step-length selection
methods can be used to find a minimum along the line θk+αkpk. One is the backtracking
line search of Nocedal and Wright (1999). This method is inexact – it takes a starting
step length αk and decreases the value until a sufficient decrease in the function is found.
Another is the line search method of Moré and Thuente (1994). Designed to be robust,
the MT algorithm finds the exact minimum along the search direction and guarantees
sufficient decrease.

14.4.2 Trust region methods

In the trust region class of algorithms the curvature of the space is modelled quadratically
by (14.5). This model is assumed to be reliable only within a region of trust defined by
the inequality ‖p‖ 6 ∆k where p is the step taken by the algorithm and ∆k is the radius
of the n-dimensional sphere of trust (Nocedal and Wright, 1999). The solution sought for
each iteration of the algorithm is

min
p∈Rn

mk(p) = fk + pT∇fk +
1
2p

TBkp, s.t. ‖p‖ 6 ∆k, (14.9)

where mk(p) is the quadratic model, Bk is a positive definite matrix which can be the true
Hessian as in the Newton model or an approximation such as the BFGS matrix, and ‖p‖
is the Euclidean norm of p. The trust region radius ∆k is modified dynamically during
optimisation – if the quadratic model is found to be a poor representation of the space the
radius is decreased whereas if the quadratic model is found to be reasonable the radius is
increased to allow larger, more efficient steps to be taken.

The Cauchy point algorithm

The Cauchy point algorithm is similar in concept to the steepest descent line search algo-
rithm. The Cauchy point is the point lying on the gradient which minimises the quadratic
model subject to the step being within the trust region. By iteratively finding the Cauchy
point the local minimum can be found. The convergence of the technique is inefficient,
being similar to that of the steepest descent algorithm.

The dogleg algorithm

In changing the trust region radius the exact solutions to (14.9) map out a curved trajectory
which starts parallel to the gradient for small radii. The end of the trajectory, which occurs
for radii greater than the step length, is the bottom of the quadratic model. The dogleg
algorithm attempts to follow a similar path by first finding the minimum along the gradient
and then finding the minimum along a trajectory from the current point to the bottom

308 CHAPTER 14. OPTIMISATION

of the quadratic model. The minimum along the second path is either the trust region
boundary or the quadratic solution. The matrix Bk of (14.9) can be the BFGS matrix,
the unmodified Hessian, or a Hessian modified to be positive definite.

Steihaug’s algorithm

Another trust region algorithm is Steihaug’s modified conjugate gradient approach
(Steihaug, 1983). For each step k an iterative technique is used which is almost iden-
tical to the standard conjugate gradient procedure except for two additional termination
conditions. The first is if the next step is outside the trust region, the second is if a
direction of zero or negative curvature is encountered.

The exact trust region

An almost exact solution to (14.9) can be found using an algorithm described in
Nocedal and Wright (1999). This exact trust region algorithm aims to precisely find the
minimum of the quadratic model mk of the space within the trust region ∆k. Any matrix
Bk can be used to construct the quadratic model. However, the technique is computation-
ally expensive.

14.4.3 Conjugate gradient methods

The conjugate gradient algorithm (CG) was originally designed as a mathematical tech-
nique for solving a large system of linear equations Hestenes and Stiefel (1952), but was
later adapted to solving nonlinear optimisation problems (Fletcher and Reeves, 1964). The
technique loops over a set of directions p0, p1, . . ., pn which are all conjugate to the Hessian
(Nocedal and Wright, 1999), a property defined as

pTi ∇2fkpj = 0, for all i 6= j. (14.10)

By performing line searches over all directions pj the solution to the quadratic model (14.5)
of the position θk will be found in n or less iterations of the CG algorithm where n is the
total number of parameters in the model. The technique performs well on large problems
with many parameters as no matrices are calculated or stored. The algorithms perform bet-
ter than the steepest descent method and preconditioning of the system is used to improve
optimisation. Preconditioned techniques include the Fletcher-Reeves algorithm which was
the original conjugate gradient optimisation technique (Fletcher and Reeves, 1964), the
Polak-Ribière method (Polak and Ribière, 1969), a modified Polak-Ribière method called
the Polak-Ribière + method (Nocedal and Wright, 1999), and the Hestenes-Stiefel algo-
rithm which originates from a formula in Hestenes and Stiefel (1952). As a line search is
performed to find the minimum along each conjugate direction both the backtracking and
Moré and Thuente auxiliary step-length selection algorithms will be tested with the CG
algorithms.

14.4. OPTIMISATION ALGORITHMS 309

14.4.4 Hessian modifications

The Newton search direction, used in both the line search and trust region methods, is
dependent on the Hessian being positive definite for the quadratic model to be convex so
that the search direction points sufficiently downhill. This is not always the case as saddle
points and other non-quadratic features of the space can be problematic. Two classes of
algorithms can be used to handle this situation. The first involves using the conjugate
gradient method as a sub-algorithm for solving the Newton problem for the step k. The
Newton-CG line search algorithm described above is one such example. The second class
involves modifying the Hessian prior to, or at the same time as, finding the Newton step
to guarantee that the replacement matrix Bk is positive definite. The convexity of Bk is
ensured by its eigenvalues all being positive.

The first modification uses the Cholesky factorisation of the matrix Bk, initialised to the
true Hessian, to test for convexity (Algorithm 6.3 of Nocedal and Wright (1999)). If fac-
torisation fails the matrix is not positive definite and a constant τk times the identity
matrix I is then added to Bk. The constant originates from the Robbins norm of the Hes-
sian ‖∇2fk‖F and is steadily increased until the factorisation is successful. The resultant
Cholesky lower triangular matrix L can then be used to find the approximate Newton
direction. If τk is too large the convergence of this technique can approach that of the
steepest descent algorithm.

The second method is the Gill, Murray, and Wright (GMW) algorithm (Gill et al., 1981)
which modifies the Hessian during the execution of the Cholesky factorisation ∇2fk =
LILT , where L is a lower triangular matrix and D is a diagonal matrix. Only a single
factorisation is required. As rows and columns are interchanged during the algorithm
the technique may be slow for large problems such as the optimisation of the model-
free parameters of all spins together with the diffusion tensor parameters. The rate of
convergence of the technique is quadratic.

14.4.5 Other methods

Nelder-Mead simplex

Some optimisation algorithms cannot be classified within line search, trust region, or con-
jugate gradient categories. For example the well known Nelder-Mead simplex optimisation
algorithm. The technique is often used as the only the function value is employed and
hence the derivation of the gradient and Hessian can be avoided. The simplex is created
as an n-dimensional geometric object with n+ 1 vertices. The first vertex is the starting
position. Each of the other n vertices are created by shifting the starting position by a
small amount parallel to one of unit vectors defining the coordinate system of the space.
Four simple rules are used to move the simplex through the space: reflection, extension,
contraction, and a shrinkage of the entire simplex. The result of these movements is that
the simplex moves in an ameoboid-like fashion downhill, shrinking to pass through tight
gaps and expanding to quickly move through non-convoluted space, eventually finding the
minimum.

Key to these four movements is the pivot point, the centre of the face created by the n
vertices with the lowest function values. The first movement is a reflection – the vertex

310 CHAPTER 14. OPTIMISATION

with the greatest function value is reflected through the pivot point on the opposite face
of the simplex. If the function value at this new position is less than all others the simplex
is allowed to extend – the point is moved along the line to twice the distance between the
current position and the pivot point. Otherwise if the function value is greater than the
second highest value but less than the highest value, the reflected simplex is contracted.
The reflected point is moved to be closer to the simplex, its position being half way between
the reflected position and the pivot point. Otherwise if the function value at the reflected
point is greater than all other vertices, then the original simplex is contracted – the highest
vertex is moved to a position half way between the current position and the pivot point.
Finally if none of these four movements yield an improvement, then the simplex is shrunk
halfway towards the vertex with the lowest function value.

Levenberg-Marquardt algorithm

Another algorithm is the commonly used Levenberg-Marquardt algorithm (Levenberg,
1944; Marquardt, 1963). This is the algorithm used by the model-free analysis programs
Modelfree4, Dasha, and Tensor2. This technique is designed for least-squares problems to
which the chi-squared equation (14.2) belongs. The key to the algorithm is the replacement
of the Hessian with the Levenberg-Marquardt matrix JTJ + λI, where J is the Jacobian
of the system calculated as the matrix of partial derivatives of the residuals, λ > 0 is a
factor related to the trust-region radius, and I is the identity matrix. The algorithm is
conceptually allied to the trust region methods and its performance varies finely between
that of the steepest descent and the pure Newton step. When far from the minimum λ is
large and the algorithm takes steps close to the gradient; when in vicinity of the minimum
λ heads towards zero and the steps taken approximate the Newton direction. Hence the
algorithm avoids the problems of the Newton algorithm when non-convex curvature is
encountered and approximates the Newton step in convex regions of the space.

The technique does have one weak point though which is often mentioned only in the small
print. That is that the algorithm catastrophically fails when the Levenberg-Marquardt
matrix is singular. This occurs whenever a parameter is undefined. For example in a
model-free analysis if the order parameter is one, then the corresponding internal correla-
tion time can take any value. Performing a grid search with such undefined points greatly
amplifies the problem and is the reason why many published model-free papers contain
results with order parameters fixed at one (d’Auvergne and Gooley, 2008b).

14.5 Constraint algorithms

To guarantee that the minimum will still be reached the implementation of constraints
limiting the parameter values together with optimisation algorithms is not a triviality.
For this to occur the space and its boundaries must remain smooth thereby allowing the
algorithm to move along the boundary to either find the minimum along the limit or to
slide along the limit and then move back into the centre of the constrained space once the
curvature allows it.

14.5. CONSTRAINT ALGORITHMS 311

14.5.1 Method of Multipliers algorithm

One of the most powerful approaches is the Method of Multipliers (Nocedal and Wright,
1999), also known as the Augmented Lagrangian. Instead of a single optimisation the
algorithm is iterative with each iteration consisting of an independent unconstrained min-
imisation on a sequentially modified space. When inside the limits the function value
is unchanged but when outside a penalty, which is proportional to the distance outside
the limit, is added to the function value. This penalty, which is based on the Lagrange
multipliers, is smooth and hence the gradient and Hessian are continuous at and beyond
the constraints. For each iteration of the Method of Multipliers the penalty is increased
until it becomes impossible for the parameter vector to be in violation of the limits. This
approach allows the parameter vector θ outside the limits yet the successive iterations
ensure that the final results will not be in violation of the constraint.

For inequality constraints, each iteration of the Method of Multipliers attempts to solve
the quadratic sub-problem

min
θ

LA(θ, λ
k;µk)

def
= f(θ) +

∑

i∈I

Ψ(ci(θ), λ
k
i ;µk), (14.11)

where the function Ψ is defined as

Ψ(ci(θ), λ
k;µk) =

{
−λkci(θ) +

1
2µk

c2i (θ) if ci(θ)− µkλ
k 6 0,

−µk

2 (λk)2 otherwise.
(14.12)

In (14.11), θ is the parameter vector; LA is the Augmented Lagrangian function; k is the
current iteration of the Method of Multipliers; λk are the Lagrange multipliers which are
positive factors such that, at the minimum θ̂, ∇f(θ̂) = λi∇ci(θ̂); µk > 0 is the penalty
parameter which decreases to zero as k → ∞; I is the set of inequality constraints; and
ci(θ) is an individual constraint value. The Lagrange multipliers are updated using the
formula

λk+1
i = max(λk

i − ci(θ)/µk, 0), for all i ∈ I. (14.13)

The gradient of the Augmented Lagrangian is

∇LA(θ, λ
k;µk) = ∇f(θ)−

∑

i∈I|ci(θ)6µkλ
k
i

(
λk
i −

ci(θ)

µk

)
∇ci(θ), (14.14)

and the Hessian is

∇2LA(θ, λ
k;µk) = ∇2f(θ) +

∑

i∈I|ci(θ)6µkλ
k
i

[
1

µk
∇c2i (θ)−

(
λk
i −

ci(θ)

µk

)
∇2ci(θ)

]
. (14.15)

The Augmented Lagrangian algorithm can accept any set of three arbitrary constraint
functions c(θ), ∇c(θ), and ∇2c(θ). When given the current parameter values c(θ) returns
a vector of constraint values whereby each position corresponds to one of the model pa-
rameters. The constraint is defined as ci > 0. The function ∇c(θ) returns the matrix of

312 CHAPTER 14. OPTIMISATION

constraint gradients and ∇2c(θ) is the constraint Hessian function which should return the
3D matrix of constraint Hessians.

A more specific set of constraints accepted by the Method of Multipliers are bound con-
straints. These are defined by the function

l 6 θ 6 u, (14.16)

where l and u are the vectors of lower and upper bounds respectively and θ is the parameter
vector. For example for model-free modelm4 to place lower and upper bounds on the order
parameter and lower bounds on the correlation time and chemical exchange parameters,
the vectors are

0
0
0

 6

S2

τe
Rex

 6

1
∞
∞

 . (14.17)

The default setting in the program relax is to use linear constraints which are defined as

A · θ > b, (14.18)

where A is an m × n matrix where the rows are the transposed vectors ai of length n;
the elements of ai are the coefficients of the model parameters; θ is the vector of model
parameters of dimension n; b is the vector of scalars of dimension m; m is the number of
constraints; and n is the number of model parameters.

In rearranging (14.18) the linear constraint function c(θ) returns the vector A · θ − b.
Because of the linearity of the constraints the gradient and Hessian are greatly simplified.
The gradient ∇c(θ) is simply the matrix A and the Hessian ∇2c(θ) is zero.

14.5.2 Logarithmic barrier constraint algorithm

Another constraint method is that of the logarithmic barrier algorithm. As in the Method
of Multipliers this method is iterative. The function being minimised is replaced with

Φ(θ) =

{
ǫ
∑m

i=1 − log(bi −AT
i θ) if A · θ < b,

+∞ otherwise.
(14.19)

The value of ǫ is increased with each iteration, increase the logarithmic penalty. An
advantage of this method over the Method of Multipliers is that gradients are not required.

14.6 Diagonal scaling

Model scaling can have a significant effect on the optimisation algorithm – a poorly scaled
model can cause certain techniques to fail. When two parameters of the model lie on very
different numeric scales the model is said to be poorly scaled. For example in model-free
analysis the order of magnitude of the order parameters is one whereas for the internal

14.6. DIAGONAL SCALING 313

correlation times the order of magnitude is between 1e−12 to 1e−8. Most effected are the
trust region algorithms – the multidimensional sphere of trust will either be completely
ineffective against the correlation time parameters or severely restrict optimisation in the
order parameter dimensions. Again in model-free analyses the significant scaling dispar-
ity can even cause failure of optimisation due to amplified effects of machine precision.
Therefore the model parameters need to be scaled.

This can be done by supplying the optimisation algorithm with the scaled rather than
unscaled parameters. When the chi-squared function, gradient, and Hessian are called the
vector is then premultiplied with a diagonal matrix in which the diagonal elements are the
scaling factors.

314 CHAPTER 14. OPTIMISATION

Chapter 15

Optimisation of relaxation data –
values, gradients, and Hessians

15.1 Introduction to the mathematics behind the optimisa-

tion of relaxation data

A word of warning before reading this chapter, the topics covered here are quite advanced
and are not necessary for understanding how to either use relax or to implement any of the
data analysis techniques present within relax. The material of this chapter is intended as
an in-depth explanation of the mathematics involved in the optimisation of the parameters
of the model-free models, or any theory involving relaxation data. As such it contains the
chi-squared equation, relaxation equations, spectral density functions, and diffusion tensor
equations as well as their gradients (the vector of first partial derivatives) and Hessians (the
matrix of second partial derivatives). All these equations are used in the optimisation of
model-free models m0 to m9; models tm0 to tm9; the ellipsoidal, spheroidal, and spherical
diffusion tensors; and the combination of the diffusion tensor and the model-free models.
They also apply to all other theories involving the base R1, R2, and steady-state NOE
relaxation rates.

15.2 The four parameter combinations

In model-free analysis four different combinations of parameters can be optimised, each of
which requires a different approach to the construction of the chi-squared value, gradient,
and Hessian. These categories depend on whether the model-free parameter set F, the
diffusion tensor parameter set D, or both sets are simultaneously optimised. The addition
of the local τm parameter to the model-free set F creates a fourth parameter combination.

15.2.1 Optimisation of the model-free models

This is the simplest category as it involves solely the optimisation of the model-free pa-
rameters of an individual residue while the diffusion tensor parameters are held constant.

315

316CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

The model-free parameters belong to the set Fi of the residue i. The models include m0
to m9 and the dimensionality is low with

dimFi = k 6 5 (15.1)

for the most complex model m8 = {S2, τf , S
2
f , τs, Rex}. The relaxation data of a single

residue is used to build the chi-squared value, gradient, and Hessian.

15.2.2 Optimisation of the local τm models

The addition of the local τm parameter to the set Fi creates a new set of models which will
be labelled Ti. These include models tm0 to tm9. The local τm parameter is the single
member of the set Di and in set notation

Ti = Di ∪ Fi. (15.2)

Although the Brownian rotational diffusion parameter local τm is optimised, this category
is residue specific. As such the complexity of the optimisation is lower than the next two
categories. It is slightly greater than the optimisation of the set Fi as

dimTi = 1 + k 6 6, (15.3)

where k is the number of model-free parameters.

15.2.3 Optimisation of the diffusion tensor parameters

The parameters of the Brownian rotational diffusion tensor belong to the set D. This
set is the union of the geometric parameters G = {Diso,Da,Dr} and the orientational
parameters O,

D = G ∪O. (15.4)

When diffusion is spherical solely the geometric parameter Diso is optimised. When the
molecule diffuses as a spheroid the geometric parameters Diso andDa and the orientational
parameters θ (the polar angle) and φ (the azimuthal angle) are optimised. If the molecule
diffuses as an ellipsoid the geometric parameters Diso, Da, and Dr are optimised together
with the Euler angles α, β, and γ.

This category is defined as the optimisation of solely the parameters of D. The model-
free parameters of F are held constant. As all selected residues of the macromolecule are
involved in the optimisation, this category is global and can be more complex than the
optimisation of Fi or Ti. The dimensionality of the problem nevertheless low with

dimD = 1, dimD = 4, dimD = 6, (15.5)

for the diffusion as a sphere, spheroid, and ellipsoid respectively.

15.3. CONSTRUCTION OF THE VALUES, GRADIENTS, AND HESSIANS 317

15.2.4 Optimisation of the global model S

The global model is defined as

S = D ∪
(

l⋃

i=1

Fi

)
, (15.6)

where i is the residue index and l is the total number of residues used in the analysis. This
is the most complex of the four categories as both diffusion tensor parameters and model-
free parameters of all selected residues are optimised simultaneously. The dimensionality
of the model S is much greater than the other categories and is equal to

dimS = dimD+
l∑

i=1

ki 6 6 + 5l, (15.7)

where ki is the number of model-free parameters for the residue i and is equal to dimFi,
the number six corresponds to the maximum dimensionality of D, and the number five
corresponds to the maximum dimensionality of Fi.

15.3 Construction of the values, gradients, and Hessians

15.3.1 The sum of chi-squared values

For the single residue models of Fi and Ti the chi-squared value χ2
i which is optimised

is simply Equation (15.13) on page 321 in which the relaxation data is that of residue i.
However for the global models D and S in which all selected residues are involved the
optimised chi-squared value is the sum of those for each residue,

χ2 =
l∑

i=1

χ2
i , (15.8)

where i is the residue index and l is the total number of residues used in the analysis. This
is equivalent to Equation (15.13) when the index i ranges over the relaxation data of all
selected residues.

15.3.2 Construction of the gradient

The construction of the gradient is significantly different for the models Fi, Ti, D, and S.
In Figure 15.1 the construction of the chi-squared gradient ∇χ2 for the global model S is
demonstrated. In this case

∇χ2 =

l∑

i=1

∇χ2
i , (15.9)

318CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

Figure 15.1: The construction of the model-free gradient ∇χ2 for the global model S.
For each residue i a different vector ∇χ2

i is constructed. The first element of the vector
represented by the symbol ∂D (the orange block) is the sub-vector of chi-squared partial
derivatives with respect to each of the diffusion tensor parameters Dj. The rest of the
elements, grouped into blocks for each residue denoted by the symbol ∂Fi, are the sub-
vectors of chi-squared partial derivatives with respect to each of the model-free parameters
F
j
i . For the residue dependent vector ∇χ2

i the partial derivatives with respect to the model-
free parameters of Fj where i 6= j are zero. These blocks are left uncoloured. The complete
gradient of S is the sum of the vectors ∇χ2

i .

15.4. THE VALUE, GRADIENT, AND HESSIAN DEPENDENCY CHAIN 319

where∇χ2
i is the vector of partial derivatives of the chi-squared equation χ2

i for the residue
i. The length of this vector is

‖∇χ2
i ‖ = dimS, (15.10)

with each position of the vector j equal to
∂χ2

i

∂θj
where each θj is a parameter of the model.

The construction of the gradient ∇χ2 for the model D is simply a subset of that of S.
This is demonstrated in Figure 15.1 by simply taking the component of the gradient ∇χ2

i

denoted by the symbol ∂D (the orange blocks) and summing these for all residues. This
sum is given by (15.9) and

‖∇χ2
i ‖ = dimD. (15.11)

For the parameter set Ti, which consists of the local τm parameter and the model-free
parameters of a single residue, the gradient ∇χ2

i for the residue i is simply the combination
of the single orange block and single yellow block of the index i (Figure 15.1).

The model-free parameter set Fi is even simpler. In Figure 15.1 the gradient ∇χ2
i is simply

the vector denoted by the single yellow block for the residue i.

15.3.3 Construction of the Hessian

The construction of the Hessian for the models Fi, Ti, D, and S is very similar to the
procedure used for the gradient. The chi-squared Hessian for the global models D and S

is

∇2χ2 =
l∑

i=1

∇2χ2
i . (15.12)

Figure 15.2 demonstrates the construction of the full Hessian for the model S. The
Hessian for the model D is the sum of all the red blocks. The Hessian for the model Ti is
the combination of the single red block for residue i, the two orange blocks representing
the sub-matrices of chi-squared second partial derivatives with respect to the diffusion
parameter Dj and the model-free parameter Fk

i , and the single yellow block for that
residue. The Hessian for the model-free model Fi is simply the sub-matrix for the residue
i coloured yellow.

15.4 The value, gradient, and Hessian dependency chain

The dependency chain which was outlined in the model-free chapter – that the chi-squared
function is dependent on the transformed relaxation equations which are dependent on the
relaxation equations which themselves are dependent on the spectral density functions –
combine with the values, gradients, and Hessians to create a complex web of dependencies.
The relationship between all the values, gradients, and Hessians are outlined in Figure 15.3.

320CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

Figure 15.2: The model-free Hessian kite – a demonstration of the construction of the
model-free Hessian ∇2χ2 for the global model S. For each residue i a different matrix
∇2χ2

i is constructed. The first element of the matrix represented by the two symbols ∂D
(the red block) is the sub-matrix of chi-squared second partial derivatives with respect to
the diffusion tensor parameters Dj and Dk. The orange blocks are the sub-matrices of
chi-squared second partial derivatives with respect to the diffusion parameter Dj and the
model-free parameter Fk

i . The yellow blocks are the sub-matrices of chi-squared second

partial derivatives with respect to the model-free parameters F
j
i and Fk

i . For the residue
dependent matrix ∇2χ2

i the second partial derivatives with respect to the model-free pa-

rameters Fj
l and Fk

l where i 6= l are zero. In addition, the second partial derivatives with

respect to the model-free parameters Fj
i and Fk

l where i 6= l are also zero. These blocks of
sub-matrices are left uncoloured. The complete Hessian of S is the sum of the matrices
∇2χ2

i .

15.5. THE χ2 VALUE, GRADIENT, AND HESSIAN 321

Figure 15.3: Dependencies between the χ2, transformed relaxation, relaxation, and spec-
tral density equations, gradients, and Hessians.

15.5 The χ2 value, gradient, and Hessian

15.5.1 The χ2 value

The χ2 value is defined as

χ2(θ) =

n∑

i=1

(Ri − Ri(θ))
2

σ2
i

, (15.13)

where the summation index i ranges over all the relaxation data of all residues used in the
analysis.

15.5.2 The χ2 gradient

The χ2 gradient in vector notation is

∇χ2(θ) = 2

n∑

i=1

(Ri − Ri(θ))
2

σ2
i

∇Ri(θ). (15.14)

15.5.3 The χ2 Hessian

The χ2 Hessian in vector notation is

∇2χ2(θ) = 2
n∑

i=1

1

σ2
i

(
∇Ri(θ) · ∇Ri(θ)

T − (Ri − Ri(θ))∇2Ri(θ)
)
. (15.15)

322CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

15.6 The Ri(θ) values, gradients, and Hessians

15.6.1 The Ri(θ) values

The Ri(θ) values are given by

R1(θ) = R′
1(θ), (15.16a)

R2(θ) = R′
2(θ), (15.16b)

NOE(θ) = 1 +
γH

γX

σNOE(θ)

R1(θ)
. (15.16c)

15.6.2 The Ri(θ) gradients

The Ri(θ) gradients in vector notation are

∇R1(θ) = ∇R′
1(θ), (15.17a)

∇R2(θ) = ∇R′
2(θ), (15.17b)

∇NOE(θ) =
γH

γX

1

R1(θ)2

(
R1(θ)∇σNOE(θ)− σNOE(θ)∇R1(θ)

)
. (15.17c)

15.6.3 The Ri(θ) Hessians

The Ri(θ) Hessians in vector notation are

∇2R1(θ) = ∇2R′
1(θ), (15.18a)

∇2R2(θ) = ∇2R′
2(θ), (15.18b)

∇2NOE(θ) =
γH

γX

1

R1(θ)3

[
σNOE(θ)

(
2∇R1(θ) · ∇R1(θ)

T −R1(θ)∇2R1(θ)
)

− R1(θ)
(
∇σNOE(θ) · ∇R1(θ)

T − R1(θ)∇2σNOE(θ)
)]

. (15.18c)

15.7. R′
I(θ) VALUES, GRADIENTS, AND HESSIANS 323

15.7 R′
i(θ) values, gradients, and Hessians

The partial and second partial derivatives of the relaxation equations of the set R′(θ) are
different for each parameter of the vector θ. The vector representation of the gradient
∇R′

i(θ) and the matrix representation of the Hessian ∇2R′
i(θ) can be reconstructed from

the individual elements presented in the next section.

15.7.1 Components of the R′
i(θ) equations

To simplify the calculations of the gradients and Hessians the R′
i(θ) equations have been

broken down into a number of components. These include the dipolar and CSA constants
as well as the dipolar and CSA spectral density terms for each of the three transformed
relaxation data types {R1, R2, σNOE}. The segregation of these components simplifies the
maths as many partial derivatives of the components are zero.

Dipolar constant

The dipolar constant is defined as

d =
1

4

(µ0

4π

)2 (γHγX~)
2

< r6 >
. (15.19)

This component of the relaxation equations is independent of the parameter of the spectral
density function θj , the chemical exchange parameter ρex, and the CSA parameter ∆σ.
Therefore the partial and second partial derivatives with respect to these parameters is
zero. Only the derivative with respect to the bond length r is non-zero being

d′ ≡ dd

dr
= −3

2

(µ0

4π

)2 (γHγX~)
2

< r7 >
. (15.20)

The second derivative with respect to the bond length is

d′′ ≡ d2d

dr2
=

21

2

(µ0

4π

)2 (γHγX~)
2

< r8 >
. (15.21)

CSA constant

The CSA constant is defined as

c =
(ωX ·∆σ)2

3
. (15.22)

The partial derivative of this component with respect to all parameters but the CSA
parameter ∆σ is zero. This derivative is

c′ ≡ dc

d∆σ
=

2ω2
X ·∆σ

3
. (15.23)

The CSA constant second derivative with respect to ∆σ is

c′′ ≡ d2c

d∆σ2
=

2ω2
X

3
. (15.24)

324CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

Rex constant

The Rex constant is defined as
Rex = ρex(2πωH)2. (15.25)

The partial derivative of this component with respect to all parameters but the chemical
exchange parameter ρex is zero. This derivative is

R′
ex ≡ dRex

dρex
= (2πωH)2. (15.26)

The Rex constant second derivative with respect to ρex is

R′′
ex ≡ d2Rex

dρ2ex
= 0. (15.27)

Spectral density terms of the R1 dipolar component

For the dipolar component of the R1 equation (7.3a) on page 86 the spectral density terms
are

JR1

d = J(ωH − ωX) + 3J(ωX) + 6J(ωH + ωX). (15.28)

The partial derivative of these terms with respect to the spectral density function param-
eter θj is

JR1

d

′ ≡ ∂JR1

d

∂θj
=

∂J(ωH − ωX)

∂θj
+ 3

∂J(ωX)

∂θj
+ 6

∂J(ωH + ωX)

∂θj
. (15.29)

The second partial derivative with respect to the spectral density function parameters θj
and θk is

JR1

d

′′ ≡ ∂2JR1

d

∂θj · ∂θk
=

∂2J(ωH − ωX)

∂θj · ∂θk
+ 3

∂2J(ωX)

∂θj · ∂θk
+ 6

∂2J(ωH + ωX)

∂θj · ∂θk
. (15.30)

Spectral density terms of the R1 CSA component

For the CSA component of the R1 equation (7.3a) on page 86 the spectral density terms
are

JR1
c = J(ωX). (15.31)

The partial derivative of these terms with respect to the spectral density function param-
eter θj is

JR1
c

′ ≡ ∂JR1
c

∂θj
=

∂J(ωX)

∂θj
. (15.32)

The second partial derivative with respect to the spectral density function parameters θj
and θk is

JR1
c

′′ ≡ ∂2JR1
c

∂θj.∂θk
=

∂2J(ωX)

∂θj · ∂θk
. (15.33)

15.7. R′
I(θ) VALUES, GRADIENTS, AND HESSIANS 325

Spectral density terms of the R2 dipolar component

For the dipolar component of the R2 equation (7.3b) on page 86 the spectral density terms
are

JR2

d = 4J(0) + J(ωH − ωX) + 3J(ωX) + 6J(ωH) + 6J(ωH + ωX). (15.34)

The partial derivative of these terms with respect to the spectral density function param-
eter θj is

JR2

d

′ ≡ ∂JR2

d

∂θj
= 4

∂J(0)

∂θj
+
∂J(ωH − ωX)

∂θj
+3

∂J(ωX)

∂θj
+6

∂J(ωH)

∂θj
+6

∂J(ωH + ωX)

∂θj
. (15.35)

The second partial derivative with respect to the spectral density function parameters θj
and θk is

JR2

d

′′ ≡ ∂2JR2

d

∂θj · ∂θk
= 4

∂2J(0)

∂θj · ∂θk
+

∂2J(ωH − ωX)

∂θj · ∂θk
+ 3

∂2J(ωX)

∂θj · ∂θk

+ 6
∂2J(ωH)

∂θj · ∂θk
+ 6

∂2J(ωH + ωX)

∂θj · ∂θk
. (15.36)

Spectral density terms of the R2 CSA component

For the CSA component of the R2 equation (7.3b) on page 86 the spectral density terms
are

JR2
c = 4J(0) + 3J(ωX). (15.37)

The partial derivative of these terms with respect to the spectral density function param-
eter θj is

JR2
c

′ ≡ ∂JR2
c

∂θj
= 4

∂J(0)

∂θj
+ 3

∂J(ωX)

∂θj
. (15.38)

The second partial derivative with respect to the spectral density function parameters θj
and θk is

JR2
c

′′ ≡ ∂2JR2
c

∂θj · ∂θk
= 4

∂2J(0)

∂θj · ∂θk
+ 3

∂2J(ωX)

∂θj · ∂θk
. (15.39)

Spectral density terms of the σNOE dipolar component

For the dipolar component of the σNOE equation (7.3c) on page 86 the spectral density
terms are

JσNOE

d = 6J(ωH + ωX)− J(ωH − ωX). (15.40)

The partial derivative of these terms with respect to the spectral density function param-
eter θj is

JσNOE

d
′ ≡ ∂JσNOE

d

∂θj
= 6

∂J(ωH + ωX)

∂θj
− ∂J(ωH − ωX)

∂θj
. (15.41)

326CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

The second partial derivative with respect to the spectral density function parameters θj
and θk is

JσNOE

d
′′ ≡ ∂2JσNOE

d

∂θj · ∂θk
= 6

∂2J(ωH + ωX)

∂θj · ∂θk
− ∂2J(ωH − ωX)

∂θj · ∂θk
. (15.42)

15.7.2 R′
i(θ) values

Using the components of the relaxation equations defined above the three relaxation equa-
tions can be re-expressed as

R1(θ) = dJR1

d + cJR1
c , (15.43a)

R2(θ) =
d

2
JR2

d +
c

6
JR2
c , (15.43b)

σNOE(θ) = dJσNOE

d . (15.43c)

15.7.3 R′
i(θ) gradients

A different partial derivative exists for the spectral density function parameter θj, the
chemical exchange parameter ρex, CSA parameter ∆σ, and bond length parameter r. In
model-free analysis the spectral density parameters include both the parameters of the
diffusion tensor and the parameters of the various model-free models.

θj partial derivative

The partial derivatives of the relaxation equations with respect to the spectral density
function parameter θj are

∂R1(θ)

∂θj
= dJR1

d

′
+ cJR1

c
′
, (15.44a)

∂R2(θ)

∂θj
=

d

2
JR2

d

′
+

c

6
JR2
c

′
, (15.44b)

∂σNOE(θ)

∂θj
= dJσNOE

d
′. (15.44c)

ρex partial derivative

The partial derivatives of the relaxation equations with respect to the chemical exchange
parameter ρex are

∂R1(θ)

∂ρex
= 0, (15.45a)

∂R2(θ)

∂ρex
= (2πωH)2, (15.45b)

∂σNOE(θ)

∂ρex
= 0. (15.45c)

15.7. R′
I(θ) VALUES, GRADIENTS, AND HESSIANS 327

∆σ partial derivative

The partial derivatives of the relaxation equations with respect to the CSA parameter ∆σ
are

∂R1(θ)

∂∆σ
= c′JR1

c , (15.46a)

∂R2(θ)

∂∆σ
=

c′

6
JR2
c , (15.46b)

∂σNOE(θ)

∂∆σ
= 0. (15.46c)

r partial derivative

The partial derivatives of the relaxation equations with respect to the bond length param-
eter r are

∂R1(θ)

∂r
= d′JR1

d , (15.47a)

∂R2(θ)

∂r
=

d′

2
JR2

d , (15.47b)

∂σNOE(θ)

∂r
= d′JσNOE

d . (15.47c)

15.7.4 R′
i(θ) Hessians

Again different second partial derivatives with respect to the spectral density function
parameters θj and θk, the chemical exchange parameter ρex, CSA parameter ∆σ, and
bond length parameter r. These second partial derivatives are the components of the
R′

i(θ) Hessian matrices.

θj – θk partial derivative

The second partial derivatives of the relaxation equations with respect to the spectral
density function parameters θj and θk are

∂2R1(θ)

∂θj · ∂θk
= dJR1

d

′′
+ cJR1

c
′′
, (15.48a)

∂2R2(θ)

∂θj · ∂θk
=

d

2
JR2

d

′′
+

c

6
JR2
c

′′
, (15.48b)

∂2σNOE(θ)

∂θj · ∂θk
= dJσNOE

d
′′. (15.48c)

328CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

θj – ρex partial derivative

The second partial derivatives of the relaxation equations with respect to the spectral
density function parameter θj and the chemical exchange parameter ρex are

∂2R1(θ)

∂θj · ∂ρex
= 0, (15.49a)

∂2R2(θ)

∂θj · ∂ρex
= 0, (15.49b)

∂2σNOE(θ)

∂θj · ∂ρex
= 0. (15.49c)

θj – ∆σ partial derivative

The second partial derivatives of the relaxation equations with respect to the spectral
density function parameter θj and the CSA parameter ∆σ are

∂2R1(θ)

∂θj · ∂∆σ
= c′JR1

c
′
, (15.50a)

∂2R2(θ)

∂θj · ∂∆σ
=

c′

6
JR2
c

′
, (15.50b)

∂2σNOE(θ)

∂θj · ∂∆σ
= 0. (15.50c)

θj – r partial derivative

The second partial derivatives of the relaxation equations with respect to the spectral
density function parameter θj and the bond length parameter r are

∂2R1(θ)

∂θj · ∂r
= d′JR1

d

′
, (15.51a)

∂2R2(θ)

∂θj · ∂r
=

d′

2
JR2

d

′
, (15.51b)

∂2σNOE(θ)

∂θj · ∂r
= d′JσNOE

d
′. (15.51c)

ρex – ρex partial derivative

The second partial derivatives of the relaxation equations with respect to the chemical
exchange parameter ρex twice are

∂2R1(θ)

∂ρex
2 = 0, (15.52a)

∂2R2(θ)

∂ρex
2 = 0, (15.52b)

∂2σNOE(θ)

∂ρex
2 = 0. (15.52c)

15.7. R′
I(θ) VALUES, GRADIENTS, AND HESSIANS 329

ρex – ∆σ partial derivative

The second partial derivatives of the relaxation equations with respect to the chemical
exchange parameter ρex and the CSA parameter ∆σ are

∂2R1(θ)

∂ρex · ∂∆σ
= 0, (15.53a)

∂2R2(θ)

∂ρex · ∂∆σ
= 0, (15.53b)

∂2σNOE(θ)

∂ρex · ∂∆σ
= 0. (15.53c)

ρex – r partial derivative

The second partial derivatives of the relaxation equations with respect to the chemical
exchange parameter ρex and the bond length parameter r are

∂2R1(θ)

∂ρex · ∂r
= 0, (15.54a)

∂2R2(θ)

∂ρex · ∂r
= 0, (15.54b)

∂2σNOE(θ)

∂ρex · ∂r
= 0. (15.54c)

∆σ – ∆σ partial derivative

The second partial derivatives of the relaxation equations with respect to the CSA param-
eter ∆σ twice are

∂2R1(θ)

∂∆σ2 = c′′JR1
c , (15.55a)

∂2R2(θ)

∂∆σ2 =
c′′

6
JR2
c , (15.55b)

∂2σNOE(θ)

∂∆σ2 = 0. (15.55c)

∆σ – r partial derivative

The second partial derivatives of the relaxation equations with respect to the CSA param-
eter ∆σ and the bond length parameter r are

∂2R1(θ)

∂∆σ · ∂r = 0, (15.56a)

∂2R2(θ)

∂∆σ · ∂r = 0, (15.56b)

∂2σNOE(θ)

∂∆σ · ∂r = 0. (15.56c)

330CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

r – r partial derivative

The second partial derivatives of the relaxation equations with respect to the bond length
parameter r twice are

∂2R1(θ)

∂r2
= d′′JR1

d , (15.57a)

∂2R2(θ)

∂r2
=

d′′

2
JR2

d , (15.57b)

∂2σNOE(θ)

∂r2
= d′′JσNOE

d . (15.57c)

15.8. OPTIMISATION EQUATIONS FOR THE MODEL-FREE ANALYSIS 331

15.8 Optimisation equations for the model-free analysis

15.8.1 The model-free equations

In the original model-free analysis of Lipari and Szabo (1982a) the correlation function
C(τ) of the XH bond vector is approximated by decoupling the internal fluctuations of
the bond vector CI(τ) from the correlation function of the overall Brownian rotational
diffusion CO(τ) by the equation

C(τ) = CO(τ) · CI(τ). (15.58)

The overall correlation functions of the diffusion of a sphere, spheroid, and ellipsoid are
presented respectively in section 15.9.1 on page 350, section 15.10.1 on page 363, and
section 15.11.1 on page 367. These three different equations can be combined into one
generic correlation function which is independent of the type of diffusion. This generic
correlation function is

CO(τ) =
1

5

k∑

i=−k

ci · e−τ/τi , (15.59)

where ci are the weights and τi are correlation times of the exponential terms. In the orig-
inal model-free analysis of Lipari and Szabo (1982a,b) the internal motions are modelled
by the correlation function

CI(τ) = S2 + (1− S2)e−τ/τe , (15.60)

where S2 is the generalised Lipari and Szabo order parameter which is related to the
amplitude of the motion and τe is the effective correlation time which is an indicator of
the timescale of the motion, albeit being dependent on the value of the order parameter.
The order parameter ranges from one for complete rigidity to zero for unrestricted motions.
Model-free theory was extended by Clore et al. (1990) to include motions on two timescales
by the correlation function

CI(τ) = S2 + (1− S2
f)e

−τ/τf + (S2
f − S2)e−τ/τs , (15.61)

where the faster of the motions is defined by the order parameter S2
f and the correlation

time τf , the slower by the parameters S2
s and τs, and the two order parameter are related

by the equation S2 = S2
f · S2

s .

The relaxation equations of Abragam (1961) are composed of a sum of power spectral
density functions J(ω) at five frequencies. The spectral density function is related to the
correlation function as the two are a Fourier pair. Applying the Fourier transform to the
correlation function composed of the generic diffusion equation and the original model-free
correlation function results in the equation

J(ω) =
2

5

k∑

i=−k

ci · τi
(

S2

1 + (ωτi)2
+

(1− S2)(τe + τi)τe
(τe + τi)2 + (ωτeτi)2

)
. (15.62)

The Fourier transform using the extended model-free correlation function is

J(ω) =
2

5

k∑

i=−k

ci · τi
(

S2

1 + (ωτi)2
+

(1− S2
f)(τf + τi)τf

(τf + τi)2 + (ωτfτi)2
+

(S2
f − S2)(τs + τi)τs

(τs + τi)2 + (ωτsτi)2

)
. (15.63)

332CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

15.8.2 The original model-free gradient

The model-free gradient of the original spectral density function (15.62) is the vector
of partial derivatives of the function with respect to the geometric parameter Gi, the
orientational parameter Oi, the order parameter S2, and the internal correlation time τe.
The positions in the vector correspond to the model parameters which are being optimised.

Gj partial derivative

The partial derivative of (15.62) with respect to the geometric parameter Gj is

∂J(ω)

∂Gj
=

2

5

k∑

i=−k

(
ci

∂τi
∂Gj

(
S2 1− (ωτi)

2

(1 + (ωτi)2)
2 + (1− S2)τ2e

(τe + τi)
2 − (ωτeτi)

2

((τe + τi)2 + (ωτeτi)2)
2

)

+
∂ci
∂Gj

τi

(
S2

1 + (ωτi)2
+

(1− S2)(τe + τi)τe
(τe + τi)2 + (ωτeτi)2

))
. (15.64)

Oj partial derivative

The partial derivative of (15.62) with respect to the orientational parameter Oj is

∂J(ω)

∂Oj
=

2

5

k∑

i=−k

∂ci
∂Oj

τi

(
S2

1 + (ωτi)2
+

(1− S2)(τe + τi)τe
(τe + τi)2 + (ωτeτi)2

)
. (15.65)

S2 partial derivative

The partial derivative of (15.62) with respect to the order parameter S2 is

∂J(ω)

∂S2
=

2

5

k∑

i=−k

ciτi

(
1

1 + (ωτi)2
− (τe + τi)τe

(τe + τi)2 + (ωτeτi)2

)
. (15.66)

τe partial derivative

The partial derivative of (15.62) with respect to the correlation time τe is

∂J(ω)

∂τe
=

2

5
(1− S2)

k∑

i=−k

ciτ
2
i

(τe + τi)
2 − (ωτeτi)

2

((τe + τi)2 + (ωτeτi)2)
2 . (15.67)

15.8. OPTIMISATION EQUATIONS FOR THE MODEL-FREE ANALYSIS 333

15.8.3 The original model-free Hessian

The model-free Hessian of the original spectral density function (15.62) is the matrix of
second partial derivatives. The matrix coordinates correspond to the model parameters
which are being optimised.

Gj – Gk partial derivative

The second partial derivative of (15.62) with respect to the geometric parameters Gj and
Gk is

∂2J(ω)

∂Gj · ∂Gk
=

2

5

k∑

i=−k

(
− 2ci

∂τi
∂Gj

· ∂τi
∂Gk

(
S2ω2τi

3− (ωτi)
2

(1 + (ωτi)2)
3

+ (1− S2)τ2e
(τe + τi)

3 + 3ω2τ3e τi(τe + τi)− (ωτe)
4τ3i

((τe + τi)2 + (ωτeτi)2)
3

)

+

(
∂τi
∂Gj

· ∂ci
∂Gk

+
∂τi
∂Gk

· ∂ci
∂Gj

+ ci
∂2τi

∂Gj · ∂Gk

)(
S2 1− (ωτi)

2

(1 + (ωτi)2)
2

+ (1− S2)τ2e
(τe + τi)

2 − (ωτeτi)
2

((τe + τi)2 + (ωτeτi)2)
2

)

+

(
∂2ci

∂Gj · ∂Gk
τi

(
S2

1 + (ωτi)2
+

(1− S2)(τe + τi)τe
(τe + τi)2 + (ωτeτi)2

)))
. (15.68)

Gj – Ok partial derivative

The second partial derivative of (15.62) with respect to the geometric parameter Gj and
the orientational parameter Ok is

∂2J(ω)

∂Gj · ∂Ok
=

2

5

k∑

i=−k

(
∂τi
∂Gj

∂ci
∂Ok

(
S2 1− (ωτi)

2

(1 + (ωτi)2)
2 + (1− S2)τ2e

(τe + τi)
2 − (ωτeτi)

2

((τe + τi)2 + (ωτeτi)2)
2

)

+
∂2ci

∂Gj · ∂Ok
τi

(
S2

1 + (ωτi)2
+

(1− S2)(τe + τi)τe
(τe + τi)2 + (ωτeτi)2

))
. (15.69)

Gj – S2 partial derivative

The second partial derivative of (15.62) with respect to the geometric parameter Gj and
the order parameter S2 is

∂2J(ω)

∂Gj · ∂S2
=

2

5

k∑

i=−k

(
ci

∂τi
∂Gj

(
1− (ωτi)

2

(1 + (ωτi)2)
2 − τ2e

(τe + τi)
2 − (ωτeτi)

2

((τe + τi)2 + (ωτeτi)2)
2

)

+
∂ci
∂Gj

τi

(
1

1 + (ωτi)2
− (τe + τi)τe

(τe + τi)2 + (ωτeτi)2

))
. (15.70)

334CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

Gj – τe partial derivative

The second partial derivative of (15.62) with respect to the geometric parameter Gj and
the correlation time τe is

∂2J(ω)

∂Gj · ∂τe
=

2

5
(1− S2)

k∑

i=−k

(
2ci

∂τi
∂Gj

τeτi(τe + τi)
(τe + τi)

2 − 3(ωτeτi)
2

((τe + τi)2 + (ωτeτi)2)
3

+
∂ci
∂Gj

τ2i
(τe + τi)

2 − (ωτeτi)
2

((τe + τi)2 + (ωτeτi)2)
2

)
. (15.71)

Oj – Ok partial derivative

The second partial derivative of (15.62) with respect to the orientational parameters Oj

and Ok is

∂2J(ω)

∂Oj · ∂Ok
=

2

5

k∑

i=−k

∂2ci
∂Oj · ∂Ok

τi

(
S2

1 + (ωτi)2
+

(1− S2)(τe + τi)τe
(τe + τi)2 + (ωτeτi)2

)
. (15.72)

Oj – S2 partial derivative

The second partial derivative of (15.62) with respect to the orientational parameter Oj

and the order parameter S2 is

∂2J(ω)

∂Oj · ∂S2
=

2

5

k∑

i=−k

∂ci
∂Oj

τi

(
1

1 + (ωτi)2
− (τe + τi)τe

(τe + τi)2 + (ωτeτi)2

)
. (15.73)

Oj – τe partial derivative

The second partial derivative of (15.62) with respect to the orientational parameter Oj

and the correlation time τe is

∂2J(ω)

∂Oj · ∂τe
=

2

5
(1− S2)

k∑

i=−k

∂ci
∂Oj

τ2i
(τe + τi)

2 − (ωτeτi)
2

((τe + τi)2 + (ωτeτi)2)
2 . (15.74)

S2 – S2 partial derivative

The second partial derivative of (15.62) with respect to the order parameter S2 twice is

∂2J(ω)

(∂S2)2
= 0. (15.75)

15.8. OPTIMISATION EQUATIONS FOR THE MODEL-FREE ANALYSIS 335

S2 – τe partial derivative

The second partial derivative of (15.62) with respect to the order parameter S2 and cor-
relation time τe is

∂2J(ω)

∂S2 · ∂τe
= −2

5

k∑

i=−k

ciτ
2
i

(τe + τi)
2 − (ωτeτi)

2

((τe + τi)2 + (ωτeτi)2)
2 . (15.76)

τe – τe partial derivative

The second partial derivative of (15.62) with respect to the correlation time τe twice is

∂2J(ω)

∂τe
2 = −4

5
(1− S2)

k∑

i=−k

ciτ
2
i

(τe + τi)
3 + 3ω2τ3i τe(τe + τi)− (ωτi)

4τ3e

((τe + τi)2 + (ωτeτi)2)
3 (15.77)

336CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

15.8.4 The extended model-free gradient

The model-free gradient of the extended spectral density function (15.63) is the vector
of partial derivatives of the function with respect to the geometric parameter Gi, the
orientational parameter Oi, the order parameters S2 and S2

f , and the internal correlation
times τf and τs. The positions in the vector correspond to the model parameters which
are being optimised.

Gj partial derivative

The partial derivative of (15.63) with respect to the geometric parameter Gj is

∂J(ω)

∂Gj
=

2

5

k∑

i=−k

(
ci

∂τi
∂Gj

(
S2 1− (ωτi)

2

(1 + (ωτi)2)
2

+ (1− S2
f)τ

2
f

(τf + τi)
2 − (ωτfτi)

2

((τf + τi)2 + (ωτfτi)2)
2

+ (S2
f − S2)τ2s

(τs + τi)
2 − (ωτsτi)

2

((τs + τi)2 + (ωτsτi)2)
2

)

+
∂ci
∂Gj

τi

(
S2

1 + (ωτi)2
+

(1− S2
f)(τf + τi)τf

(τf + τi)2 + (ωτfτi)2
+

(S2
f − S2)(τs + τi)τs

(τs + τi)2 + (ωτsτi)2

))
. (15.78)

Oj partial derivative

The partial derivative of (15.63) with respect to the orientational parameter Oj is

∂J(ω)

∂Oj
=

2

5

k∑

i=−k

∂ci
∂Oj

τi

(
S2

1 + (ωτi)2
+

(1− S2
f)(τf + τi)τf

(τf + τi)2 + (ωτfτi)2
+

(S2
f − S2)(τs + τi)τs

(τs + τi)2 + (ωτsτi)2

)
.

(15.79)

S2 partial derivative

The partial derivative of (15.63) with respect to the order parameter S2 is

∂J(ω)

∂S2
=

2

5

k∑

i=−k

ciτi

(
1

1 + (ωτi)2
− (τs + τi)τs

(τs + τi)2 + (ωτsτi)2

)
. (15.80)

S2
f partial derivative

The partial derivative of (15.63) with respect to the order parameter S2
f is

∂J(ω)

∂S2
f

= −2

5

k∑

i=−k

ciτi

(
(τf + τi)τf

(τf + τi)2 + (ωτfτi)2
− (τs + τi)τs

(τs + τi)2 + (ωτsτi)2

)
. (15.81)

15.8. OPTIMISATION EQUATIONS FOR THE MODEL-FREE ANALYSIS 337

τf partial derivative

The partial derivative of (15.63) with respect to the correlation time τf is

∂J(ω)

∂τf
=

2

5
(1− S2

f)
k∑

i=−k

ciτ
2
i

(τf + τi)
2 − (ωτf τi)

2

((τf + τi)2 + (ωτfτi)2)
2 . (15.82)

τs partial derivative

The partial derivative of (15.63) with respect to the correlation time τs is

∂J(ω)

∂τs
=

2

5
(S2

f − S2)

k∑

i=−k

ciτ
2
i

(τs + τi)
2 − (ωτsτi)

2

((τs + τi)2 + (ωτsτi)2)
2 . (15.83)

338CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

15.8.5 The extended model-free Hessian

The model-free Hessian of the extended spectral density function (15.63) is the matrix of
second partial derivatives. The matrix coordinates correspond to the model parameters
which are being optimised.

Gj – Gk partial derivative

The second partial derivative of (15.63) with respect to the geometric parameters Gj and
Gk is

∂2J(ω)

∂Gj · ∂Gk
=

2

5

k∑

i=−k

(
− 2ci

∂τi
∂Gj

· ∂τi
∂Gk

(
S2ω2τi

3− (ωτi)
2

(1 + (ωτi)2)
3

+ (1 − S2
f)τ

2
f

(τf + τi)
3 + 3ω2τ3f τi(τf + τi)− (ωτf)

4τ3i

((τf + τi)2 + (ωτfτi)2)
3

+ (S2
f − S2)τ2s

(τs + τi)
3 + 3ω2τ3s τi(τs + τi)− (ωτs)

4τ3i
((τs + τi)2 + (ωτsτi)2)

3

)

+

(
∂τi
∂Gj

· ∂ci
∂Gk

+
∂τi
∂Gk

· ∂ci
∂Gj

+ ci
∂2τi

∂Gj · ∂Gk

)(
S2 1− (ωτi)

2

(1 + (ωτi)2)
2

+ (1− S2
f)τ

2
f

(τf + τi)
2 − (ωτfτi)

2

((τf + τi)2 + (ωτfτi)2)
2

+ (S2
f − S2)τ2s

(τs + τi)
2 − (ωτsτi)

2

((τs + τi)2 + (ωτsτi)2)
2

)

+

(
∂2ci

∂Gj · ∂Gk
τi

(
S2

1 + (ωτi)2
+

(1− S2
f)(τf + τi)τf

(τf + τi)2 + (ωτfτi)2
+

(S2
f − S2)(τs + τi)τs

(τs + τi)2 + (ωτsτi)2

)))
.

(15.84)

Gj – Ok partial derivative

The second partial derivative of (15.63) with respect to the geometric parameter Gj and
the orientational parameter Ok is

∂2J(ω)

∂Gj · ∂Ok
=

2

5

k∑

i=−k

(
∂τi
∂Gj

∂ci
∂Ok

(
S2 1− (ωτi)

2

(1 + (ωτi)2)
2

+ (1− S2
f)τ

2
f

(τf + τi)
2 − (ωτfτi)

2

((τf + τi)2 + (ωτfτi)2)
2

+ (S2
f − S2)τ2s

(τs + τi)
2 − (ωτsτi)

2

((τs + τi)2 + (ωτsτi)2)
2

)

+
∂2ci

∂Gj · ∂Ok
τi

(
S2

1 + (ωτi)2
+

(1− S2
f)(τf + τi)τf

(τf + τi)2 + (ωτfτi)2
+

(S2
f − S2)(τs + τi)τs

(τs + τi)2 + (ωτsτi)2

))
. (15.85)

15.8. OPTIMISATION EQUATIONS FOR THE MODEL-FREE ANALYSIS 339

Gj – S2 partial derivative

The second partial derivative of (15.63) with respect to the geometric parameter Gj and
the order parameter S2 is

∂2J(ω)

∂Gj · ∂S2
=

2

5

k∑

i=−k

(
ci

∂τi
∂Gj

(
1− (ωτi)

2

(1 + (ωτi)2)
2 − τ2s

(τs + τi)
2 − (ωτsτi)

2

((τs + τi)2 + (ωτsτi)2)
2

)

+
∂ci
∂Gj

τi

(
1

1 + (ωτi)2
− (τs + τi)τs

(τs + τi)2 + (ωτsτi)2

))
. (15.86)

Gj – S2
f partial derivative

The second partial derivative of (15.63) with respect to the geometric parameter Gj and
the order parameter S2

f is

∂2J(ω)

∂Gj · ∂S2
f

= −2

5

k∑

i=−k

(
ci

∂τi
∂Gj

(
τ2f

(τf + τi)
2 − (ωτf τi)

2

((τf + τi)2 + (ωτfτi)2)
2 − τ2s

(τs + τi)
2 − (ωτsτi)

2

((τs + τi)2 + (ωτsτi)2)
2

)

+
∂ci
∂Gj

τi

(
(τf + τi)τf

(τf + τi)2 + (ωτfτi)2
− (τs + τi)τs

(τs + τi)2 + (ωτsτi)2

))
. (15.87)

Gj – τf partial derivative

The second partial derivative of (15.63) with respect to the geometric parameter Gj and
the correlation time τf is

∂2J(ω)

∂Gj · ∂τf
=

2

5
(1− S2

f)

k∑

i=−k

(
2ci

∂τi
∂Gj

τfτi(τf + τi)
(τf + τi)

2 − 3(ωτf τi)
2

((τf + τi)2 + (ωτf τi)2)
3

+
∂ci
∂Gj

τ2i
(τf + τi)

2 − (ωτf τi)
2

((τf + τi)2 + (ωτfτi)2)
2

)
. (15.88)

Gj – τs partial derivative

The second partial derivative of (15.63) with respect to the geometric parameter Gj and
the correlation time τs is

∂2J(ω)

∂Gj · ∂τs
=

2

5
(S2

f − S2)

k∑

i=−k

(
2ci

∂τi
∂Gj

τsτi(τs + τi)
(τs + τi)

2 − 3(ωτsτi)
2

((τs + τi)2 + (ωτsτi)2)
3

+
∂ci
∂Gj

τ2i
(τs + τi)

2 − (ωτsτi)
2

((τs + τi)2 + (ωτsτi)2)
2

)
. (15.89)

340CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

Oj – Ok partial derivative

The second partial derivative of (15.63) with respect to the orientational parameters Oj

and Ok is

∂2J(ω)

∂Oj · ∂Ok
=

2

5

k∑

i=−k

∂2ci
∂Oj · ∂Ok

τi

(
S2

1 + (ωτi)2
+

(1− S2
f)(τf + τi)τf

(τf + τi)2 + (ωτfτi)2

+
(S2

f − S2)(τs + τi)τs

(τs + τi)2 + (ωτsτi)2

)
. (15.90)

Oj – S2 partial derivative

The second partial derivative of (15.63) with respect to the orientational parameter Oj

and the order parameter S2 is

∂2J(ω)

∂Oj · ∂S2
=

2

5

k∑

i=−k

∂ci
∂Oj

τi

(
1

1 + (ωτi)2
− (τs + τi)τs

(τs + τi)2 + (ωτsτi)2

)
. (15.91)

Oj – S2
f partial derivative

The second partial derivative of (15.63) with respect to the orientational parameter Oj

and the order parameter S2
f is

∂2J(ω)

∂Oj · ∂S2
f

= −2

5

k∑

i=−k

∂ci
∂Oj

τi

(
(τf + τi)τf

(τf + τi)2 + (ωτf τi)2
− (τs + τi)τs

(τs + τi)2 + (ωτsτi)2

)
. (15.92)

Oj – τf partial derivative

The second partial derivative of (15.63) with respect to the orientational parameter Oj

and the correlation time τf is

∂2J(ω)

∂Oj · ∂τf
=

2

5
(1− S2

f)

k∑

i=−k

∂ci
∂Oj

τ2i
(τf + τi)

2 − (ωτfτi)
2

((τf + τi)2 + (ωτf τi)2)
2 . (15.93)

Oj – τs partial derivative

The second partial derivative of (15.63) with respect to the orientational parameter Oj

and the correlation time τs is

∂2J(ω)

∂Oj · ∂τs
=

2

5
(S2

f − S2)
k∑

i=−k

∂ci
∂Oj

τ2i
(τs + τi)

2 − (ωτsτi)
2

((τs + τi)2 + (ωτsτi)2)
2 . (15.94)

15.8. OPTIMISATION EQUATIONS FOR THE MODEL-FREE ANALYSIS 341

S2 – S2 partial derivative

The second partial derivative of (15.63) with respect to the order parameter S2 twice is

∂2J(ω)

(∂S2)2
= 0. (15.95)

S2 – S2
f partial derivative

The second partial derivative of (15.63) with respect to the order parameters S2 and S2
f

is
∂2J(ω)

∂S2 · ∂S2
f

= 0. (15.96)

S2 – τf partial derivative

The second partial derivative of (15.63) with respect to the order parameter S2 and cor-
relation time τf is

∂2J(ω)

∂S2 · ∂τf
= 0. (15.97)

S2 – τs partial derivative

The second partial derivative of (15.63) with respect to the order parameter S2 and cor-
relation time τs is

∂2J(ω)

∂S2 · ∂τs
= −2

5

k∑

i=−k

ciτ
2
i

(τs + τi)
2 − (ωτsτi)

2

((τs + τi)2 + (ωτsτi)2)
2 . (15.98)

S2
f – S2

f partial derivative

The second partial derivative of (15.63) with respect to the order parameter S2
f twice is

∂2J(ω)

(∂S2
f)

2
= 0. (15.99)

S2
f – τf partial derivative

The second partial derivative of (15.63) with respect to the order parameter S2
f and cor-

relation time τf is

∂2J(ω)

∂S2
f · ∂τf

= −2

5

k∑

i=−k

ciτ
2
i

(τf + τi)
2 − (ωτf τi)

2

((τf + τi)2 + (ωτfτi)2)
2 . (15.100)

342CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

S2
f – τs partial derivative

The second partial derivative of (15.63) with respect to the order parameter S2
f and cor-

relation time τs is

∂2J(ω)

∂S2
f · ∂τs

=
2

5

k∑

i=−k

ciτ
2
i

(τs + τi)
2 − (ωτsτi)

2

((τs + τi)2 + (ωτsτi)2)
2 . (15.101)

τf – τf partial derivative

The second partial derivative of (15.62) with respect to the correlation time τf twice is

∂2J(ω)

∂τf
2 = −4

5
(1− S2

f)
k∑

i=−k

ciτ
2
i

(τf + τi)
3 + 3ω2τ3i τf (τf + τi)− (ωτi)

4τ3f

((τf + τi)2 + (ωτfτi)2)
3 (15.102)

τf – τs partial derivative

The second partial derivative of (15.62) with respect to the correlation times τf and τs is

∂2J(ω)

∂τf · ∂τs
= 0. (15.103)

τs – τs partial derivative

The second partial derivative of (15.62) with respect to the correlation time τs twice is

∂2J(ω)

∂τs
2 = −4

5
(S2

f − S2)

k∑

i=−k

ciτ
2
i

(τs + τi)
3 + 3ω2τ3i τs(τs + τi)− (ωτi)

4τ3s

((τs + τi)2 + (ωτsτi)2)
3 (15.104)

15.8. OPTIMISATION EQUATIONS FOR THE MODEL-FREE ANALYSIS 343

15.8.6 The alternative extended model-free gradient

Because of the equation S2 = S2
f · S2

s and the form of the extended spectral density
function (15.63) a convolution of the model-free space occurs if the model-free parameters
{S2

f , S
2
s , τf , τs} are optimised rather than the parameters {S2, S2

f , τf , τs}. This convolution
increases the complexity of the gradient. For completeness the first partial derivatives are
presented below.

Gj partial derivative

The partial derivative of (15.63) with respect to the geometric parameter Gj is

∂J(ω)

∂Gj
=

2

5

k∑

i=−k

(
ci

∂τi
∂Gj

(
S2
f · S2

s

1− (ωτi)
2

(1 + (ωτi)2)
2

+ (1− S2
f)τ

2
f

(τf + τi)
2 − (ωτfτi)

2

((τf + τi)2 + (ωτfτi)2)
2

+ S2
f (1− S2

s)τ
2
s

(τs + τi)
2 − (ωτsτi)

2

((τs + τi)2 + (ωτsτi)2)
2

)

+
∂ci
∂Gj

τi

(
S2
f · S2

s

1 + (ωτi)2
+

(1− S2
f)(τf + τi)τf

(τf + τi)2 + (ωτf τi)2
+

S2
f (1− S2

s)(τs + τi)τs

(τs + τi)2 + (ωτsτi)2

))
. (15.105)

Oj partial derivative

The partial derivative of (15.63) with respect to the orientational parameter Oj is

∂J(ω)

∂Oj
=

2

5

k∑

i=−k

∂ci
∂Oj

τi

(
S2
f · S2

s

1 + (ωτi)2
+

(1− S2
f)(τf + τi)τf

(τf + τi)2 + (ωτfτi)2
+

S2
f (1− S2

s)(τs + τi)τs

(τs + τi)2 + (ωτsτi)2

)
.

(15.106)

S2
f partial derivative

The partial derivative of (15.63) with respect to the order parameter S2
f is

∂J(ω)

∂S2
f

=
2

5

k∑

i=−k

ciτi

(
S2
s

1 + (ωτi)2
− (τf + τi)τf

(τf + τi)2 + (ωτfτi)2
+

(1 − S2
s)(τs + τi)τs

(τs + τi)2 + (ωτsτi)2

)
.

(15.107)

S2
s partial derivative

The partial derivative of (15.63) with respect to the order parameter S2
s is

∂J(ω)

∂S2
s

=
2

5
S2
f

k∑

i=−k

ciτi

(
1

1 + (ωτi)2
− (τs + τi)τs

(τs + τi)2 + (ωτsτi)2

)
. (15.108)

344CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

τf partial derivative

The partial derivative of (15.63) with respect to the correlation time τf is

∂J(ω)

∂τf
=

2

5
(1− S2

f)
k∑

i=−k

ciτ
2
i

(τf + τi)
2 − (ωτf τi)

2

((τf + τi)2 + (ωτf τi)2)
2 . (15.109)

τs partial derivative

The partial derivative of (15.63) with respect to the correlation time τs is

∂J(ω)

∂τs
=

2

5
S2
f (1− S2

s)

k∑

i=−k

ciτ
2
i

(τs + τi)
2 − (ωτsτi)

2

((τs + τi)2 + (ωτsτi)2)
2 . (15.110)

15.8. OPTIMISATION EQUATIONS FOR THE MODEL-FREE ANALYSIS 345

15.8.7 The alternative extended model-free Hessian

The model-free Hessian of the extended spectral density function (15.63) is also compli-
cated by the convolution resulting from the use of the parameters {S2

f , S
2
s , τf , τs}. The

second partial derivatives with respect to these parameters are presented below.

Gj – Gk partial derivative

The second partial derivative of (15.63) with respect to the geometric parameters Gj and
Gk is

∂2J(ω)

∂Gj · ∂Gk
=

2

5

k∑

i=−k

(
− 2ci

∂τi
∂Gj

· ∂τi
∂Gk

(
S2
f · S2

sω
2τi

3− (ωτi)
2

(1 + (ωτi)2)
3

+ (1− S2
f)τ

2
f

(τf + τi)
3 + 3ω2τ3f τi(τf + τi)− (ωτf)

4τ3i

((τf + τi)2 + (ωτfτi)2)
3

+ S2
f (1− S2

s)τ
2
s

(τs + τi)
3 + 3ω2τ3s τi(τs + τi)− (ωτs)

4τ3i
((τs + τi)2 + (ωτsτi)2)

3

)

+

(
∂τi
∂Gj

· ∂ci
∂Gk

+
∂τi
∂Gk

· ∂ci
∂Gj

+ ci
∂2τi

∂Gj · ∂Gk

)(
S2
f · S2

s

1− (ωτi)
2

(1 + (ωτi)2)
2

+ (1− S2
f)τ

2
f

(τf + τi)
2 − (ωτfτi)

2

((τf + τi)2 + (ωτfτi)2)
2

+ S2
f (1− S2

s)τ
2
s

(τs + τi)
2 − (ωτsτi)

2

((τs + τi)2 + (ωτsτi)2)
2

)

+

(
∂2ci

∂Gj · ∂Gk
τi

(
S2
f · S2

s

1 + (ωτi)2
+

(1− S2
f)(τf + τi)τf

(τf + τi)2 + (ωτfτi)2
+

S2
f (1− S2

s)(τs + τi)τs

(τs + τi)2 + (ωτsτi)2

)))
.

(15.111)

Gj – Ok partial derivative

The second partial derivative of (15.63) with respect to the geometric parameter Gj and
the orientational parameter Ok is

∂2J(ω)

∂Gj · ∂Ok
=

2

5

k∑

i=−k

(
∂τi
∂Gj

∂ci
∂Ok

(
S2
f · S2

s

1− (ωτi)
2

(1 + (ωτi)2)
2

+ (1− S2
f)τ

2
f

(τf + τi)
2 − (ωτfτi)

2

((τf + τi)2 + (ωτfτi)2)
2

+ S2
f (1− S2

s)τ
2
s

(τs + τi)
2 − (ωτsτi)

2

((τs + τi)2 + (ωτsτi)2)
2

)

+
∂2ci

∂Gj · ∂Ok
τi

(
S2
f · S2

s

1 + (ωτi)2
+

(1− S2
f)(τf + τi)τf

(τf + τi)2 + (ωτfτi)2
+

S2
f (1− S2

s)(τs + τi)τs

(τs + τi)2 + (ωτsτi)2

))
.

(15.112)

346CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

Gj – S2
f partial derivative

The second partial derivative of (15.63) with respect to the geometric parameter Gj and
the order parameter S2

f is

∂2J(ω)

∂Gj · ∂S2
f

=
2

5

k∑

i=−k

(
ci

∂τi
∂Gj

(
S2
s

1− (ωτi)
2

(1 + (ωτi)2)
2 − τ2f

(τf + τi)
2 − (ωτfτi)

2

((τf + τi)2 + (ωτfτi)2)
2

+ (1− S2
s)τ

2
s

(τs + τi)
2 − (ωτsτi)

2

((τs + τi)2 + (ωτsτi)2)
2

)

+
∂ci
∂Gj

τi

(
S2
s

1 + (ωτi)2
− (τf + τi)τf

(τf + τi)2 + (ωτfτi)2

+
(1− S2

s)(τs + τi)τs
(τs + τi)2 + (ωτsτi)2

))
. (15.113)

Gj – S2
s partial derivative

The second partial derivative of (15.63) with respect to the geometric parameter Gj and
the order parameter S2

s is

∂2J(ω)

∂Gj · ∂S2
s

=
2

5
S2
f

k∑

i=−k

(
ci

∂τi
∂Gj

(
1− (ωτi)

2

(1 + (ωτi)2)
2 − τ2s

(τs + τi)
2 − (ωτsτi)

2

((τs + τi)2 + (ωτsτi)2)
2

)

+
∂ci
∂Gj

τi

(
1

1 + (ωτi)2
− (τs + τi)τs

(τs + τi)2 + (ωτsτi)2

))
. (15.114)

Gj – τf partial derivative

The second partial derivative of (15.63) with respect to the geometric parameter Gj and
the correlation time τf is

∂2J(ω)

∂Gj · ∂τf
=

2

5
(1− S2

f)
k∑

i=−k

(
2ci

∂τi
∂Gj

τfτi(τf + τi)
(τf + τi)

2 − 3(ωτf τi)
2

((τf + τi)2 + (ωτfτi)2)
3

+
∂ci
∂Gj

τ2i
(τf + τi)

2 − (ωτfτi)
2

((τf + τi)2 + (ωτfτi)2)
2

)
. (15.115)

15.8. OPTIMISATION EQUATIONS FOR THE MODEL-FREE ANALYSIS 347

Gj – τs partial derivative

The second partial derivative of (15.63) with respect to the geometric parameter Gj and
the correlation time τs is

∂2J(ω)

∂Gj · ∂τs
=

2

5
S2
f (1− S2

s)

k∑

i=−k

(
2ci

∂τi
∂Gj

τsτi(τs + τi)
(τs + τi)

2 − 3(ωτsτi)
2

((τs + τi)2 + (ωτsτi)2)
3

+
∂ci
∂Gj

τ2i
(τs + τi)

2 − (ωτsτi)
2

((τs + τi)2 + (ωτsτi)2)
2

)
. (15.116)

Oj – Ok partial derivative

The second partial derivative of (15.63) with respect to the orientational parameters Oj

and Ok is

∂2J(ω)

∂Oj · ∂Ok
=

2

5

k∑

i=−k

∂2ci
∂Oj · ∂Ok

τi

(
S2
f · S2

s

1 + (ωτi)2
+

(1− S2
f)(τf + τi)τf

(τf + τi)2 + (ωτf τi)2

+
S2
f (1− S2

s)(τs + τi)τs

(τs + τi)2 + (ωτsτi)2

)
. (15.117)

Oj – S2
f partial derivative

The second partial derivative of (15.63) with respect to the orientational parameter Oj

and the order parameter S2
f is

∂2J(ω)

∂Oj · ∂S2
f

=
2

5

k∑

i=−k

∂ci
∂Oj

τi

(
S2
s

1 + (ωτi)2
− (τf + τi)τf

(τf + τi)2 + (ωτfτi)2
+

(1− S2
s)(τs + τi)τs

(τs + τi)2 + (ωτsτi)2

)
.

(15.118)

Oj – S2
s partial derivative

The second partial derivative of (15.63) with respect to the orientational parameter Oj

and the order parameter S2
s is

∂2J(ω)

∂Oj · ∂S2
s

=
2

5
S2
f

k∑

i=−k

∂ci
∂Oj

τi

(
1

1 + (ωτi)2
− (τs + τi)τs

(τs + τi)2 + (ωτsτi)2

)
. (15.119)

Oj – τf partial derivative

The second partial derivative of (15.63) with respect to the orientational parameter Oj

and the correlation time τf is

∂2J(ω)

∂Oj · ∂τf
=

2

5
(1− S2

f)

k∑

i=−k

∂ci
∂Oj

τ2i
(τf + τi)

2 − (ωτfτi)
2

((τf + τi)2 + (ωτfτi)2)
2 . (15.120)

348CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

Oj – τs partial derivative

The second partial derivative of (15.63) with respect to the orientational parameter Oj

and the correlation time τs is

∂2J(ω)

∂Oj · ∂τs
=

2

5
S2
f (1− S2

s)

k∑

i=−k

∂ci
∂Oj

τ2i
(τs + τi)

2 − (ωτsτi)
2

((τs + τi)2 + (ωτsτi)2)
2 . (15.121)

S2
f – S2

f partial derivative

The second partial derivative of (15.63) with respect to the order parameter S2
f twice is

∂2J(ω)

(∂S2
f)

2
= 0. (15.122)

S2
f – S2

s partial derivative

The second partial derivative of (15.63) with respect to the order parameters S2
f and S2

s

is

∂2J(ω)

∂S2
f · ∂S2

s

=
2

5

k∑

i=−k

ciτi

(
1

1 + (ωτi)2
− (τs + τi)τs

(τs + τi)2 + (ωτsτi)2

)
. (15.123)

S2
f – τf partial derivative

The second partial derivative of (15.63) with respect to the order parameter S2
f and cor-

relation time τf is

∂2J(ω)

∂S2
f · ∂τf

= −2

5

k∑

i=−k

ciτ
2
i

(τf + τi)
2 − (ωτfτi)

2

((τf + τi)2 + (ωτf τi)2)
2 . (15.124)

S2
f – τs partial derivative

The second partial derivative of (15.63) with respect to the order parameter S2
f and cor-

relation time τs is

∂2J(ω)

∂S2
f · ∂τs

=
2

5
(1− S2

s)

k∑

i=−k

ciτ
2
i

(τs + τi)
2 − (ωτsτi)

2

((τs + τi)2 + (ωτsτi)2)
2 . (15.125)

S2
s – S2

s partial derivative

The second partial derivative of (15.63) with respect to the order parameter S2
s twice is

∂2J(ω)

(∂S2
s)

2
= 0. (15.126)

15.8. OPTIMISATION EQUATIONS FOR THE MODEL-FREE ANALYSIS 349

S2
s – τf partial derivative

The second partial derivative of (15.63) with respect to the order parameter S2
s and cor-

relation time τf is
∂2J(ω)

∂S2
s · ∂τf

= 0. (15.127)

S2
s – τs partial derivative

The second partial derivative of (15.63) with respect to the order parameter S2
s and cor-

relation time τs is

∂2J(ω)

∂S2
s · ∂τs

= −2

5
S2
f

k∑

i=−k

ciτ
2
i

(τs + τi)
2 − (ωτsτi)

2

((τs + τi)2 + (ωτsτi)2)
2 . (15.128)

τf – τf partial derivative

The second partial derivative of (15.62) with respect to the correlation time τf twice is

∂2J(ω)

∂τf
2 = −4

5
(1− S2

f)
k∑

i=−k

ciτ
2
i

(τf + τi)
3 + 3ω2τ3i τf (τf + τi)− (ωτi)

4τ3f

((τf + τi)2 + (ωτfτi)2)
3 (15.129)

τf – τs partial derivative

The second partial derivative of (15.62) with respect to the correlation times τf and τs is

∂2J(ω)

∂τf · ∂τs
= 0. (15.130)

τs – τs partial derivative

The second partial derivative of (15.62) with respect to the correlation time τs twice is

∂2J(ω)

∂τs
2 = −4

5
S2
f (1− S2

s)
k∑

i=−k

ciτ
2
i

(τs + τi)
3 + 3ω2τ3i τs(τs + τi)− (ωτi)

4τ3s

((τs + τi)2 + (ωτsτi)2)
3 (15.131)

350CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

15.9 Ellipsoidal diffusion tensor

15.9.1 The diffusion equation of the ellipsoid

The correlation function of the Brownian rotational diffusion of an ellipsoid is

CO(τ) =
1

5

2∑

i=−2

cie
− τ

τi . (15.132)

where ci are the weights of the five exponential terms which are dependent on the ori-
entation of the XH bond vector and τi are the correlation times of the five exponential
terms.

15.9.2 The weights of the ellipsoid

Definitions

The three direction cosines defining the XH bond vector within the diffusion frame are

δx = X̂H · D̂x, (15.133a)

δy = X̂H · D̂y, (15.133b)

δz = X̂H · D̂z. (15.133c)

Let the set of geometric parameters be

G = {Diso,Da,Dr}, (15.134)

and the set of orientational parameters be the Euler angles

O = {α, β, γ}. (15.135)

The weights

The five weights ci in the correlation function of the Brownian rotational diffusion of an
ellipsoid (15.132) are

c−2 =
1
4 (d− e), (15.136a)

c−1 = 3δ2yδ
2
z , (15.136b)

c0 = 3δ2xδ
2
z , (15.136c)

c1 = 3δ2xδ
2
y , (15.136d)

c2 =
1
4 (d+ e), (15.136e)

15.9. ELLIPSOIDAL DIFFUSION TENSOR 351

where

d = 3
(
δ4x + δ4y + δ4z

)
− 1, (15.137)

e =
1

R

[
(1 + 3Dr)

(
δ4x + 2δ2yδ

2
z

)
+ (1− 3Dr)

(
δ4y + 2δ2xδ

2
z

)
− 2

(
δ4z + 2δ2xδ

2
y

)]
. (15.138)

The factor R is defined as
R =

√
1 + 3D2

r . (15.139)

15.9.3 The weight gradients of the ellipsoid

Oi partial derivative

The partial derivatives with respect to the orientational parameter Oi are

∂c−2

∂Oi
= 3

(
δ3x

∂δx
∂Oi

+ δ3y
∂δy
∂Oi

+ δ3z
∂δz
∂Oi

)
− ∂e

∂Oi
, (15.140a)

∂c−1

∂Oi
= 6δyδz

(
δy

∂δz
∂Oi

+ δz
∂δy
∂Oi

)
, (15.140b)

∂c0
∂Oi

= 6δxδz

(
δx

∂δz
∂Oi

+ δz
∂δx
∂Oi

)
, (15.140c)

∂c1
∂Oi

= 6δxδy

(
δx

∂δy
∂Oi

+ δy
∂δx
∂Oi

)
, (15.140d)

∂c2
∂Oi

= 3

(
δ3x

∂δx
∂Oi

+ δ3y
∂δy
∂Oi

+ δ3z
∂δz
∂Oi

)
+

∂e

∂Oi
, (15.140e)

where

∂e

∂Oi
=

1

R

[
(1 + 3Dr)

(
δ3x

∂δx
∂Oi

+ δyδz

(
δy

∂δz
∂Oi

+ δz
∂δy
∂Oi

))

+(1− 3Dr)

(
δ3y

∂δy
∂Oi

+ δxδz

(
δx

∂δz
∂Oi

+ δz
∂δx
∂Oi

))

−2

(
δ3z

∂δz
∂Oi

+ δxδy

(
δx

∂δy
∂Oi

+ δy
∂δx
∂Oi

))]
. (15.141)

352CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

τm partial derivative

The partial derivatives with respect to the τm geometric parameter are

∂c−2

∂τm
= 0, (15.142a)

∂c−1

∂τm
= 0, (15.142b)

∂c0
∂τm

= 0, (15.142c)

∂c1
∂τm

= 0, (15.142d)

∂c2
∂τm

= 0. (15.142e)

Da partial derivative

The partial derivatives with respect to the Da geometric parameter are

∂c−2

∂Da
= 0, (15.143a)

∂c−1

∂Da
= 0, (15.143b)

∂c0
∂Da

= 0, (15.143c)

∂c1
∂Da

= 0, (15.143d)

∂c2
∂Da

= 0. (15.143e)

Dr partial derivative

The partial derivatives with respect to the Dr geometric parameter are

∂c−2

∂Dr
= −3

4

∂e

∂Dr
, (15.144a)

∂c−1

∂Dr
= 0, (15.144b)

∂c0
∂Dr

= 0, (15.144c)

∂c1
∂Dr

= 0, (15.144d)

∂c2
∂Dr

=
3

4

∂e

∂Dr
, (15.144e)

where

∂e

∂Dr
=

1

R3

[
(1−Dr)

(
δ4x + 2δ2yδ

2
z

)
− (1 +Dr)

(
δ4y + 2δ2xδ

2
z

)
+2Dr

(
δ4z + 2δ2xδ

2
y

)]
. (15.145)

15.9. ELLIPSOIDAL DIFFUSION TENSOR 353

15.9.4 The weight Hessians of the ellipsoid

Oi – Oj partial derivative

The second partial derivatives with respect to the orientational parameters Oi and Oj are

∂2c−2

∂Oi · ∂Oj
= 3

(
δ2x

(
δx

∂2δx
∂Oi · ∂Oj

+ 3
∂δx
∂Oi

· ∂δx
∂Oj

)

+δ2y

(
δy

∂2δy
∂Oi · ∂Oj

+ 3
∂δy
∂Oi

· ∂δy
∂Oj

)

+δ2z

(
δz

∂2δz
∂Oi · ∂Oj

+ 3
∂δz
∂Oi

· ∂δz
∂Oj

))
− ∂2e

∂Oi · ∂Oj
, (15.146a)

∂2c−1

∂Oi · ∂Oj
= 6δ2y

(
δz

∂2δz
∂Oi · ∂Oj

+
∂δz
∂Oi

· ∂δz
∂Oj

)

+ 12δyδz

(
∂δy
∂Oi

· ∂δz
∂Oj

+
∂δz
∂Oi

· ∂δy
∂Oj

)

+ 6δ2z

(
δy

∂2δy
∂Oi · ∂Oj

+
∂δy
∂Oi

· ∂δy
∂Oj

)
, (15.146b)

∂2c0
∂Oi · ∂Oj

= 6δ2x

(
δz

∂2δz
∂Oi · ∂Oj

+
∂δz
∂Oi

· ∂δz
∂Oj

)

+ 12δxδz

(
∂δx
∂Oi

· ∂δz
∂Oj

+
∂δz
∂Oi

· ∂δx
∂Oj

)

+ 6δ2z

(
δx

∂2δx
∂Oi · ∂Oj

+
∂δx
∂Oi

· ∂δx
∂Oj

)
, (15.146c)

∂2c1
∂Oi · ∂Oj

= 6δ2x

(
δy

∂2δy
∂Oi · ∂Oj

+
∂δy
∂Oi

· ∂δy
∂Oj

)

+ 12δxδy

(
∂δx
∂Oi

· ∂δy
∂Oj

+
∂δy
∂Oi

· ∂δx
∂Oj

)

+ 6δ2y

(
δx

∂2δx
∂Oi · ∂Oj

+
∂δx
∂Oi

· ∂δx
∂Oj

)
, (15.146d)

∂2c2
∂Oi · ∂Oj

= 3

(
δ2x

(
δx

∂2δx
∂Oi · ∂Oj

+ 3
∂δx
∂Oi

· ∂δx
∂Oj

)

+δ2y

(
δy

∂2δy
∂Oi · ∂Oj

+ 3
∂δy
∂Oi

· ∂δy
∂Oj

)

+δ2z

(
δz

∂2δz
∂Oi · ∂Oj

+ 3
∂δz
∂Oi

· ∂δz
∂Oj

))
+

∂2e

∂Oi · ∂Oj
, (15.146e)

354CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

where

∂2e

∂Oi · ∂Oj
=

1

R

[
(1 + 3Dr)

(
δ2x

(
δx

∂2δx
∂Oi · ∂Oj

+ 3
∂δx
∂Oi

· ∂δx
∂Oj

)

+δ2y

(
δz

∂2δz
∂Oi · ∂Oj

+
∂δz
∂Oi

· ∂δz
∂Oj

)

+δ2z

(
δy

∂2δy
∂Oi · ∂Oj

+
∂δy
∂Oi

· ∂δy
∂Oj

)

+2δyδz

(
∂δy
∂Oi

· ∂δz
∂Oj

+
∂δz
∂Oi

· ∂δy
∂Oj

))

+(1− 3Dr)

(
δ2y

(
δy

∂2δy
∂Oi · ∂Oj

+ 3
∂δy
∂Oi

· ∂δy
∂Oj

)

+δ2x

(
δz

∂2δz
∂Oi · ∂Oj

+
∂δz
∂Oi

· ∂δz
∂Oj

)

+δ2z

(
δx

∂2δx
∂Oi · ∂Oj

+
∂δx
∂Oi

· ∂δx
∂Oj

)

+2δxδz

(
∂δx
∂Oi

· ∂δz
∂Oj

+
∂δz
∂Oi

· ∂δx
∂Oj

))

−2

(
δ2z

(
δz

∂2δz
∂Oi · ∂Oj

+ 3
∂δz
∂Oi

· ∂δz
∂Oj

)

+δ2x

(
δy

∂2δy
∂Oi · ∂Oj

+
∂δy
∂Oi

· ∂δy
∂Oj

)

+δ2y

(
δx

∂2δx
∂Oi · ∂Oj

+
∂δx
∂Oi

· ∂δx
∂Oj

)

+2δxδy

(
∂δx
∂Oi

· ∂δy
∂Oj

+
∂δy
∂Oi

· ∂δx
∂Oj

))]
. (15.147)

Oi – τm partial derivative

The second partial derivatives with respect to the orientational parameter Oi and the
geometric parameter τm are

∂2c−2

∂Oi · ∂τm
= 0, (15.148a)

∂2c−1

∂Oi · ∂τm
= 0, (15.148b)

∂2c0
∂Oi · ∂τm

= 0, (15.148c)

∂2c1
∂Oi · ∂τm

= 0, (15.148d)

15.9. ELLIPSOIDAL DIFFUSION TENSOR 355

∂2c2
∂Oi · ∂τm

= 0. (15.148e)

Oi – Da partial derivative

The second partial derivatives with respect to the orientational parameter Oi and the
geometric parameter Da are

∂2c−2

∂Oi · ∂Da
= 0, (15.149a)

∂2c−1

∂Oi · ∂Da
= 0, (15.149b)

∂2c0
∂Oi · ∂Da

= 0, (15.149c)

∂2c1
∂Oi · ∂Da

= 0, (15.149d)

∂2c2
∂Oi · ∂Da

= 0. (15.149e)

Oi – Dr partial derivative

The second partial derivatives with respect to the orientational parameter Oi and the
geometric parameter Dr are

∂2c−2

∂Oi · ∂Dr
= −3

∂2e

∂Oi · ∂Dr
, (15.150a)

∂2c−1

∂Oi · ∂Dr
= 0, (15.150b)

∂2c0
∂Oi · ∂Dr

= 0, (15.150c)

∂2c1
∂Oi · ∂Dr

= 0, (15.150d)

∂2c2
∂Oi · ∂Dr

= 3
∂2e

∂Oi · ∂Dr
, (15.150e)

where

∂2e

∂Oi · ∂Dr
=

1

R3

[
(1−Dr)

(
δ3x

∂δx
∂Oi

+ δyδz

(
δy

∂δz
∂Oi

+ δz
∂δy
∂Oi

))

−(1 +Dr)

(
δ3y

∂δy
∂Oi

+ δxδz

(
δx

∂δz
∂Oi

+ δz
∂δx
∂Oi

))

+2Dr

(
δ3z

∂δz
∂Oi

+ δxδy

(
δx

∂δy
∂Oi

+ δy
∂δx
∂Oi

))]
. (15.151)

356CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

τm – τm partial derivative

The second partial derivatives with respect to the geometric parameter τm twice are

∂2c−2

∂τm
2 = 0, (15.152a)

∂2c−1

∂τm
2 = 0, (15.152b)

∂2c0

∂τm
2 = 0, (15.152c)

∂2c1

∂τm
2 = 0, (15.152d)

∂2c2

∂τm
2 = 0. (15.152e)

τm – Da partial derivative

The second partial derivatives with respect to the geometric parameters τm and Da are

∂2c−2

∂τm · ∂Da
= 0, (15.153a)

∂2c−1

∂τm · ∂Da
= 0, (15.153b)

∂2c0
∂τm · ∂Da

= 0, (15.153c)

∂2c1
∂τm · ∂Da

= 0, (15.153d)

∂2c2
∂τm · ∂Da

= 0. (15.153e)

τm – Dr partial derivative

The second partial derivatives with respect to the geometric parameters τm and Dr are

∂2c−2

∂τm · ∂Dr
= 0, (15.154a)

∂2c−1

∂τm · ∂Dr
= 0, (15.154b)

∂2c0
∂τm · ∂Dr

= 0, (15.154c)

∂2c1
∂τm · ∂Dr

= 0, (15.154d)

∂2c2
∂τm · ∂Dr

= 0. (15.154e)

15.9. ELLIPSOIDAL DIFFUSION TENSOR 357

Da – Da partial derivative

The second partial derivatives with respect to the geometric parameter Da twice are

∂2c−2

∂Da
2 = 0, (15.155a)

∂2c−1

∂Da
2 = 0, (15.155b)

∂2c0

∂Da
2 = 0, (15.155c)

∂2c1

∂Da
2 = 0, (15.155d)

∂2c2

∂Da
2 = 0. (15.155e)

Da – Dr partial derivative

The second partial derivatives with respect to the geometric parameters Da and Dr are

∂2c−2

∂Da · ∂Dr
= 0, (15.156a)

∂2c−1

∂Da · ∂Dr
= 0, (15.156b)

∂2c0
∂Da · ∂Dr

= 0, (15.156c)

∂2c1
∂Da · ∂Dr

= 0, (15.156d)

∂2c2
∂Da · ∂Dr

= 0. (15.156e)

Dr – Dr partial derivative

The second partial derivatives with respect to the geometric parameter Dr twice are

∂2c−2

∂Dr
2 = −3

4

∂2e

∂D2
r

, (15.157a)

∂2c−1

∂Dr
2 = 0, (15.157b)

∂2c0

∂Dr
2 = 0, (15.157c)

∂2c1

∂Dr
2 = 0, (15.157d)

∂2c2

∂Dr
2 =

3

4

∂2e

∂D2
r

, (15.157e)

358CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

where

∂2e

∂D2
r

=
1

R5

[
(6D2

r − 9Dr − 1)
(
δ4x + 2δ2yδ

2
z

)

+(6D2
r + 9Dr − 1)

(
δ4y + 2δ2xδ

2
z

)

−2(6D2
r − 1)

(
δ4z + 2δ2xδ

2
y

)]
. (15.158)

15.9. ELLIPSOIDAL DIFFUSION TENSOR 359

15.9.5 The correlation times of the ellipsoid

The five correlation times τi in the correlation function of the Brownian rotational diffusion
of an ellipsoid (15.132) on page 350 are

τ−2 = (6Diso − 2DaR)−1, (15.159a)

τ−1 = (6Diso −Da(1 + 3Dr))
−1, (15.159b)

τ0 = (6Diso −Da(1− 3Dr))
−1, (15.159c)

τ1 = (6Diso + 2Da)
−1, (15.159d)

τ2 = (6Diso + 2DaR)−1, (15.159e)

where R is defined in Equation (15.139) on page 351.

15.9.6 The correlation time gradients of the ellipsoid

τm partial derivative

The partial derivatives with respect to the geometric parameter τm are

∂τ−2

∂τm
= τm

−2(6Diso − 2DaR)−2, (15.160a)

∂τ−1

∂τm
= τm

−2(6Diso −Da(1 + 3Dr))
−2, (15.160b)

∂τ0
∂τm

= τm
−2(6Diso −Da(1− 3Dr))

−2, (15.160c)

∂τ1
∂τm

= τm
−2(6Diso + 2Da)

−2, (15.160d)

∂τ2
∂τm

= τm
−2(6Diso + 2DaR)−2. (15.160e)

Da partial derivative

The partial derivatives with respect to the geometric parameter Da are

∂τ−2

∂Da
= 2R(6Diso − 2DaR)−2, (15.161a)

∂τ−1

∂Da
= (1 + 3Dr)(6Diso −Da(1 + 3Dr))

−2, (15.161b)

∂τ0
∂Da

= (1− 3Dr)(6Diso −Da(1− 3Dr))
−2, (15.161c)

∂τ1
∂Da

= −2(6Diso + 2Da)
−2, (15.161d)

∂τ2
∂Da

= −2R(6Diso + 2DaR)−2. (15.161e)

360CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

Dr partial derivative

The partial derivatives with respect to the geometric parameter Dr are

∂τ−2

∂Dr
= 6

DaDr

R
(6Diso − 2DaR)−2, (15.162a)

∂τ−1

∂Dr
= 3Da(6Diso −Da(1 + 3Dr))

−2, (15.162b)

∂τ0
∂Dr

= −3Da(6Diso −Da(1− 3Dr))
−2, (15.162c)

∂τ1
∂Dr

= 0, (15.162d)

∂τ2
∂Dr

= −6
DaDr

R
(6Diso + 2DaR)−2. (15.162e)

15.9. ELLIPSOIDAL DIFFUSION TENSOR 361

15.9.7 The correlation time Hessians of the ellipsoid

τm – τm partial derivative

The second partial derivatives with respect to the geometric parameter τm twice are

∂2τ−2

∂τm
2 = 2τm

−4(6Diso − 2DaR)−3 − 2τm
−3(6Diso − 2DaR)−2, (15.163a)

∂2τ−1

∂τm
2 = 2τm

−4(6Diso −Da(1 + 3Dr))
−3 − 2τm

−3(6Diso −Da(1 + 3Dr))
−2, (15.163b)

∂2τ0

∂τm
2 = 2τm

−4(6Diso −Da(1− 3Dr))
−3 − 2τm

−3(6Diso −Da(1− 3Dr))
−2, (15.163c)

∂2τ1

∂τm
2 = 2τm

−4(6Diso + 2Da)
−3 − 2τm

−3(6Diso + 2Da)
−2, (15.163d)

∂2τ2

∂τm
2 = 2τm

−4(6Diso + 2DaR)−3 − 2τm
−3(6Diso + 2DaR)−2. (15.163e)

τm – Da partial derivative

The second partial derivatives with respect to the geometric parameters τm and Da are

∂2τ−2

∂τm · ∂Da
= 4Rτm

−2(6Diso − 2DaR)−3, (15.164a)

∂2τ−1

∂τm · ∂Da
= 2(1 + 3Dr)τm

−2(6Diso −Da(1 + 3Dr))
−3, (15.164b)

∂2τ0
∂τm · ∂Da

= 2(1 − 3Dr)τm
−2(6Diso −Da(1− 3Dr))

−3, (15.164c)

∂2τ1
∂τm · ∂Da

= −4τm
−2(6Diso + 2Da)

−3, (15.164d)

∂2τ2
∂τm · ∂Da

= −4Rτm
−2(6Diso + 2DaR)−3. (15.164e)

τm – Dr partial derivative

The second partial derivatives with respect to the geometric parameters τm and Dr are

∂2τ−2

∂τm · ∂Dr
= 12

DaDr

R
τm

−2(6Diso − 2DaR)−3, (15.165a)

∂2τ−1

∂τm · ∂Dr
= 6Daτm

−2(6Diso −Da(1 + 3Dr))
−3, (15.165b)

∂2τ0
∂τm · ∂Dr

= −6Daτm
−2(6Diso −Da(1− 3Dr))

−3, (15.165c)

∂2τ1
∂τm · ∂Dr

= 0, (15.165d)

∂2τ2
∂τm · ∂Dr

= −12
DaDr

R
τm

−2(6Diso + 2DaR)−3. (15.165e)

362CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

Da – Da partial derivative

The second partial derivatives with respect to the geometric parameter Da twice are

∂2τ−2

∂Da
2 = 8R2(6Diso − 2DaR)−3, (15.166a)

∂2τ−1

∂Da
2 = 2(1 + 3Dr)

2(6Diso −Da(1 + 3Dr))
−3, (15.166b)

∂2τ0

∂Da
2 = 2(1− 3Dr)

2(6Diso −Da(1− 3Dr))
−3, (15.166c)

∂2τ1

∂Da
2 = 8(6Diso + 2Da)

−3, (15.166d)

∂2τ2

∂Da
2 = 8R2(6Diso + 2DaR)−3. (15.166e)

Da – Dr partial derivative

The second partial derivatives with respect to the geometric parameters Da and Dr are

∂2τ−2

∂Da · ∂Dr
= 24DaDr(6Diso − 2DaR)−3 + 6

Dr

R
(6Diso − 2DaR)−2, (15.167a)

∂2τ−1

∂Da · ∂Dr
= 6Da(1 + 3Dr)(6Diso −Da(1 + 3Dr))

−3 + 3(6Diso −Da(1 + 3Dr))
−2,

(15.167b)

∂2τ0
∂Da · ∂Dr

= −6Da(1− 3Dr)(6Diso −Da(1− 3Dr))
−3 − 3(6Diso −Da(1− 3Dr))

−2,

(15.167c)

∂2τ1
∂Da · ∂Dr

= 0, (15.167d)

∂2τ2
∂Da · ∂Dr

= 24DaDr(6Diso + 2DaR)−3 − 6
Dr

R
(6Diso + 2DaR)−2. (15.167e)

Dr – Dr partial derivative

The second partial derivatives with respect to the geometric parameter Dr twice are

∂2τ−2

∂Dr
2 = 72

(
DaDr

R

)2

(6Diso − 2DaR)−3 + 6
Da

R3
(6Diso − 2DaR)−2, (15.168a)

∂2τ−1

∂Dr
2 = 18D2

a(6Diso −Da(1 + 3Dr))
−3, (15.168b)

∂2τ0

∂Dr
2 = 18D2

a(6Diso −Da(1− 3Dr))
−3, (15.168c)

∂2τ1

∂Dr
2 = 0, (15.168d)

∂2τ2

∂Dr
2 = 72

(
DaDr

R

)2

(6Diso − 2DaR)−3 − 6
Da

R3
(6Diso + 2DaR)−2. (15.168e)

15.10. SPHEROIDAL DIFFUSION TENSOR 363

15.10 Spheroidal diffusion tensor

15.10.1 The diffusion equation of the spheroid

The correlation function of the Brownian rotational diffusion of a spheroid is

CO(τ) =
1

5

1∑

i=−1

cie
− τ

τi . (15.169)

where ci are the weights of the three exponential terms which are dependent on the ori-
entation of the XH bond vector and τi are the correlation times of the three exponential
terms.

15.10.2 The weights of the spheroid

Definitions

The direction cosine defining the XH bond vector within the spheroidal diffusion frame is

δz = X̂H · D̂z. (15.170)

Let the set of geometric parameters be

G = {Diso,Da}, (15.171)

and the set of orientational parameters be the spherical angles

O = {θ, φ}. (15.172)

The weights

The three spheroid weights ci in the correlation function of the Brownian rotational diffu-
sion of a spheroid (15.169) are

c−1 =
1
4(3δ

2
z − 1)2, (15.173a)

c0 = 3δ2z(1− δ2z), (15.173b)

c1 =
3
4(δ

2
z − 1)2. (15.173c)

364CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

15.10.3 The weight gradients of the spheroid

Oi partial derivative

The partial derivatives with respect to the orientational parameter Oi are

∂c−1

∂Oi
= 3δz(3δ

2
z − 1)

∂δz
∂Oi

, (15.174a)

∂c0
∂Oi

= 6δz(1− 2δ2z)
∂δz
∂Oi

, (15.174b)

∂c1
∂Oi

= 3δz(δ
2
z − 1)

∂δz
∂Oi

. (15.174c)

15.10.4 The weight Hessians of the spheroid

Oi – Oj partial derivative

The second partial derivatives with respect to the orientational parameters Oi and Oj are

∂2c−1

∂Oi · ∂Oj
= 3

(
(9δ2z − 1)

∂δz
∂Oi

· ∂δz
∂Oj

+ δz(3δ
2
z − 1)

∂2δz
∂Oi · ∂Oj

)
, (15.175a)

∂2c0
∂Oi · ∂Oj

= 6

(
(1− 6δ2z)

∂δz
∂Oi

· ∂δz
∂Oj

+ δz(1− 2δ2z)
∂2δz

∂Oi · ∂Oj

)
, (15.175b)

∂2c1
∂Oi · ∂Oj

= 3

(
(3δ2z − 1)

∂δz
∂Oi

· ∂δz
∂Oj

+ δz(δ
2
z − 1)

∂2δz
∂Oi · ∂Oj

)
. (15.175c)

15.10. SPHEROIDAL DIFFUSION TENSOR 365

15.10.5 The correlation times of the spheroid

The three spheroid correlation times τi in the correlation function of the Brownian rota-
tional diffusion of a spheroid (15.169) are

τ−1 = (6Diso − 2Da)
−1, (15.176a)

τ0 = (6Diso −Da)
−1, (15.176b)

τ1 = (6Diso + 2Da)
−1. (15.176c)

15.10.6 The correlation time gradients of the spheroid

τm partial derivative

The partial derivatives with respect to the geometric parameter τm are

∂τ−1

∂τm
= τm

−2(6Diso − 2Da)
−2, (15.177a)

∂τ0
∂τm

= τm
−2(6Diso −Da)

−2, (15.177b)

∂τ1
∂τm

= τm
−2(6Diso + 2Da)

−2. (15.177c)

Da partial derivative

The partial derivatives with respect to the geometric parameter Da are

∂τ−1

∂Da
= 2(6Diso − 2Da)

−2, (15.178a)

∂τ0
∂Da

= (6Diso −Da)
−2, (15.178b)

∂τ1
∂Da

= −2(6Diso + 2Da)
−2. (15.178c)

15.10.7 The correlation time Hessians of the spheroid

τm – τm partial derivative

The second partial derivatives with respect to the geometric parameter τm twice are

∂2τ−1

∂τm
2 = 2τm

−4(6Diso − 2Da)
−3 − 2τm

−3(6Diso − 2Da)
−2, (15.179a)

∂2τ0

∂τm
2 = 2τm

−4(6Diso −Da)
−3 − 2τm

−3(6Diso −Da)
−2, (15.179b)

∂2τ1

∂τm
2 = 2τm

−4(6Diso + 2Da)
−3 − 2τm

−3(6Diso + 2Da)
−2. (15.179c)

366CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

τm – Da partial derivative

The second partial derivatives with respect to the geometric parameters τm and Da are

∂2τ−1

∂τm · ∂Da
= 4τm

−2(6Diso − 2Da)
−3, (15.180a)

∂2τ0
∂τm · ∂Da

= 2τm
−2(6Diso −Da)

−3, (15.180b)

∂2τ1
∂τm · ∂Da

= −4τm
−2(6Diso + 2Da)

−3. (15.180c)

Da – Da partial derivative

The second partial derivatives with respect to the geometric parameter Da twice are

∂2τ−1

∂Da
2 = 8(6Diso − 2Da)

−3, (15.181a)

∂2τ0

∂Da
2 = 2(6Diso −Da)

−3, (15.181b)

∂2τ1

∂Da
2 = 8(6Diso + 2Da)

−3. (15.181c)

15.11. SPHERICAL DIFFUSION TENSOR 367

15.11 Spherical diffusion tensor

15.11.1 The diffusion equation of the sphere

The correlation function of the Brownian rotational diffusion of a sphere is

CO(τ) =
1

5
e−

τ
τm , (15.182)

=
1

5

0∑

i=0

cie
− τ

τi . (15.183)

where ci is the weight of the single exponential term and τi is the correlation time of the
single exponential term.

15.11.2 The weight of the sphere

Definitions

The entire diffusion parameter set consists of a single geometric parameter and is

D = {τm}. (15.184)

Summation terms

The summation indices of the correlation function of the Brownian rotational diffusion of
a sphere (15.169) range from k = 0 to k = 0 therefore

i ∈ {0}. (15.185)

The weights

The single weight ci in the correlation function of the Brownian rotational diffusion of a
sphere (15.169) is

c0 = 1. (15.186)

15.11.3 The weight gradient of the sphere

τm partial derivative

The partial derivative with respect to the geometric parameter τm is

∂c0
∂τm

= 0. (15.187)

368CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

15.11.4 The weight Hessian of the sphere

τm – τm partial derivative

The second partial derivatives with respect to the geometric parameter τm twice is

∂2c0

∂τm
2 = 0. (15.188)

15.11.5 The correlation time of the sphere

The single correlation time τi of the correlation function of the Brownian rotational diffu-
sion of a sphere (15.169) is

τ0 = τm. (15.189)

15.11.6 The correlation time gradient of the sphere

τm partial derivative

The partial derivative with respect to the geometric parameter τm is

∂τ0
∂τm

= 1. (15.190)

15.11.7 The correlation time Hessian of the sphere

τm – τm partial derivative

The second partial derivative with respect to the geometric parameter τm twice is

∂2τ0

∂τm
2 = 0. (15.191)

15.12. ELLIPSOIDAL DOT PRODUCT DERIVATIVES 369

15.12 Ellipsoidal dot product derivatives

15.12.1 The dot product of the ellipsoid

The dot product is defined as
δi = X̂H · D̂i, (15.192)

where i is one of {x, y, z}, X̂H is a unit vector parallel to the XH bond vector, and D̂i is
one of the unit vectors defining the diffusion frame. The three diffusion frame unit vectors
can be expressed using the Euler angles α, β, and γ as

D̂x =

− sinα sin γ + cosα cos β cos γ
− sinα cos γ − cosα cos β sin γ

cosα sin β

 , (15.193a)

D̂y =

cosα sin γ + sinα cos β cos γ
cosα cos γ − sinα cos β sin γ

sinα sin β

 , (15.193b)

D̂z =

− sin β cos γ
sin β sin γ

cos β

 . (15.193c)

15.12.2 The dot product gradient of the ellipsoid

The partial derivative of the dot product δi with respect to the orientational parameter
Oj is

∂δi
∂Oj

=
∂

∂Oj

(
X̂H · D̂i

)
= X̂H

∂D̂i

∂Oj
+

∂X̂H

∂Oj
D̂i. (15.194)

Because X̂H is constant and not dependent on the Euler angles its derivative is zero.
Therefore

∂δi
∂Oj

= X̂H
∂D̂i

∂Oj
. (15.195)

The Dx gradient

The partial derivatives of the unit vector D̂x with respect to the Euler angles are

∂D̂x

∂α
=

− cosα sin γ − sinα cosβ cos γ
− cosα cos γ + sinα cos β sin γ

− sinα sin β

 , (15.196a)

∂D̂x

∂β
=

− cosα sin β cos γ
cosα sin β sin γ

cosα cos β

 , (15.196b)

∂D̂x

∂γ
=

− sinα cos γ − cosα cos β sin γ
sinα sin γ − cosα cos β cos γ

0

 . (15.196c)

370CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

The Dy gradient

The partial derivatives of the unit vector D̂y with respect to the Euler angles are

∂D̂y

∂α
=

− sinα sin γ + cosα cos β cos γ
− sinα cos γ − cosα cos β sin γ

cosα sin β

 , (15.197a)

∂D̂y

∂β
=

− sinα sinβ cos γ
sinα sin β sin γ

sinα cos β

 , (15.197b)

∂D̂y

∂γ
=

cosα cos γ − sinα cos β sin γ
− cosα sin γ − sinα cos β cos γ

0

 . (15.197c)

The Dz gradient

The partial derivatives of the unit vector D̂z with respect to the Euler angles are

∂D̂z

∂α
=

0
0
0

 , (15.198a)

∂D̂z

∂β
=

− cos β cos γ
cos β sin γ
− sin β

 , (15.198b)

∂D̂z

∂γ
=

sin β sin γ
sin β cos γ

0

 . (15.198c)

15.12. ELLIPSOIDAL DOT PRODUCT DERIVATIVES 371

15.12.3 The dot product Hessian of the ellipsoid

The second partial derivative of the dot product δi with respect to the orientational pa-
rameters Oj and Ok is

∂2δi
∂Oj · ∂Ok

=
∂2

∂Oj · ∂Ok

(
X̂H · D̂i

)
= X̂H

∂2D̂i

∂Oj · ∂Ok
. (15.199)

The Dx Hessian

The second partial derivatives of the unit vector D̂x with respect to the Euler angles are

∂2D̂x

∂α2
=

sinα sin γ − cosα cos β cos γ
sinα cos γ + cosα cos β sin γ

− cosα sinβ

 , (15.200a)

∂2D̂x

∂α · ∂β =

sinα sin β cos γ
− sinα sin β sin γ

− sinα cos β

 , (15.200b)

∂2D̂x

∂α · ∂γ =

− cosα cos γ + sinα cos β sin γ
cosα sin γ + sinα cos β cos γ

0

 , (15.200c)

∂2D̂x

∂β2
=

− cosα cos β cos γ
cosα cos β sin γ
− cosα sin β

 , (15.200d)

∂2D̂x

∂β · ∂γ =

cosα sinβ sin γ
cosα sin β cos γ

0

 , (15.200e)

∂2D̂x

∂γ2
=

sinα sin γ − cosα cos β cos γ
sinα cos γ + cosα cos β sin γ

0

 . (15.200f)

The Dy Hessian

The second partial derivatives of the unit vector D̂y with respect to the Euler angles are

∂2D̂y

∂α2
=

− cosα sin γ − sinα cos β cos γ
− cosα cos γ + sinα cos β sin γ

− sinα sinβ

 , (15.201a)

∂2D̂y

∂α · ∂β =

− cosα sin β cos γ
cosα sin β sin γ

cosα cos β

 , (15.201b)

∂2D̂y

∂α · ∂γ =

− sinα cos γ − cosα cos β sin γ
sinα sin γ − cosα cos β cos γ

0

 , (15.201c)

372CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

∂2D̂y

∂β2
=

− sinα cos β cos γ
sinα cos β sin γ
− sinα sin β

 , (15.201d)

∂2D̂y

∂β · ∂γ =

sinα sin β sin γ
sinα sin β cos γ

0

 , (15.201e)

∂2D̂y

∂γ2
=

− cosα sin γ − sinα cosβ cos γ
− cosα cos γ + sinα cosβ sin γ

0

 . (15.201f)

The Dz Hessian

The second partial derivatives of the unit vector D̂z with respect to the Euler angles are

∂2D̂z

∂α2
=

0
0
0

 , (15.202a)

∂2D̂z

∂α · ∂β =

0
0
0

 , (15.202b)

∂2D̂z

∂α · ∂γ =

0
0
0

 , (15.202c)

∂2D̂z

∂β2
=

sin β cos γ
− sin β sin γ

− cos β

 , (15.202d)

∂2D̂z

∂β · ∂γ =

cos β sin γ
cos β cos γ

0

 , (15.202e)

∂2D̂z

∂γ2
=

sin β cos γ
− sin β sin γ

0

 . (15.202f)

15.13. SPHEROIDAL DOT PRODUCT DERIVATIVES 373

15.13 Spheroidal dot product derivatives

15.13.1 The dot product of the spheroid

The single dot product of the spheroid is defined as

δz = X̂H · D̂‖, (15.203)

where X̂H is a unit vector parallel to the XH vector. D̂‖ is a unit vector parallel to the
unique axis of the diffusion tensor and can be expressed using the spherical angles where
θ is the polar angle and φ is the azimuthal angle as

D̂‖ =

sin θ cosφ
sin θ sinφ

cos θ

 . (15.204)

15.13.2 The dot product gradient of the spheroid

The partial derivative of the dot product with respect to the orientational parameter Oi

is
∂δz
∂Oi

=
∂

∂Oi

(
X̂H · D̂‖

)
= X̂H

∂D̂‖

∂Oi
+

∂X̂H

∂Oi
D̂‖. (15.205)

Because the XH bond vector is constant and not dependent on the spherical angles its
derivative is zero. Therefore

∂δz
∂Oi

= X̂H
∂D̂‖

∂Oi
. (15.206)

The D‖ gradient

The partial derivatives of the unit vector D̂‖ with respect to the spherical angles are

∂D̂‖

∂θ
=

cos θ cosφ
cos θ sinφ
− sin θ

 , (15.207a)

∂D̂‖

∂φ
=

− sin θ sinφ
sin θ cosφ

0

 . (15.207b)

15.13.3 The dot product Hessian of the spheroid

The second partial derivative of the single spheroidal dot product δz with respect to the
orientational parameters Oi and Oj is

∂2δz
∂Oi · ∂Oj

=
∂2

∂Oi · ∂Oj

(
X̂H · D̂‖

)
= X̂H

∂2D̂‖

∂Oi · ∂Oj
. (15.208)

374CHAPTER 15. OPTIMISATIONOF RELAXATIONDATA – VALUES, GRADIENTS, AND HESSIANS

The D‖ Hessian

The second partial derivatives of the unit vector D̂‖ with respect to the spherical angles
are

∂2D̂‖

∂θ2
=

− sin θ cosφ
− sin θ sinφ

− cos θ

 , (15.209a)

∂2D̂‖

∂θ · ∂φ =

− cos θ sinφ
cos θ cosφ

0

 , (15.209b)

∂2D̂‖

∂φ2
=

− sin θ cosφ
− sin θ sinφ

0

 . (15.209c)

Chapter 16

The frame order models

16.1 The current frame order models

In this advanced topic chapter, the equations for the various frame order models will be
derived and validated using simulations. The models include:

1. Rigid

2. Rotor

3. Free rotor

4. Isotropic cone

5. Isotropic cone, torsionless

6. Isotropic cone, free rotor

7. Pseudo-ellipse

8. Pseudo-ellipse, torsionless

9. Pseudo-ellipse, free rotor

10. Double rotor

For a basic introduction to the frame order concept and the modelling of the tilt and
torsion components, see Section 12.3.

16.2 Simulation of the frame order models

To validate the derived frame order matrix equations for the models, the real frame order
matrix values for a given parameter set can be simulated. The following script was used for
simulating the isotropic cone and pseudo-ellipse frame order matrices. As the other models
are parametric restrictions of these two models, the simpler models were not simulated.

375

376 CHAPTER 16. THE FRAME ORDER MODELS

The script allows for both an ‘in frame’ and ‘out of frame’ or ‘axis2 1 3’ mode to observe
the components both within the motional eigenframe and in a rotated frame. The value
of VAR can be set to ‘ISO’ for selecting the isotropic cone θ parameter to vary, or ‘X’, ‘Y’,
or ‘Z’ to vary the pseudo-ellipse θx, θy, and σmax parameters respectively.

1 ###

2 # #

3 # Copyright (C) 2014-2015 Edward d'Auvergne #

4 # #

5 # This file is part of the program relax (http://www.nmr-relax.com). #

6 # #

7 # This program is free software: you can redistribute it and/or modify #

8 # it under the terms of the GNU General Public License as published by #

9 # the Free Software Foundation, either version 3 of the License, or #

10 # (at your option) any later version. #

11 # #

12 # This program is distributed in the hope that it will be useful, #

13 # but WITHOUT ANY WARRANTY; without even the implied warranty of #

14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #

15 # GNU General Public License for more details. #

16 # #

17 # You should have received a copy of the GNU General Public License #

18 # along with this program. If not, see <http://www.gnu.org/licenses/>. #

19 # #

20 ###

21

22 # relax script.

23

24 # Python module imports.

25 from math import cos, pi, sin, sqrt

26 from numpy import array, cross, dot, eye, float64, transpose, zeros

27 from numpy.linalg import norm

28 from random import uniform

29 from string import lower

30 import sys

31

32 # relax module imports.

33 from lib.errors import RelaxError

34 from lib.geometry.angles import wrap_angles

35 from lib.geometry.rotations import axis_angle_to_R, R_random_hypersphere, R_to_euler_zyz,

tilt_torsion_to_R

36 from lib.linear_algebra.kronecker_product import kron_prod

37 from lib.text.progress import progress_meter

38

39

40 # Variables.

41 #MODEL = 'rotor'

42 #MODEL = 'free_rotor'

43 #MODEL = 'iso_cone'

44 #MODEL = 'iso_cone_torsionless'

45 #MODEL = 'iso_cone_free_rotor'

46 #MODEL = 'pseudo-ellipse'

47 #MODEL = 'pseudo-ellipse_torsionless'

48 #MODEL = 'pseudo-ellipse_free_rotor'

49 MODEL = 'double_rotor'

50 #MODEL_TEXT = 'Rotor frame order model'

51 #MODEL_TEXT = 'Free rotor frame order model'

52 #MODEL_TEXT = 'Isotropic cone frame order model'

53 #MODEL_TEXT = 'Torsionless isotropic cone frame order model'

54 #MODEL_TEXT = 'Free rotor isotropic cone frame order model'

16.2. SIMULATION OF THE FRAME ORDER MODELS 377

55 #MODEL_TEXT = 'Pseudo-ellipse frame order model'

56 #MODEL_TEXT = 'Torsionless pseudo-ellipse frame order model'

57 #MODEL_TEXT = 'Free rotor pseudo-ellipse frame order model'

58 MODEL_TEXT = 'Double rotor frame order model'

59 SAMPLE_SIZE = 1000000

60 TAG = 'in_frame'

61 #TAG = 'out_of_frame'

62 #TAG = 'axis2_1_3'

63

64 # Angular restrictions.

65 THETA_X = pi / 4

66 THETA_Y = 3 * pi / 8

67 THETA_Z = pi / 6

68 INC = 18

69 VAR = 'X'

70

71 # The frame order eigenframe - I.

72 if TAG == 'in_frame':

73 EIG_FRAME = eye(3)

74

75 # The frame order eigenframe - rotated.

76 if TAG == 'out_of_frame':

77 EIG_FRAME = array([[2, -1, 2],

78 [2, 2, -1],

79 [-1, 2, 2]], float64) / 3.0

80

81 # The frame order eigenframe (and tag) - original isotropic cone axis [2, 1, 3].

82 elif TAG == 'axis2_1_3':

83 # Generate 3 orthogonal vectors.

84 vect_z = array([2, 1, 3], float64)

85 vect_x = cross(vect_z, array([1, 1, 1], float64))

86 vect_y = cross(vect_z, vect_x)

87

88 # Normalise.

89 vect_x = vect_x / norm(vect_x)

90 vect_y = vect_y / norm(vect_y)

91 vect_z = vect_z / norm(vect_z)

92

93 # Build the frame.

94 EIG_FRAME = zeros((3, 3), float64)

95 EIG_FRAME[:, 0] = vect_x

96 EIG_FRAME[:, 1] = vect_y

97 EIG_FRAME[:, 2] = vect_z

98

99

100

101 class Frame_order:

102 def __init__(self):

103 """Calculate the frame order at infinity.

104

105 This is when the starting positions are random.

106 """

107

108 # The file name.

109 file_name = '_%s_%s_theta_%s_ens%s.agr' % (MODEL, TAG, lower(VAR), SAMPLE_SIZE)

110

111 # Set the initial storage structures.

112 self.init_storage()

113

114 # Init.

115 index = 0

378 CHAPTER 16. THE FRAME ORDER MODELS

116 self.torsion_check = True

117

118 # Pre-transpose the eigenframe for speed.

119 self.eig_frame_T = transpose(EIG_FRAME)

120

121 # Generate the angle data structures.

122 self.angles = []

123 self.angles_deg = []

124 for i in range(INC):

125 # The angle of one increment.

126 inc_angle = pi / INC

127

128 # The angle of the increment.

129 self.angles.append(inc_angle * (i+1))

130

131 # In degrees for the graphs.

132 self.angles_deg.append(self.angles[-1] / (2.0*pi) * 360.0)

133

134 # Alias the bound checking methods.

135 if MODEL == 'rotor':

136 self.inside = self.inside_rotor

137 self.rotation = self.rotation_z_axis

138 elif MODEL == 'free_rotor':

139 self.inside = self.inside_free_rotor

140 self.rotation = self.rotation_z_axis

141 elif MODEL == 'iso_cone':

142 self.inside = self.inside_iso_cone

143 self.rotation = self.rotation_hypersphere

144 elif MODEL == 'iso_cone_torsionless':

145 self.inside = self.inside_iso_cone

146 self.rotation = self.rotation_hypersphere_torsionless

147 elif MODEL == 'iso_cone_free_rotor':

148 self.inside = self.inside_iso_cone

149 self.rotation = self.rotation_hypersphere

150 self.torsion_check = False

151 elif MODEL == 'pseudo-ellipse':

152 self.inside = self.inside_pseudo_ellipse

153 self.rotation = self.rotation_hypersphere

154 elif MODEL == 'pseudo-ellipse_torsionless':

155 self.inside = self.inside_pseudo_ellipse

156 self.rotation = self.rotation_hypersphere_torsionless

157 elif MODEL == 'pseudo-ellipse_free_rotor':

158 self.inside = self.inside_pseudo_ellipse

159 self.rotation = self.rotation_hypersphere

160 self.torsion_check = False

161 elif MODEL == 'double_rotor':

162 self.inside = self.inside_double_rotor

163 self.rotation = self.rotation_double_xy_axes

164 else:

165 raise RelaxError("Unknown model '%s'." % MODEL)

166

167 # Loop over random starting positions.

168 while True:

169 # Printout.

170 progress_meter(index, a=1000, b=100000)

171

172 # Generate the random rotation.

173 theta, phi, sigma = self.rotation()

174

175 # Pre-calculate the R Kronecker outer product for speed.

176 Rx2 = kron_prod(self.rot, self.rot)

16.2. SIMULATION OF THE FRAME ORDER MODELS 379

177

178 # Loop over the angle incs.

179 for i in range(INC):

180 # The new limits.

181 max_theta_x, max_theta_y, max_theta_z = self.limits(i)

182

183 # Inside the cone.

184 if not self.full[i] and self.inside(i=i, theta=theta, phi=phi, sigma=sigma

, max_theta_x=max_theta_x, max_theta_y=max_theta_y, max_theta_z=max_theta_z):

185

186 # Sum of rotations and cross products.

187 self.first_frame_order[i] += self.rot

188 self.second_frame_order[i] += Rx2

189

190 # Increment the counter.

191 self.count[i] += 1

192

193 # Full.

194 if self.count[i] == SAMPLE_SIZE:

195 sys.stdout.write("\b"*100 + "The angle restriction of %s deg is

complete.\n" % self.angles_deg[i])

196 self.full[i] = 1

197

198 # Increment the global index.

199 index += 1

200

201 # Break out.

202 if sum(self.full) == INC:

203 break

204

205 # Average.

206 self.first_frame_order = self.first_frame_order / float(SAMPLE_SIZE)

207 self.second_frame_order = self.second_frame_order / float(SAMPLE_SIZE)

208

209 # Write the data.

210 self.write_data(file_name=file_name)

211

212 # Final printout.

213 sys.stdout.write("Random rotations required: %i\n\n" % index)

214

215

216 def init_storage(self):

217 """Initialise the storage structures."""

218

219 # Create the average rotation matrix (first order).

220 self.first_frame_order = zeros((INC, 3, 3), float64)

221

222 # Create the frame order matrix (each element is ensemble averaged and corresponds

to a different time step).

223 self.second_frame_order = zeros((INC, 9, 9), float64)

224

225 # Init the rotation matrix.

226 self.rot = zeros((3, 3), float64)

227 self.rot2 = zeros((3, 3), float64)

228

229 # Some data arrays.

230 self.full = zeros(INC)

231 self.count = zeros(INC)

232

233 # Axes.

234 self.x_axis = array([1, 0, 0], float64)

380 CHAPTER 16. THE FRAME ORDER MODELS

235 self.y_axis = array([0, 1, 0], float64)

236 self.z_axis = array([0, 0, 1], float64)

237

238

239 def inside_double_rotor(self, i=None, theta=None, phi=None, sigma=None, max_theta_x=

None, max_theta_y=None, max_theta_z=None):

240 """Determine if the frame is inside the limits."""

241

242 # Alias the angles.

243 sigma1, sigma2 = theta, phi

244

245 # Check for torsion angle violations.

246 if sigma1 < -max_theta_y or sigma1 > max_theta_y:

247 return False

248 if sigma2 < -max_theta_x or sigma2 > max_theta_x:

249 return False

250

251 # Inside.

252 return True

253

254

255 def inside_free_rotor(self, i=None, theta=None, phi=None, sigma=None, max_theta_x=None

, max_theta_y=None, max_theta_z=None):

256 """Determine if the frame is inside the limits, which for the free rotor is always

true."""

257

258 # Inside.

259 return True

260

261

262 def inside_iso_cone(self, i=None, theta=None, phi=None, sigma=None, max_theta_x=None,

max_theta_y=None, max_theta_z=None):

263 """Determine if the frame is inside the limits."""

264

265 # Check for a torsion angle violation.

266 if self.torsion_check and (sigma < -max_theta_z or sigma > max_theta_z):

267 return False

268

269 # Check for a tilt angle violation.

270 if theta > max_theta_x:

271 return False

272

273 # Inside.

274 return True

275

276

277 def inside_pseudo_ellipse(self, i=None, theta=None, phi=None, sigma=None, max_theta_x=

None, max_theta_y=None, max_theta_z=None):

278 """Determine if the frame is inside the limits."""

279

280 # Check for a torsion angle violation.

281 if self.torsion_check and (sigma < -max_theta_z or sigma > max_theta_z):

282 return False

283

284 # Check for a tilt angle violation.

285 max_theta = 1.0 / sqrt(cos(phi)**2 / max_theta_x**2 + sin(phi)**2 / max_theta_y

**2)

286 if theta > max_theta:

287 return False

288

289 # Inside.

16.2. SIMULATION OF THE FRAME ORDER MODELS 381

290 return True

291

292

293 def inside_rotor(self, i=None, theta=None, phi=None, sigma=None, max_theta_x=None,

max_theta_y=None, max_theta_z=None):

294 """Determine if the frame is inside the limits."""

295

296 # Check for a torsion angle violation.

297 if sigma < -max_theta_z or sigma > max_theta_z:

298 return False

299

300 # Inside.

301 return True

302

303

304 def limits(self, i):

305 """Determine the angular restrictions for the increment i."""

306

307 # Alias the angle for the increment.

308 theta = self.angles[i]

309

310 # The different angles to vary.

311 if VAR == 'X':

312 return theta, THETA_Y, THETA_Z

313 elif VAR == 'Y':

314 return THETA_X, theta, THETA_Z

315 elif VAR == 'Z':

316 return THETA_X, THETA_Y, theta

317

318

319 def rotation_double_xy_axes(self):

320 """Random double rotation around the x- and y-axes and return of torsion-tilt

angles"""

321

322 # First a random angle between -pi and pi for the y-axis.

323 sigma1 = uniform(-pi, pi)

324 axis_angle_to_R(self.y_axis, sigma1, self.rot)

325

326 # Second a random angle between -pi and pi for the x-axis.

327 sigma2 = uniform(-pi, pi)

328 axis_angle_to_R(self.x_axis, sigma2, self.rot2)

329

330 # Construct the frame.

331 frame = dot(self.rot2, self.rot)

332

333 # Rotate the frame.

334 self.rot = dot(EIG_FRAME, dot(frame, self.eig_frame_T))

335

336 # Return the two torsion angles, and zero.

337 return sigma1, sigma2, 0.0

338

339

340 def rotation_hypersphere(self):

341 """Random rotation using 4D hypersphere point picking and return of torsion-tilt

angles."""

342

343 # Generate a random rotation.

344 R_random_hypersphere(self.rot)

345

346 # Rotate the frame.

347 frame = dot(self.eig_frame_T, dot(self.rot, EIG_FRAME))

382 CHAPTER 16. THE FRAME ORDER MODELS

348

349 # Decompose the frame into the zyz Euler angles.

350 alpha, beta, gamma = R_to_euler_zyz(frame)

351

352 # Convert to tilt and torsion angles (properly wrapped) and return them.

353 theta = beta

354 phi = wrap_angles(gamma, -pi, pi)

355 sigma = wrap_angles(alpha + gamma, -pi, pi)

356 return theta, phi, sigma

357

358

359 def rotation_hypersphere_torsionless(self):

360 """Random rotation using 4D hypersphere point picking and return of torsion-tilt

angles."""

361

362 # Obtain the random torsion-tilt angles from the random hypersphere method.

363 theta, phi, sigma = self.rotation_hypersphere()

364

365 # Reconstruct a rotation matrix, setting the torsion angle to zero.

366 tilt_torsion_to_R(phi, theta, 0.0, self.rot)

367

368 # Rotate the frame.

369 self.rot = dot(EIG_FRAME, dot(self.rot, self.eig_frame_T))

370

371 # Return the angles.

372 return theta, phi, 0.0

373

374

375 def rotation_z_axis(self):

376 """Random rotation around the z-axis and return of torsion-tilt angles"""

377

378 # Random angle between -pi and pi.

379 angle = uniform(-pi, pi)

380

381 # Generate the rotation matrix.

382 axis_angle_to_R(self.z_axis, angle, self.rot)

383

384 # Decompose the rotation into the zyz Euler angles.

385 alpha, beta, gamma = R_to_euler_zyz(self.rot)

386

387 # Rotate the frame.

388 self.rot = dot(EIG_FRAME, dot(self.rot, self.eig_frame_T))

389

390 # Convert to tilt and torsion angles (properly wrapped) and return them.

391 theta = beta

392 phi = wrap_angles(gamma, -pi, pi)

393 sigma = wrap_angles(alpha + gamma, -pi, pi)

394 return theta, phi, sigma

395

396

397 def write_data(self, file_name=None):

398 """Dump the data to files.

399

400 @keyword file_name: The end part of the files to create. This will be

prepended by either 'Sij' or 'Sijkl'.

401 @type file_name: str

402 """

403

404 # Open the files.

405 file_1st = open("Sij" + file_name, 'w')

406 file_2nd = open("Sijkl" + file_name, 'w')

16.2. SIMULATION OF THE FRAME ORDER MODELS 383

407 files = [file_1st, file_2nd]

408

409 # The headers.

410 for i in range(2):

411 # Alias the file.

412 file = files[i]

413

414 # The titles.

415 file.write("@with g0\n")

416 if i == 0:

417 file.write("@ world 0, -0.2, 180, 1\n")

418 else:

419 file.write("@ world 0, -0.7, 180, 1\n")

420 file.write("@ title \"Simulated frame order matrix elements\"\n")

421 if i == 0:

422 file.write("@ subtitle \"%s, 1\\Sst\\N degree matrix, %i simulations\"\

n" % (MODEL_TEXT, SAMPLE_SIZE))

423 else:

424 file.write("@ subtitle \"%s, 2\\Snd\\N degree matrix, %i simulations\"\

n" % (MODEL_TEXT, SAMPLE_SIZE))

425

426 # Legend.

427 if i == 0:

428 file.write("@ legend 0.23, 0.55\n")

429 else:

430 file.write("@ legend off\n")

431

432 # Plot data.

433 file.write("@ xaxis bar linewidth 0.5\n")

434 file.write("@ xaxis label \"Cone half-angle \\xq\\f{}\\s%s\\N (deg.)\"\n"

% VAR)

435 file.write("@ xaxis label char size 1.000000\n")

436 file.write("@ xaxis tick major 45\n")

437 file.write("@ xaxis tick major linewidth 0.5\n")

438 file.write("@ xaxis tick minor ticks 3\n")

439 file.write("@ xaxis tick minor linewidth 0.5\n")

440 file.write("@ yaxis bar linewidth 0.5\n")

441 if i == 0:

442 file.write("@ yaxis label \"Order parameter \qS\sij\"\n")

443 else:

444 file.write("@ yaxis label \"Order parameter \qS\sijkl\"\n")

445 file.write("@ yaxis label char size 1.000000\n")

446 file.write("@ yaxis tick major 0.2\n")

447 file.write("@ yaxis tick major linewidth 0.5\n")

448 file.write("@ yaxis tick minor ticks 1\n")

449 file.write("@ yaxis tick minor linewidth 0.5\n")

450

451 # Header for first order matrix.

452 graph_num = 0

453 for i in range(3):

454 for j in range(3):

455 file_1st.write("@ s%i legend \"\\q<c\\s%s%s\\N>\"\n" % (graph_num, i+1,

j+1))

456 file_1st.write("@ s%i linewidth 0.5\n" % graph_num)

457 graph_num += 1

458

459 # Header for second order matrix.

460 graph_num = 0

461 for i in range(3):

462 for j in range(3):

463 for k in range(3):

384 CHAPTER 16. THE FRAME ORDER MODELS

464 for l in range(3):

465 file_2nd.write("@ s%i legend \"<\\qc\\s%s%s\\N.c\\s%s%s\\N>\"\n

" % (graph_num, i+1, j+1, k+1, l+1))

466 file_2nd.write("@ s%i linewidth 0.5\n" % graph_num)

467 graph_num += 1

468

469 # Loop over the first rotation matrix index.

470 graph_num = 0

471 for i in range(3):

472 # Loop over the second rotation matrix index.

473 for j in range(3):

474 # Header.

475 file_1st.write("@target G0.S%i\n" % graph_num)

476 file_1st.write("@type xy\n")

477

478 # Loop over each time point.

479 for k in range(INC):

480 file_1st.write("%s %s\n" % (self.angles_deg[k], self.first_frame_order

[k, i, j]))

481

482 # Footer.

483 file_1st.write("&\n")

484

485 # Inc.

486 graph_num += 1

487

488 # Loop over the first frame order index.

489 graph_num = 0

490 for i in range(9):

491 # Loop over the second frame order index.

492 for j in range(9):

493 # Header.

494 file_2nd.write('@target G0.S%i\n' % graph_num)

495 file_2nd.write('@type xy\n')

496

497 # Loop over each time point.

498 for k in range(INC):

499 file_2nd.write('%s %s\n' % (self.angles_deg[k],

self.second_frame_order[k, i, j]))

500

501 # Footer.

502 file_2nd.write('&\n')

503

504 # Inc.

505 graph_num += 1

506

507 # No autoscaling.

508 file_1st.write("@autoscale onread none\n")

509 file_2nd.write("@autoscale onread none\n")

510

511 # Close the files.

512 file_1st.close()

513 file_2nd.close()

514

515

516 # Calculate the frame order.

517 Frame_order()

16.3. RIGID FRAME ORDER MODEL 385

16.3 Rigid frame order model

16.3.1 Rigid model parameterisation

This model consists solely of the six parameters of translation and rotation of the ‘moving’
domain to its average position. The parameter set is therefore

M = P = {Px, Py , Pz, Pα, Pβ , Pγ} , (16.1)

where Pi are the average domain position translations and rotations.

16.3.2 Rigid model equations

Rigid model rotation matrices

For the rigid model, there is no motion so the rotation matrix is simply the identity matrix

R =

1 . .
. 1 .
. . 1

 . (16.2)

Rigid frame order matrix

The frame order matrix is
d

(n) = R⊗n, (16.3)

where surface normalisation factor is 1.

Rigid 1st degree frame order The 1st degree frame order matrix with tensor rank-2
is the identity matrix

d
(1) = R⊗1, (16.4a)

=

1 . .
. 1 .
. . 1

 . (16.4b)

386 CHAPTER 16. THE FRAME ORDER MODELS

Rigid 2nd degree frame order The 2nd degree frame order matrix with tensor rank-4
is the identity matrix

d
(2) = R⊗2, (16.5a)

=

1
. 1
. . 1
. . . 1
. . . . 1
. 1 . . .
. 1 . .
. 1 .
. 1

. (16.5b)

16.4 Rotor frame order model

The rotor model is defined by its rotation axis and a pivot point to position the center of
the rotation.

16.4.1 Rotor parameterisation

The natural way to parameterise the rotation axis of rotor frame order model is to use
a 3D point, the pivot point, and a unit vector using the spherical angle basis set. This
would result in the parameter set

M = Eax + p1, (16.6a)

= {Eθ, Eφ}+ {px, py, pz} . (16.6b)

However this is an overparameterisation as the point {px, py, pz} can lie anywhere on the
line defined by itself and the unit vector. Due to computational truncation artifacts, this
results in the pivot point shooting out to infinity along the line during optimisation.

The minimal set of independent parameters for the rotor model is four. There are many
parameterisation of lines in 3D using this minimal set of four parameters, however many
of these suffer from singularity problems which can be fatal for optimisation. By using
geometry of the model together with information about the molecular system, a parame-
terisation can be constructed which avoid singularities:

• A point of reference is the PDB frame close to the molecule is chosen, in this case
the centre of mass (CoM) of the total system.

• The point on the line defining the rotation axis closest to the reference point defines
an orthogonal system of the rotation axis to the vector of the CoM to closest point.
This point can be optimised with the parameters p1 = {px, py, pz} with no singularity
problems and minimising truncation artifacts in the numerical PCS calculation.

16.4. ROTOR FRAME ORDER MODEL 387

• As the rotation axis is perpendicular to the CoM-p1 vector, it can be defined using a
single angle of rotation (Eax

α). The reference starting point for the angle is arbitrarily
set to the xy-plane. The rotation of a unit vector about the CoM-p1 centred at p1 is
smooth, hence singularities are also avoided.

The full parameter set for the rotor model implementation is therefore

M = P+ Eα
ax + p1 +S, (16.7a)

= {Px, Py, Pz , Pα, Pβ , Pγ}+ {Eax
α }+ {px, py, pz}+ {σmax} , (16.7b)

where Pi are the average domain position translations and rotations, Eax
α is the single

angle defining the rotation axis, pi are the coordinates of the pivot point, and σmax is the
torsion half-angle of the rotor motion.

The rotation axis vector in the system is calculated as

r̂ax = |Rα · (r̂CoM−p1 × ẑ)| . (16.8)

The angle Eax
α is obtained from r̂ax as

Eax
α =

π

2
− arccos(r̂ax · ẑ), (16.9a)

= arcsin(r̂ax · ẑ), (16.9b)

16.4.2 Rotor equations

The only motion is in the torsion angle about the rotation axis.

Rotor rotation matrices

Assuming the rotation axis is the z-axis, the rotation matrix is defined as

R(σ) =

cosσ − sinσ 0
sinσ cosσ 0
0 0 1

 . (16.10)

Rotor frame order matrix

The frame order matrix is

d
(n) =

∫

S
R⊗n dS

/∫

S
dS, (16.11a)

=

∫ σmax

−σmax

R⊗n dσ

/∫

S
dS. (16.11b)

The surface normalisation factor is∫

S
dS =

∫ σmax

−σmax

dσ, (16.12a)

= 2σmax. (16.12b)

388 CHAPTER 16. THE FRAME ORDER MODELS

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Rotor frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Rotor frame order model, 1

st
 degree matrix

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Rotor frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Rotor frame order model, 2

nd
 degree matrix

Figure 16.1: The rotor model simulated and calculated in-frame d(1) and d(2) frame
order matrix elements. The top row corresponds to d(1) and the bottom to d(2). In these
plots, θZ corresponds to the torsion half-angle σmax. Frame order matrix values have been
calculated every 10 degrees.

16.4. ROTOR FRAME ORDER MODEL 389

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Rotor frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Rotor frame order model, 1

st
 degree matrix

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Rotor frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Rotor frame order model, 2

nd
 degree matrix

Figure 16.2: The rotor model simulated and calculated out-of-frame d(1) and d(2) frame
order matrix elements. The top row corresponds to d(1) and the bottom to d(2). In these
plots, θZ corresponds to the torsion half-angle σmax. Frame order matrix values have been
calculated every 10 degrees.

390 CHAPTER 16. THE FRAME ORDER MODELS

Rotor 1st degree frame order The 1st degree frame order matrix with tensor rank-2
is

d
(1) =

∫

S
R⊗1 dS

/∫

S
dS, (16.13a)

=

∫

S
R dS

/
2σmax, (16.13b)

=

sincσmax . .

. sincσmax .

. . 1

 . (16.13c)

Rotor 2nd degree frame order The 2nd degree frame order matrix with tensor rank-4
is

d
(2) =

∫

S
R⊗2 dS

/∫

S
dS, (16.14a)

=

∫

S
R⊗R dS

/
2σmax, (16.14b)

= 1
2

s2σ + 1 . . . −s2σ + 1
. s2σ + 1 . s2σ − 1
. . 2sσ
. s2σ − 1 . s2σ + 1

−s2σ + 1 . . . s2σ + 1
. 2sσ . . .
. 2sσ . .
. 2sσ .
. 1

, (16.14c)

where sσ = sinc σmax and s2σ = sinc(2σmax). The active matrix elements which are not
zero due to symmetries, in Kronecker product double indices from 0 to 8, are

d00 =
1
2 sinc(2σmax) +

1
2 , (16.15a)

d11 = d00, (16.15b)

d22 = sincσmax, (16.15c)

d33 = d00, (16.15d)

d44 = d00, (16.15e)

d55 = d22, (16.15f)

d66 = d22, (16.15g)

d77 = d22, (16.15h)

d88 = 1, (16.15i)

d04 = −1
2 sinc(2σmax) +

1
2 , (16.15j)

d40 = d04, (16.15k)

d08 = 0, (16.15l)

d80 = 0, (16.15m)

d48 = 0, (16.15n)

16.5. FREE ROTOR FRAME ORDER MODEL 391

d84 = 0, (16.15o)

d13 = −d04, (16.15p)

d31 = −d04, (16.15q)

d26 = 0, (16.15r)

d62 = 0, (16.15s)

d57 = 0, (16.15t)

d75 = 0. (16.15u)

Rotor frame order matrix simulation and calculation The frame order matrix
element simulation script from Section 16.2, page 375 was used to compare the imple-
mentation of equations 16.13 and 16.15 above. Frame order matrix d(1) and d(2) values
were both simulated and calculated, both within and out of the motional eigenframe. The
in-frame d(1) and d(2) values are shown in figure 16.1. The out-of-frame d(1) and d(2)

values are shown in figure 16.2.

16.5 Free rotor frame order model

This is similar to the rotor model but with no torsional restriction (σmax = π).

16.5.1 Free rotor parameterisation

The full parameter set for the free-rotor model implementation is

M = P+ Eα
ax + p1, (16.16a)

= {Px, Py, Pz , Pα, Pβ , Pγ}+ {Eax
α }+ {px, py, pz} , (16.16b)

where Pi are the average domain position translations and rotations, Eax
α is the single

angle defining the rotation axis, and pi are the coordinates of the pivot point.

16.5.2 Free rotor equations

Free rotor rotation matrices

The rotation matrix is defined in equation 16.10.

Free rotor frame order matrix

The frame order matrix is

d
(n) =

∫

S
R⊗n dS

/∫

S
dS, (16.17a)

=

∫ π

−π
R⊗n dσ

/∫

S
dS. (16.17b)

392 CHAPTER 16. THE FRAME ORDER MODELS

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Free-rotor frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Free-rotor frame order model, 1

st
 degree matrix

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Free-rotor frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Free-rotor frame order model, 2

nd
 degree matrix

Figure 16.3: The free rotor model simulated and calculated in-frame d(1) and d(2) frame
order matrix elements. The top row corresponds to d(1) and the bottom to d(2). In these
plots, as no motional order parameters exist for the model, θZ corresponds to nothing.
Frame order matrix values have been calculated every 10 degrees.

16.5. FREE ROTOR FRAME ORDER MODEL 393

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Free-rotor frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Free-rotor frame order model, 1

st
 degree matrix

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Free-rotor frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Free-rotor frame order model, 2

nd
 degree matrix

Figure 16.4: The free rotor model simulated and calculated out-of-frame d(1) and d(2)

frame order matrix elements. The top row corresponds to d(1) and the bottom to d(2).
In these plots, as no motional order parameters exist for the model, θZ corresponds to
nothing. Frame order matrix values have been calculated every 10 degrees.

394 CHAPTER 16. THE FRAME ORDER MODELS

The surface normalisation factor is
∫

S
dS =

∫ π

−π
dσ, (16.18a)

= 2π. (16.18b)

Free rotor 1st degree frame order The 1st degree frame order matrix with tensor
rank-2 is

d
(1) =

∫

S
R⊗1 dS

/∫

S
dS, (16.19a)

=

∫

S
R dS

/
2π, (16.19b)

=

. . .
. . .
. . 1

 . (16.19c)

Free rotor 2nd degree frame order The frame order matrix in Kronecker product
notation is fixed as

d
(2) =

1
2 . . . 1

2
. 1

2 . −1
2

.

. −1
2 . 1

2
1
2 . . . 1

2
.
.
.
. 1

. (16.20)

Free rotor frame order matrix simulation and calculation The frame order matrix
element simulation script from Section 16.2, page 375 was used to compare the implemen-
tation of equations 16.19 and 16.20 above. Frame order matrix d(1) and d(2) values were
both simulated and calculated, both within and out of the motional eigenframe. The in-
frame d(1) and d(2) values are shown in figure 16.3. The out-of-frame d(1) and d(2) values
are shown in figure 16.4.

16.6 Isotropic cone frame order model

16.6.1 Isotropic cone parameterisation

In this model, the tilt component of the tilt and torsion angle system is modelled simply
as

θ ≤ θmax. (16.21)

The torsion angle restriction of 12.76 on page 253 is used for the modelling of the torsion
component. A uniform distribution of rigid body positions within these bounds is assumed.

16.6. ISOTROPIC CONE FRAME ORDER MODEL 395

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Isotropic cone frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Isotropic cone frame order model, 1

st
 degree matrix

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Isotropic cone frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Isotropic cone frame order model, 1

st
 degree matrix

Figure 16.5: The isotropic cone model simulated and calculated in-frame d(1) frame order
matrix elements. In these plots, θX corresponds to the cone opening half-angle θ and θZ to
the torsion half-angle σmax. When the half-angle is not varied, the angle is fixed to either
θ = π/4 or σmax = π/6. Frame order matrix values have been calculated every 10 degrees.

The isotropic cone model of the ball and socket joint consists of a single pivot point, a single
unit z-vector of the motional eigenframe defining the cone axis, and the maximum cone
opening and torsion half-angles. Including the average domain position, the parameter set
is therefore

M = P+ Eax + p1 +S, (16.22a)

= {Px, Py, Pz, Pα, Pβ , Pγ}+ {Eθ, Eφ}+ {px, py, pz}+ {θmax, σmax} , (16.22b)

where Pi are the average domain position translations and rotations, Ei are the spherical
angles defining the cone axis, pi are the coordinates of the pivot point, and θmax and σmax

are the maximum cone opening and torsion half-angles respectively.

16.6.2 Isotropic cone equations

Isotropic cone rotation matrices

The rotation matrix is the full torsion-tilt rotation matrix of equation 12.74c on page 252.

396 CHAPTER 16. THE FRAME ORDER MODELS

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Isotropic cone frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Isotropic cone frame order model, 2

nd
 degree matrix

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Isotropic cone frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Isotropic cone frame order model, 2

nd
 degree matrix

Figure 16.6: The isotropic cone model simulated and calculated in-frame d(2) frame order
matrix elements. In these plots, θX corresponds to the cone opening half-angle θ and θZ to
the torsion half-angle σmax. When the half-angle is not varied, the angle is fixed to either
θ = π/4 or σmax = π/6. Frame order matrix values have been calculated every 10 degrees.

16.6. ISOTROPIC CONE FRAME ORDER MODEL 397

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Isotropic cone frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Isotropic cone frame order model, 1

st
 degree matrix

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Isotropic cone frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Isotropic cone frame order model, 1

st
 degree matrix

Figure 16.7: The isotropic cone model simulated and calculated out-of-frame d(1) frame
order matrix elements. In these plots, θX corresponds to the cone opening half-angle θ
and θZ to the torsion half-angle σmax. When the half-angle is not varied, the angle is fixed
to either θ = π/4 or σmax = π/6. Frame order matrix values have been calculated every
10 degrees.

398 CHAPTER 16. THE FRAME ORDER MODELS

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Isotropic cone frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Isotropic cone frame order model, 2

nd
 degree matrix

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Isotropic cone frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Isotropic cone frame order model, 2

nd
 degree matrix

Figure 16.8: The isotropic cone model simulated and calculated out-of-frame d(2) frame
order matrix elements. In these plots, θX corresponds to the cone opening half-angle θ
and θZ to the torsion half-angle σmax. When the half-angle is not varied, the angle is fixed
to either θ = π/4 or σmax = π/6. Frame order matrix values have been calculated every
10 degrees.

16.6. ISOTROPIC CONE FRAME ORDER MODEL 399

Isotropic cone frame order matrix

The frame order matrix is

d
(n) =

∫

S
R⊗n dS

/∫

S
dS, (16.23a)

=

∫ σmax

−σmax

∫ π

−π

∫ θmax

0
R⊗n sin θ dθ dφdσ

/∫

S
dS. (16.23b)

The surface normalisation factor is
∫

S
dS =

∫ σmax

−σmax

∫ π

−π

∫ θmax

0
sin θ dθ dφdσ, (16.24a)

=

∫ σmax

−σmax

∫ π

−π
(1− cos θmax) dφdσ, (16.24b)

=

∫ σmax

−σmax

2π (1− cos θmax) dσ, (16.24c)

= 4πσmax (1− cos θmax) . (16.24d)

Isotropic cone 1st degree frame order The 1st degree frame order matrix with tensor
rank-2 is

d
(1) =

∫

S
R⊗1 dS

/∫

S
dS, (16.25a)

=

∫

S
RdS

/
4πσmax (1− cos θmax) , (16.25b)

= 1
4

sincσmax (cos θmax + 3) . .

. sincσmax (cos θmax + 3) .

. . 2 cos θmax + 2

 . (16.25c)

Isotropic cone 2nd degree frame order The 2nd degree frame order matrix with
tensor rank-4 consists of the following elements, using Kronecker product double indices
from 0 to 8

d00 =
1
24 sinc(2σmax)

(
cos2 θmax + 4cos θmax + 7

)
+ 1

12

(
cos2 θmax + cos θmax + 4

)
,

(16.26a)

d11 =
1
24 sinc(2σmax)

(
cos2 θmax + 4cos θmax + 7

)
+ 1

4 (cos θmax + 1) , (16.26b)

d22 =
1
12 sinc(2σmax)

(
2 cos2 θmax + 5cos θmax + 5

)
, (16.26c)

d33 = d11, (16.26d)

d44 = d00, (16.26e)

d55 = d22, (16.26f)

d66 = d22, (16.26g)

d77 = d22, (16.26h)

d88 =
1
3

(
cos2 θmax + cos θmax + 1

)
, (16.26i)

d04 = − 1
24 sinc(2σmax)

(
cos2 θmax + 4cos θmax + 7

)
+ 1

12

(
cos2 θmax + cos θmax + 4

)
,

(16.26j)

400 CHAPTER 16. THE FRAME ORDER MODELS

d40 = d04, (16.26k)

d08 = −1
6

(
cos2 θmax + cos θmax − 2

)
, (16.26l)

d80 = d08, (16.26m)

d48 = d08, (16.26n)

d84 = d08, (16.26o)

d13 =
1
24 sinc(2σmax)

(
cos2 θmax + 4cos θmax + 7

)
− 1

4 (cos θmax + 1) , (16.26p)

d31 = d13, (16.26q)

d26 =
1
6 sinc(2σmax)

(
cos2 θmax + cos θmax − 2

)
, (16.26r)

d62 = d26, (16.26s)

d57 = d26, (16.26t)

d75 = d26. (16.26u)

Isotropic cone frame order matrix simulation and calculation The frame order
matrix element simulation script from Section 16.2, page 375 was used to compare the
implementation of equations 16.25 and 16.26 above. Frame order matrix d(1) and d(2)

values were both simulated and calculated, both within and out of the motional eigenframe.
The in-frame d(1) values are shown in figure 16.5 and d(2) in figure 16.6. The out-of-frame
d

(1) values are shown in figure 16.7 and d(2) in figure 16.8.

16.7 Torsionless isotropic cone frame order model

16.7.1 Torsionless isotropic cone parameterisation

As this is simply the isotropic cone model with the torsion angle set to zero, σmax = 0,
the models parameters are

M = P+ Eax + p1 +S, (16.27a)

= {Px, Py , Pz, Pα, Pβ , Pγ}+ {Eθ, Eφ}+ {px, py, pz}+ {θmax} , (16.27b)

where Pi are the average domain position translations and rotations, Ei are the spherical
angles defining the cone axis, pi are the coordinates of the pivot point, and θmax is the
maximum cone opening half-angle.

16.7.2 Torsionless isotropic cone equations

Torsionless isotropic cone rotation matrices

The torsionless rotation matrix is defined in equation 12.77c.

16.7. TORSIONLESS ISOTROPIC CONE FRAME ORDER MODEL 401

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Torsionless isotropic cone frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Isotropic cone, torsionless frame order model, 1

st
 degree matrix

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Torsionless isotropic cone frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Isotropic cone, torsionless frame order model, 2

nd
 degree matrix

Figure 16.9: The torsionless isotropic cone model simulated and calculated in-frame d(1)

and d(2) frame order matrix elements. The top row corresponds to d(1) and the bottom
to d(2). In these plots, θX corresponds to the cone opening half-angle θ. Frame order
matrix values have been calculated every 10 degrees.

402 CHAPTER 16. THE FRAME ORDER MODELS

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Torsionless isotropic cone frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Isotropic cone, torsionless frame order model, 1

st
 degree matrix

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Torsionless isotropic cone frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Isotropic cone, torsionless frame order model, 2

nd
 degree matrix

Figure 16.10: The torsionless isotropic cone model simulated and calculated out-of-frame
d

(1) and d(2) frame order matrix elements. The top row corresponds to d(1) and the
bottom to d(2). In these plots, θX corresponds to the cone opening half-angle θ. Frame
order matrix values have been calculated every 10 degrees.

16.7. TORSIONLESS ISOTROPIC CONE FRAME ORDER MODEL 403

Torsionless isotropic cone frame order matrix

The frame order matrix is

d
(n) =

∫

S
R⊗n dS

/∫

S
dS, (16.28a)

=

∫ π

−π

∫ θmax

0
R⊗n sin θ dθ dφ

/∫

S
dS. (16.28b)

The surface normalisation factor is

∫

S
dS =

∫ π

−π

∫ θmax

0
sin θ dθ dφ, (16.29a)

=

∫ π

−π
(1− cos θmax) dφ, (16.29b)

= 2π (1− cos θmax) . (16.29c)

Torsionless isotropic cone 1st degree frame order The 1st degree frame order
matrix with tensor rank-2 is

d
(1) =

∫

S
R⊗1 dS

/∫

S
dS, (16.30a)

=

∫

S
R dS

/
2π (1− cos θmax) , (16.30b)

= 1
4

cos θmax + 3 . .

. cos θmax + 3 .

. . 2 (cos θmax + 1)

 . (16.30c)

Torsionless isotropic cone 2nd degree frame order The 2nd degree frame order
matrix with tensor rank-4 consists of the following elements, using Kronecker product
double indices from 0 to 8

d00 =
1
24

(
3 cos2 θmax + 6cos θmax + 15

)
, (16.31a)

d11 =
1
24

(
cos2 θmax + 10 cos θmax + 13

)
, (16.31b)

d22 =
1
24

(
4 cos2 θmax + 10 cos θmax + 10

)
, (16.31c)

d33 = d11, (16.31d)

d44 = d00, (16.31e)

d55 = d22, (16.31f)

d66 = d22, (16.31g)

d77 = d22, (16.31h)

d88 =
1
3

(
cos2 θmax + cos θmax + 1

)
, (16.31i)

d04 =
1
24

(
cos2 θmax − 2 cos θmax + 1

)
, (16.31j)

d40 = d04, (16.31k)

d08 = −1
6

(
cos2 θmax + cos θmax − 2

)
, (16.31l)

404 CHAPTER 16. THE FRAME ORDER MODELS

d80 = d08, (16.31m)

d48 = d08, (16.31n)

d84 = d08, (16.31o)

d13 = d04, (16.31p)

d31 = d04, (16.31q)

d26 = −d08, (16.31r)

d62 = −d08, (16.31s)

d57 = −d08, (16.31t)

d75 = −d08. (16.31u)

After factorisation, the equations are

d00 =
1
8 (cos θmax + 1)2 + 1

2 , (16.32a)

d11 =
1
24 (cos θmax + 5)2 − 1

2 , (16.32b)

d22 =
1
96

(
(4 cos θmax + 5)2 + 15

)
, (16.32c)

d33 = d11, (16.32d)

d44 = d00, (16.32e)

d55 = d22, (16.32f)

d66 = d22, (16.32g)

d77 = d22, (16.32h)

d88 =
1
12 (2 cos θmax + 1)2 + 1

4 , (16.32i)

d04 =
1
24 (cos θmax − 1)2 , (16.32j)

d40 = d04, (16.32k)

d08 = −1
6 (cos θmax + 2) (cos θmax − 1) , (16.32l)

d80 = d08, (16.32m)

d48 = d08, (16.32n)

d84 = d08, (16.32o)

d13 = d04, (16.32p)

d31 = d04, (16.32q)

d26 = −d08, (16.32r)

d62 = −d08, (16.32s)

d57 = −d08, (16.32t)

d75 = −d08. (16.32u)

Torsionless isotropic cone frame order matrix simulation and calculation The
frame order matrix element simulation script from Section 16.2, page 375 was used to
compare the implementation of equations 16.30 and 16.32 above. Frame order matrix d(1)

and d(2) values were both simulated and calculated, both within and out of the motional
eigenframe. The in-frame d(1) and d(2) values are shown in figure 16.9. The out-of-frame
d

(1) and d(2) values are shown in figure 16.10.

16.8. FREE ROTOR ISOTROPIC CONE FRAME ORDER MODEL 405

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Free rotor isotropic cone frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Isotropic cone, free rotor frame order model, 1

st
 degree matrix

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Free rotor isotropic cone frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Isotropic cone, free rotor frame order model, 2

nd
 degree matrix

Figure 16.11: The free rotor isotropic cone model simulated and calculated in-frame d(1)

and d(2) frame order matrix elements. The top row corresponds to d(1) and the bottom
to d(2). In these plots, θX corresponds to the cone opening half-angle θ. Frame order
matrix values have been calculated every 10 degrees.

16.8 Free rotor isotropic cone frame order model

16.8.1 Free rotor isotropic cone parameterisation

For the free rotor variation of the isotropic cone model, the torsion angle restriction is
absent and the model parameters are

M = P+ Eax + p1 +S, (16.33a)

= {Px, Py, Pz, Pα, Pβ, Pγ}+ {Eθ, Eφ}+ {px, py, pz}+ {θmax} , (16.33b)

where Pi are the average domain position translations and rotations, Ei are the spherical
angles defining the cone axis, pi are the coordinates of the pivot point, and θmax is the
maximum cone opening half-angle.

406 CHAPTER 16. THE FRAME ORDER MODELS

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Free rotor isotropic cone frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Isotropic cone, free rotor frame order model, 1

st
 degree matrix

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Free rotor isotropic cone frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Isotropic cone, free rotor frame order model, 2

nd
 degree matrix

Figure 16.12: The free rotor isotropic cone model simulated and calculated out-of-frame
d

(1) and d(2) frame order matrix elements. The top row corresponds to d(1) and the
bottom to d(2). In these plots, θX corresponds to the cone opening half-angle θ. Frame
order matrix values have been calculated every 10 degrees.

16.8. FREE ROTOR ISOTROPIC CONE FRAME ORDER MODEL 407

16.8.2 Free rotor isotropic cone equations

Free rotor isotropic cone rotation matrices

The rotation matrix is the full torsion-tilt rotation matrix of equation 12.74c on page 252.

Free rotor isotropic cone frame order matrix

The frame order matrix is

d
(n) =

∫

S
R⊗n dS

/∫

S
dS, (16.34a)

=

∫ π

−π

∫ π

−π

∫ θmax

0
R⊗n sin θ dθ dφdσ

/∫

S
dS. (16.34b)

The surface normalisation factor is

∫

S
dS =

∫ π

−π

∫ π

−π

∫ θmax

0
sin θ dθ dφdσ, (16.35a)

=

∫ π

−π

∫ π

−π
(1− cos θmax) dφdσ, (16.35b)

=

∫ π

−π
2π (1− cos θmax) dσ, (16.35c)

= 4π2 (1− cos θmax) . (16.35d)

Free rotor isotropic cone 1st degree frame order The 1st degree frame order matrix
with tensor rank-2 is

d
(1) =

∫

S
R⊗1 dS

/∫

S
dS, (16.36a)

=

∫

S
R dS

/
2π (1− cos θmax) , (16.36b)

= 1
2

. . .
. . .
. . cos θmax + 1

 . (16.36c)

Free rotor isotropic cone 2nd degree frame order The 2nd degree frame order
matrix with tensor rank-4 consists of the following elements, using Kronecker product

408 CHAPTER 16. THE FRAME ORDER MODELS

double indices from 0 to 8

d00 =
1
12

(
cos2 θmax + cos θmax + 4

)
, (16.37a)

d11 =
1
4 (cos θmax + 1) , (16.37b)

d22 = 0, (16.37c)

d33 = d11, (16.37d)

d44 = d00, (16.37e)

d55 = 0, (16.37f)

d66 = 0, (16.37g)

d77 = 0, (16.37h)

d88 =
1
3

(
cos2 θmax + cos θmax + 1

)
, (16.37i)

d04 = d00, (16.37j)

d40 = d00, (16.37k)

d08 = −1
6

(
cos2 θmax + cos θmax − 2

)
, (16.37l)

d80 = d08, (16.37m)

d48 = d08, (16.37n)

d84 = d08, (16.37o)

d13 = −d11, (16.37p)

d31 = −d11, (16.37q)

d26 = 0, (16.37r)

d62 = 0, (16.37s)

d57 = 0, (16.37t)

d75 = 0. (16.37u)

Free rotor isotropic cone frame order matrix simulation and calculation The
frame order matrix element simulation script from Section 16.2, page 375 was used to
compare the implementation of equations 16.36 and 16.37 above. Frame order matrix d(1)

and d(2) values were both simulated and calculated, both within and out of the motional
eigenframe. The in-frame d(1) and d(2) values are shown in figure 16.11. The out-of-frame
d

(1) and d(2) values are shown in figure 16.12.

16.9 Pseudo-ellipse frame order model

16.9.1 Pseudo-ellipse parameterisation

To extend to the next level of motional complexity above the isotropic cone models, an
anisotropic cone can be modelled. This cone is defined via the ball and socket joint
pivoted mechanics with an angular restriction in all three angles. The simplest anisotropic
distribution would be to create an ellipse using the standard quadric surface formula for
an elliptic cone

x2

a2
+

y2

b2
− z2

c2
= 0. (16.38)

16.9. PSEUDO-ELLIPSE FRAME ORDER MODEL 409

Figure 16.13: The pseudo-elliptic cone. The top three representations are for θx = 30◦

and θy = 50◦. The bottom three representations are for θx = 20◦ and θy = 160◦.

Let the two cone opening half-angles of the ellipse be θx and θy. For a sphere of radius
z = 1 and using the tilt angles θ and φ, a boundary polar angle θmax can be modelled as

1

θ2max

=
cos2 φ

θ2x
+

sin2 φ

θ2y
. (16.39)

As the quadric constants a, b and c are angles rather than axis lengths, this is not a true
ellipse. It will therefore instead be called a pseudo-ellipse. The form of this pseudo-elliptic
cone is shown in figure 16.13.

The model consists of the average domain position, a single pivot point, the full motional
eigenframe, and the maximum cone opening and torsion half-angles

M = P+ E+ p1 +S, (16.40a)

= {Px, Py, Pz, Pα, Pβ , Pγ}+ {Eα, Eβ , Eγ}+ {px, py, pz}+ {θx, θy, σmax} , (16.40b)

where Pi are the average domain position translations and rotations, Ei are the Euler
angles defining the motional eigenframe, pi are the coordinates of the pivot point, θx and
θy are the maximum cone opening half-angles, and σmax is the torsion half-angle.

16.9.2 Derivation of a 2D trigonometric function - the pseudo-elliptic
cosine

For the surface normalisation factor of the pseudo-elliptic cone, the integral from equa-
tion 16.51b on page 412 is

∫

S
dS =

∫ σmax

−σmax

∫ π

−π
(1− cos θmax) dφdσ. (16.41)

410 CHAPTER 16. THE FRAME ORDER MODELS

When combined with the pseudo-ellipse of equation 16.39, this becomes the intractable
integral

∫

S
dS =

∫ σmax

−σmax

∫ π

−π

1− cos

1√
cos2 φ
θ2x

+ sin2 φ
θ2y

 dφdσ, (16.42)

Instead the cosine series expansion will be used

cos θmax = 1− θmax
2

2!
+

θmax
4

4!
− θmax

6

6!
+

θmax
8

8!
− θmax

10

10!
+ · · · , (16.43)

=

∞∑

n=0

(−1)n

(2n)!
θmax

2n. (16.44)

Integrating each element of the sum over the φ parameter and using the assumption that
θx, θy ≥ 0 gives

∫ π

−π

θmax
2

2!
dφ = πθxθy,

∫ π

−π

θmax
4

4!
dφ =

πθxθy
24

(
θ2x + θ2y

)
,

∫ π

−π

θmax
6

6!
dφ =

πθxθy
2880

(
3θ4x + 2θ2xθ

2
y + 3θ4y

)
,

∫ π

−π

θmax
8

8!
dφ =

πθxθy
322560

(
5θ6x + 3θ4xθ

2
y + 3θ2xθ

4
y + 5θ6y

)
,

∫ π

−π

θmax
10

10!
dφ =

πθxθy
232243200

(
35θ8x + 20θ6xθ

2
y + 18θ4xθ

4
y + 20x2θ6y + 35θ8y

)
,

. . . (16.45)

Therefore a new two dimension trigonometric function, the pseudo-elliptic cosine, can be
defined as

pec(θx, θy) =

∫ π

−π
(1− cos θmax) dφ, (16.46a)

= 2πθxθy

∞∑

n=0

(−1)n

4n(2n + 2)!
fn(θx, θy). (16.46b)

Let

a = θ2x,

b = θ2y, (16.47)

16.9. PSEUDO-ELLIPSE FRAME ORDER MODEL 411

then the first of the fn(θx, θy) equations are

f0 = 1,

f1 = 2a+ 2b,

f2 = 6a2 + 4ab+ 6b2,

f3 = 20a3 + 12a2b+ 12ab2 + 20b3,

f4 = 70a4 + 40a3b+ 36a2b2 + 40ab3 + 70b4,

f5 = 252a5 + 140a4b+ 120a3b2 + 120a2b3 + 140ab4 + 252b5,

f6 = 924a6 + 504a5b+ 420a4b2 + 400a3b3 + 420a2b4 + 504ab5 + 924b6,

f7 = 3432a7 + 1848a6b+ 1512a5b2 + 1400a4b3 + 1400a3b4 + 1512a2b5 + 1848ab6 + 3432b7,

. . . (16.48)

Or

f0 = 1,

f1 = 2(a+ b),

f2 = 6(a2 + b
2) + 4ab,

f3 = 20(a3 + b
3) + 12(a2

b+ ab
2),

f4 = 70(a4 + b
4) + 40(a3

b+ ab
3) + 36a2

b
2
,

f5 = 252(a5 + b
5) + 140(a4

b+ ab
4) + 120(a3

b
2 + a

2
b
3),

f6 = 924(a6 + b
6) + 504(a5

b+ ab
5) + 420(a4

b
2 + a

2
b
4) + 400a3

b
3
,

f7 = 3432(a7 + b
7) + 1848(a6

b+ ab
6) + 1512(a5

b
2 + a

2
b
5) + 1400(a4

b
3 + a

3
b
4),

f8 = 12870(a8 + b
8) + 6864(a7

b+ ab
7) + 5544(a6

b
2 + a

2
b
6) + 5040(a5

b
3 + a

3
b
5) + 4900a4

b
4
,

f9 = 48620(a9 + b
9) + 25740(a8

b+ ab
8) + 20592(a7

b
2 + a

2
b
7) + 18480(a6

b
3 + a

3
b
6) + 17640(a5

b
4 + a

4
b
5),

f10 = 184756(a10 + b
10) + 97240(a9

b+ ab
9) + 77220(a8

b
2 + a

2
b
8) + 68640(a7

b
3 + a

3
b
7) + 64680(a6

b
4 + a

4
b
6) + 63504a5

b
5
,

. . . (16.49)

This series expansion up to n = 10 is sufficient for writing a fast and accurate pec function
implementation in computer code. The numerical representation of this function is shown
in figure 16.14.

16.9.3 Pseudo-ellipse equations

Pseudo-ellipse rotation matrices

For the pseudo-ellipse model, the full torsion-tilt system is used. The full rotation matrix
is given in equation 12.74c on page 252.

412 CHAPTER 16. THE FRAME ORDER MODELS

 0 π/4 π/2 3π/4 π
 0

π

2π

3π

4π

pec

θy

pec

 0

π/4

π/2

3π/4

π

 0

π/4

π/2

3π/4

π
 0

π

2π

3π

4π

pec

θxθy

pec

Figure 16.14: The pseudo-ellipse cosine 2D trigonometric function. This is the surface
area on a unit sphere bounded by the pseudo-elliptic cone.

Pseudo-ellipse frame order matrix

The frame order matrix is

d
(n) =

∫

S
R⊗n dS

/∫

S
dS, (16.50a)

=

∫ σmax

−σmax

∫ π

−π

∫ θmax

0
R⊗n sin θ dθ dφdσ

/∫

S
dS. (16.50b)

The surface normalisation factor is
∫

S
dS =

∫ σmax

−σmax

∫ π

−π

∫ θmax

0
sin θ dθ dφdσ, (16.51a)

=

∫ σmax

−σmax

∫ π

−π
(1− cos θmax) dφdσ, (16.51b)

=

∫ σmax

−σmax

pec(θx, θy) dσ, (16.51c)

= 2σmax pec(θx, θy). (16.51d)

Pseudo-ellipse 1st degree frame order The 1st degree frame order matrix with tensor
rank-2 consists of the following elements

d00 =
sincσmax

2 pec(θx, θy)

[
2π +

∫ π

−π

(
cos2 φ sin2 θmax − 2 sin2 φ cos θmax

)
dφ

]
, (16.52a)

d11 =
sincσmax

2 pec(θx, θy)

[
2π +

∫ π

−π

(
sin2 φ sin2 θmax − 2 cos2 φ cos θmax

)
dφ

]
, (16.52b)

d22 =
1

2σmax pec(θx, θy)

∫ π

−π
sin2 θmax dφ. (16.52c)

16.9. PSEUDO-ELLIPSE FRAME ORDER MODEL 413

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Pseudo-ellipse frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Pseudo-ellipse frame order model, 1

st
 degree matrix

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Pseudo-ellipse frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Pseudo-ellipse frame order model, 1

st
 degree matrix

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Pseudo-ellipse frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Pseudo-ellipse frame order model, 1

st
 degree matrix

Figure 16.15: The pseudo-ellipse model simulated and calculated in-frame d(1) frame
order matrix elements. In these plots, θX corresponds to the cone opening half-angle θx,
θY to the cone opening half-angle θy and θZ to torsion half-angle σmax. When the half-angle
is not varied, the angle is fixed to either θx = π/4, θy = 3π/8 or σmax = π/6. Frame order
matrix values have been calculated every 10 degrees. The first angle for the calculated θX
and θY graphs is set to 0.01 degrees as a pseudo-ellipse cone opening angle of 0.0 cannot
be correctly handled by the numerical integration.

414 CHAPTER 16. THE FRAME ORDER MODELS

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Pseudo-ellipse frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Pseudo-ellipse frame order model, 2

nd
 degree matrix

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Pseudo-ellipse frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Pseudo-ellipse frame order model, 2

nd
 degree matrix

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Pseudo-ellipse frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Pseudo-ellipse frame order model, 2

nd
 degree matrix

Figure 16.16: The pseudo-ellipse model simulated and calculated in-frame d(2) frame
order matrix elements. In these plots, θX corresponds to the cone opening half-angle θx,
θY to the cone opening half-angle θy and θZ to torsion half-angle σmax. When the half-angle
is not varied, the angle is fixed to either θx = π/4, θy = 3π/8 or σmax = π/6. Frame order
matrix values have been calculated every 10 degrees. The first angle for the calculated θX
and θY graphs is set to 0.01 degrees as a pseudo-ellipse cone opening angle of 0.0 cannot
be correctly handled by the numerical integration.

16.9. PSEUDO-ELLIPSE FRAME ORDER MODEL 415

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Pseudo-ellipse frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Pseudo-ellipse frame order model, 1

st
 degree matrix

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Pseudo-ellipse frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Pseudo-ellipse frame order model, 1

st
 degree matrix

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Pseudo-ellipse frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Pseudo-ellipse frame order model, 1

st
 degree matrix

Figure 16.17: The pseudo-ellipse model simulated and calculated out-of-frame d(1) frame
order matrix elements. In these plots, θX corresponds to the cone opening half-angle θx, θY
to the cone opening half-angle θy and θZ to torsion half-angle σmax. When the half-angle
is not varied, the angle is fixed to either θx = π/4, θy = 3π/8 or σmax = π/6. Frame order
matrix values have been calculated every 10 degrees. The first angle for the calculated θX
and θY graphs is set to 0.01 degrees as a pseudo-ellipse cone opening angle of 0.0 cannot
be correctly handled by the numerical integration.

416 CHAPTER 16. THE FRAME ORDER MODELS

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Pseudo-ellipse frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Pseudo-ellipse frame order model, 2

nd
 degree matrix

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Pseudo-ellipse frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Pseudo-ellipse frame order model, 2

nd
 degree matrix

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Pseudo-ellipse frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Z
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Pseudo-ellipse frame order model, 2

nd
 degree matrix

Figure 16.18: The pseudo-ellipse model simulated and calculated out-of-frame d(2) frame
order matrix elements. In these plots, θX corresponds to the cone opening half-angle θx, θY
to the cone opening half-angle θy and θZ to torsion half-angle σmax. When the half-angle
is not varied, the angle is fixed to either θx = π/4, θy = 3π/8 or σmax = π/6. Frame order
matrix values have been calculated every 10 degrees. The first angle for the calculated θX
and θY graphs is set to 0.01 degrees as a pseudo-ellipse cone opening angle of 0.0 cannot
be correctly handled by the numerical integration.

16.9. PSEUDO-ELLIPSE FRAME ORDER MODEL 417

As the trigonometric functions of θmax cannot be integrated, these components must be
numerically integrated.

Pseudo-ellipse 2nd degree frame order The 2nd degree frame order matrix with
tensor rank-4 consists of the following elements, using Kronecker product double indices
from 0 to 8

d00 =
1

12pec(θx, θy)

[
4π (sinc(2σmax) + 2)+

∫ π

−π
sinc(2σmax)

(
2 sin2 θmax cos

2 φ
((

2 cos2 φ− 1
)
cos θmax

+ 6 sin2 φ
)
− 2 cos θmax

(
2 cos2 φ

(
4 cos2 φ− 5

)
+ 3
))

+ 2cos2 φ cos θmax

(
sin2 θmax + 2

)
− 6 cos θmax dφ

]
,

(16.53a)

d11 =
1

12pec(θx, θy)

[
4π sinc(2σmax)+

∫ π

−π
sinc(2σmax)

(
sin2 θmax

(
4 cos2 φ sin2 φ

(
cos θmax

− 3
)
+ 3
)
− 16 cos2 φ sin2 φ cos θmax

)

+ 3 sin2 θmax dφ

]
,

(16.53b)

d22 =
sinc(σmax)

6 pec(θx, θy)

[
5π −

∫ π

−π
2 cos2 φ cos3 θmax + 3 sin2 φ cos2 θmax dφ

]
, (16.53c)

d33 = d11, (16.53d)

d44 =
1

12pec(θx, θy)

[
4π
(
sinc(2σmax) + 2

)
+

∫ π

−π
sinc(2σmax)

(
2 sin2 θmax sin

2 φ
((

2 sin2 φ− 1
)
cos θmax

+ 6cos2 φ
)
− 2 cos θmax

(
2 sin2 φ

(
4 sin2 φ− 5

)
+ 3
))

+ 2 sin2 φ cos θmax

(
sin2 θmax + 2

)
− 6 cos θmax dφ

]
,

(16.53e)

d55 =
sinc(σmax)

6 pec(θx, θy)

[
5π −

∫ π

−π
2 sin2 φ cos3 θmax + 3cos2 φ cos2 θmax dφ

]
, (16.53f)

d66 = d22, (16.53g)

418 CHAPTER 16. THE FRAME ORDER MODELS

d77 = d55, (16.53h)

d88 =
1

3pec(θx, θy)

[
2π −

∫ π

−π
cos3 θmax dφ

]
, (16.53i)

d04 =
1

12pec(θx, θy)

[
4π (2− sinc(2σmax))+

∫ π

−π
sinc(2σmax)

(
2 sin2 θmax cos

2 φ
((

2 sin2 φ− 1
)
cos θmax

− 6 sin2 φ
)
+ 2cos θmax

(
2 cos2 φ

(
4 cos2 φ− 5

)
+ 3
))

+ 2cos2 φ cos θmax

(
sin2 θmax + 2

)
− 6 cos θmax dφ

]
,

(16.53j)

d40 =
1

12pec(θx, θy)

[
4π (2− sinc(2σmax))+

∫ π

−π
sinc(2σmax)

(
2 sin2 θmax sin

2 φ
((

2 cos2 φ− 1
)
cos θmax

− 6 cos2 φ
)
+ 2cos θmax

(
2 sin2 φ

(
4 sin2 φ− 5

)
+ 3
))

+ 2 sin2 φ cos θmax

(
sin2 θmax + 2

)
− 6 cos θmax dφ

]
,

(16.53k)

d08 =
1

3pec(θx, θy)

[
2π −

∫ π

−π
cos θmax cos

2 φ
(
sin2 θmax + 2

)
dφ

]
, (16.53l)

d80 =
1

12pec(θx, θy)

[
8π+

∫ π

−π
sinc(2σmax)

(
2
(
1− 2 cos2 φ

)
cos θmax

(
sin2 θmax + 2

))

+ 2cos3 θmax − 6 cos θmax dφ

]
,

(16.53m)

d48 =
1

3pec(θx, θy)

[
2π −

∫ π

−π
cos θmax sin

2 φ
(
sin2 θmax + 2

)
dφ

]
, (16.53n)

d84 =
1

12pec(θx, θy)

[
8π−

∫ π

−π
sinc(2σmax)

(
2
(
1− 2 cos2 φ

)
cos θmax

(
sin2 θmax + 2

))

− 2 cos3 θmax + 6cos θmax dφ

]
,

(16.53o)

16.10. TORSIONLESS PSEUDO-ELLIPSE FRAME ORDER MODEL 419

d13 =
1

12pec(θx, θy)

[
4π sinc(2σmax)+

∫ π

−π
sinc(2σmax)

(
sin2 θmax

(
4 cos2 φ sin2 φ cos θmax

− 12 cos2 φ sin2 φ+ 3
)
− 16 cos2 φ sin2 φ cos θmax

)

− 3 sin2 θmax dφ

]
,

(16.53p)

d31 = d13, (16.53q)

d26 = − sinc(σmax)

3 pec(θx, θy)

[
2π +

∫ π

−π
cos2 φ

(
cos3 θmax − 3 cos θmax

)
dφ

]
, (16.53r)

d62 = d26, (16.53s)

d57 = − sinc(σmax)

3 pec(θx, θy)

[
2π +

∫ π

−π
sin2 φ

(
cos3 θmax − 3 cos θmax

)
dφ

]
, (16.53t)

d75 = d57. (16.53u)

As the trigonometric functions of θmax cannot be integrated, these components must be
numerically integrated. All other frame order matrix elements can be numerically shown
to be zero.

Pseudo-ellipse frame order matrix simulation and calculation The frame order
matrix element simulation script from Section 16.2, page 375 was used to compare the
implementation of equations 16.52 and 16.53 above. Frame order matrix d(1) and d(2)

values were both simulated and calculated, both within and out of the motional eigenframe.
The in-frame d(1) values are shown in figure 16.15 and d(2) in figure 16.16. The out-of-
frame d(1) values are shown in figure 16.17 and d(2) in figure 16.18.

16.10 Torsionless pseudo-ellipse frame order model

The first simplification of the pseudo-ellipse frame order model, which can be very useful
for restricted motion systems such as CaM complexed with target peptides, would be to
have no torsional motions.

420 CHAPTER 16. THE FRAME ORDER MODELS

16.10.1 Torsionless pseudo-ellipse parameterisation

This model is the pseudo-ellipse model with the torsion angle set to zero, σmax = 0. The
model parameters are therefore

M = P+ E+ p1 +S, (16.54a)

= {Px, Py, Pz , Pα, Pβ , Pγ}+ {Eα, Eβ , Eγ}+ {px, py, pz}+ {θx, θy} , (16.54b)

where Pi are the average domain position translations and rotations, Ei are the Euler
angles defining the motional eigenframe, pi are the coordinates of the pivot point, and θx
and θy are the maximum cone opening half-angles.

16.10.2 Torsionless pseudo-ellipse equations

Torsionless pseudo-ellipse rotation matrices

Setting the torsion angle σ to zero in the full torsion-tilt rotation matrix of equation 12.74c,
the matrix becomes

R(θ, φ) =

cos2 φ cos θ + sin2 φ cosφ sinφ cos θ − cosφ sinφ cosφ sin θ
cosφ sinφ cos θ − cosφ sinφ sin2 φ cos θ + cos2 φ sinφ sin θ

− cosφ sin θ − sinφ sin θ cos θ

 .

(16.55)

Torsionless pseudo-ellipse frame order matrix

The frame order matrix is

d
(n) =

∫

S
R⊗n dS

/∫

S
dS, (16.56a)

=

∫ π

−π

∫ θmax

0
R⊗n sin θ dθ dφ

/∫

S
dS. (16.56b)

The surface normalisation factor is

∫

S
dS =

∫ π

−π

∫ θmax

0
sin θ dθ dφ, (16.57a)

=

∫ π

−π
(1− cos θmax) dφ, (16.57b)

= pec(θx, θy). (16.57c)

16.10. TORSIONLESS PSEUDO-ELLIPSE FRAME ORDER MODEL 421

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Torsionless pseudo-ellipse frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Pseudo-ellipse, torsionless frame order model, 1

st
 degree matrix

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Torsionless pseudo-ellipse frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Pseudo-ellipse, torsionless frame order model, 1

st
 degree matrix

Figure 16.19: The torsionless pseudo-ellipse model simulated and calculated in-frame d(1)

frame order matrix elements. In these plots, θX corresponds to the cone opening half-angle
θx and θY to the cone opening half-angle θy. When the half-angle is not varied, the angle
is fixed to either θx = π/4 or θy = 3π/8. Frame order matrix values have been calculated
every 10 degrees. The first angle for the calculated elements is set to 0.01 degrees as a
pseudo-ellipse cone opening angle of 0.0 cannot be correctly handled by the numerical
integration.

422 CHAPTER 16. THE FRAME ORDER MODELS

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Torsionless pseudo-ellipse frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Pseudo-ellipse, torsionless frame order model, 2

nd
 degree matrix

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Torsionless pseudo-ellipse frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Pseudo-ellipse, torsionless frame order model, 2

nd
 degree matrix

Figure 16.20: The torsionless pseudo-ellipse model simulated and calculated in-frame d(2)

frame order matrix elements. In these plots, θX corresponds to the cone opening half-angle
θx and θY to the cone opening half-angle θy. When the half-angle is not varied, the angle
is fixed to either θx = π/4 or θy = 3π/8. Frame order matrix values have been calculated
every 10 degrees. The first angle for the calculated elements is set to 0.01 degrees as a
pseudo-ellipse cone opening angle of 0.0 cannot be correctly handled by the numerical
integration.

16.10. TORSIONLESS PSEUDO-ELLIPSE FRAME ORDER MODEL 423

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Torsionless pseudo-ellipse frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Pseudo-ellipse, torsionless frame order model, 1

st
 degree matrix

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Torsionless pseudo-ellipse frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Pseudo-ellipse, torsionless frame order model, 1

st
 degree matrix

Figure 16.21: The torsionless pseudo-ellipse model simulated and calculated out-of-frame
d

(1) frame order matrix elements. In these plots, θX corresponds to the cone opening
half-angle θx and θY to the cone opening half-angle θy. When the half-angle is not varied,
the angle is fixed to either θx = π/4 or θy = 3π/8. Frame order matrix values have
been calculated every 10 degrees. The first angle for the calculated elements is set to 0.01
degrees as a pseudo-ellipse cone opening angle of 0.0 cannot be correctly handled by the
numerical integration.

424 CHAPTER 16. THE FRAME ORDER MODELS

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Pseudo-ellipse frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Pseudo-ellipse frame order model, 2

nd
 degree matrix

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Pseudo-ellipse frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Pseudo-ellipse frame order model, 2

nd
 degree matrix

Figure 16.22: The torsionless pseudo-ellipse model simulated and calculated out-of-frame
d

(2) frame order matrix elements. In these plots, θX corresponds to the cone opening
half-angle θx and θY to the cone opening half-angle θy. When the half-angle is not varied,
the angle is fixed to either θx = π/4 or θy = 3π/8. Frame order matrix values have
been calculated every 10 degrees. The first angle for the calculated elements is set to 0.01
degrees as a pseudo-ellipse cone opening angle of 0.0 cannot be correctly handled by the
numerical integration.

16.10. TORSIONLESS PSEUDO-ELLIPSE FRAME ORDER MODEL 425

Torsionless pseudo-ellipse 1st degree frame order The 1st degree frame order ma-
trix with tensor rank-2 consists of the following elements

d00 =
1

2pec(θx, θy)

[
2π +

∫ π

−π

(
cos2 φ sin2 θmax − 2 sin2 φ cos θmax

)
dφ

]
, (16.58a)

d11 =
1

2pec(θx, θy)

[
2π +

∫ π

−π

(
sin2 φ sin2 θmax − 2 cos2 φ cos θmax

)
dφ

]
, (16.58b)

d22 =
1

2pec(θx, θy)

∫ π

−π
sin2 θmax dφ. (16.58c)

As the trigonometric functions of θmax cannot be symbolically integrated, these compo-
nents must be numerically integrated.

Torsionless pseudo-ellipse 2nd degree frame order The 2nd degree frame order
matrix with tensor rank-4 consists of the following elements, using Kronecker product
double indices from 0 to 8

d00 =
1

3pec(θx, θy)

[
3π +

∫ π

−π

(
cos4 φ cos θmax + 3cos2 φ sin2 φ

)
sin2 θmax

−
(
3 sin4 φ+ cos4 φ

)
cos θmax dφ

]
,

(16.59a)

d11 =
1

6pec(θx, θy)

[
2π +

∫ π

−π

(
2 cos2 φ sin2 φ cos θmax + 3 sin4 φ+ 3cos4 φ

)
sin2 θmax

− 8 cos2 φ sin2 φ cos θmax dφ

]
,

(16.59b)

d22 =
1

6pec(θx, θy)

[
5π −

∫ π

−π
2 cos2 φ cos3 θmax + 3 sin2 φ cos2 θmax dφ

]
, (16.59c)

d33 = d11, (16.59d)

d44 =
1

3pec(θx, θy)

[
3π +

∫ π

−π

(
sin4 φ cos θmax + 3cos2 φ sin2 φ

)
sin2 θmax

−
(
sin4 φ+ 3cos4 φ

)
cos θmax dφ

]
,

(16.59e)

d55 =
1

6pec(θx, θy)

[
5π −

∫ π

−π
2 sin2 φ cos3 θmax + 3cos2 φ cos2 θmax dφ

]
, (16.59f)

426 CHAPTER 16. THE FRAME ORDER MODELS

d66 = d22, (16.59g)

d77 = d55, (16.59h)

d88 =
1

3pec(θx, θy)

[
2π −

∫ π

−π
cos3 θmax dφ

]
, (16.59i)

d04 =
1

3pec(θx, θy)

[
π +

∫ π

−π

(
cos2 φ sin2 φ cos θmax − 3 cos2 φ sin2 φ

)
sin2 θmax

− 4 cos2 φ sin2 φ cos θmax dφ

]
,

(16.59j)

d40 = d04, (16.59k)

d08 =
1

3pec(θx, θy)

[
2π +

∫ π

−π
cos2 φ cos3 θmax − 3 cos2 φ cos θmax dφ

]
, (16.59l)

d80 = d08, (16.59m)

d48 =
1

3pec(θx, θy)

[
2π +

∫ π

−π
sin2 φ cos3 θmax − 3 sin2 φ cos θmax dφ

]
, (16.59n)

d84 = d48, (16.59o)

d13 = d04, (16.59p)

d31 = d04, (16.59q)

d26 = −d80, (16.59r)

d62 = −d80, (16.59s)

d57 = −d48, (16.59t)

d75 = −d48. (16.59u)

Torsionless pseudo-ellipse frame order matrix simulation and calculation The
frame order matrix element simulation script from Section 16.2, page 375 was used to
compare the implementation of equations 16.58 and 16.59 above. Frame order matrix d(1)

and d(2) values were both simulated and calculated, both within and out of the motional
eigenframe. The in-frame d(1) values are shown in figure 16.19 and d(2) in figure 16.20.
The out-of-frame d(1) values are shown in figure 16.21 and d(2) in figure 16.22.

16.11. FREE ROTOR PSEUDO-ELLIPSE FRAME ORDER MODEL 427

16.11 Free rotor pseudo-ellipse frame order model

16.11.1 Free rotor pseudo-ellipse parameterisation

The free rotor model is the pseudo-ellipse model with the torsion angle restriction absent.
Its parameters are

M = P+ E+ p1 +S, (16.60a)

= {Px, Py , Pz, Pα, Pβ , Pγ}+ {Eα, Eβ , Eγ}+ {px, py, pz}+ {θx, θy} , (16.60b)

where Pi are the average domain position translations and rotations, Ei are the Euler
angles defining the motional eigenframe, pi are the coordinates of the pivot point, and θx
and θy are the maximum cone opening half-angles.

16.11.2 Free rotor pseudo-ellipse equations

Free rotor pseudo-ellipse rotation matrices

The rotation matrix is the full torsion-tilt rotation matrix of equation 12.74c on page 252.

Free rotor pseudo-ellipse frame order matrix

The frame order matrix is

d
(n) =

∫

S
R⊗n dS

/∫

S
dS, (16.61a)

=

∫ π

−π

∫ π

−π

∫ θmax

0
R⊗n sin θ dθ dφdσ

/∫

S
dS. (16.61b)

The surface normalisation factor is

∫

S
dS =

∫ π

−π

∫ π

−π

∫ θmax

0
sin θ dθ dφdσ, (16.62a)

=

∫ π

−π

∫ π

−π
(1− cos θmax) dφdσ, (16.62b)

=

∫ π

−π
pec(θx, θy) dσ, (16.62c)

= 2π pec(θx, θy). (16.62d)

428 CHAPTER 16. THE FRAME ORDER MODELS

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Free rotor pseudo-ellipse frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Pseudo-ellipse, free rotor frame order model, 1

st
 degree matrix

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Free rotor pseudo-ellipse frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Pseudo-ellipse, free rotor frame order model, 1

st
 degree matrix

Figure 16.23: The free rotor pseudo-ellipse model simulated and calculated in-frame d(1)

frame order matrix elements. In these plots, θX corresponds to the cone opening half-angle
θx and θY to the cone opening half-angle θy. When the half-angle is not varied, the angle
is fixed to either θx = π/4 or θy = 3π/8. Frame order matrix values have been calculated
every 10 degrees. The first angle for the calculated elements is set to 0.01 degrees as a
pseudo-ellipse cone opening angle of 0.0 cannot be correctly handled by the numerical
integration.

16.11. FREE ROTOR PSEUDO-ELLIPSE FRAME ORDER MODEL 429

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Free rotor pseudo-ellipse frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Pseudo-ellipse, free rotor frame order model, 2

nd
 degree matrix

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Free rotor pseudo-ellipse frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Pseudo-ellipse, free rotor frame order model, 2

nd
 degree matrix

Figure 16.24: The free rotor pseudo-ellipse model simulated and calculated in-frame d(2)

frame order matrix elements. In these plots, θX corresponds to the cone opening half-angle
θx and θY to the cone opening half-angle θy. When the half-angle is not varied, the angle
is fixed to either θx = π/4 or θy = 3π/8. Frame order matrix values have been calculated
every 10 degrees. The first angle for the calculated elements is set to 0.01 degrees as a
pseudo-ellipse cone opening angle of 0.0 cannot be correctly handled by the numerical
integration.

430 CHAPTER 16. THE FRAME ORDER MODELS

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Free rotor pseudo-ellipse frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Pseudo-ellipse, free rotor frame order model, 1

st
 degree matrix

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Free rotor pseudo-ellipse frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Pseudo-ellipse, free rotor frame order model, 1

st
 degree matrix

Figure 16.25: The free rotor pseudo-ellipse model simulated and calculated out-of-frame
d

(1) frame order matrix elements. In these plots, θX corresponds to the cone opening
half-angle θx and θY to the cone opening half-angle θy. When the half-angle is not varied,
the angle is fixed to either θx = π/4 or θy = 3π/8. Frame order matrix values have
been calculated every 10 degrees. The first angle for the calculated elements is set to 0.01
degrees as a pseudo-ellipse cone opening angle of 0.0 cannot be correctly handled by the
numerical integration.

16.11. FREE ROTOR PSEUDO-ELLIPSE FRAME ORDER MODEL 431

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Free rotor pseudo-ellipse frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Pseudo-ellipse, free rotor frame order model, 2

nd
 degree matrix

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Free rotor pseudo-ellipse frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Pseudo-ellipse, free rotor frame order model, 2

nd
 degree matrix

Figure 16.26: The free rotor pseudo-ellipse model simulated and calculated out-of-frame
d

(2) frame order matrix elements. In these plots, θX corresponds to the cone opening
half-angle θx and θY to the cone opening half-angle θy. When the half-angle is not varied,
the angle is fixed to either θx = π/4 or θy = 3π/8. Frame order matrix values have
been calculated every 10 degrees. The first angle for the calculated elements is set to 0.01
degrees as a pseudo-ellipse cone opening angle of 0.0 cannot be correctly handled by the
numerical integration.

432 CHAPTER 16. THE FRAME ORDER MODELS

Free rotor pseudo-ellipse 1st degree frame order The 1st degree frame order matrix
with tensor rank-2 is

d
(1) =

∫

S
R⊗1 dS

/∫

S
dS, (16.63a)

=

∫

S
R dS

/
2π pec(θx, θy), (16.63b)

=
1

2pec(θx, θy)

∫ π

−π

. . .
. . .
. . sin2 θmax

 dφ. (16.63c)

Free rotor pseudo-ellipse 2nd degree frame order The 2nd degree frame order
matrix with tensor rank-4 consists of the following elements, using Kronecker product
double indices from 0 to 8

d00 =
1

6pec(θx, θy)

[
4π −

∫ π

−π
cos2 φ cos3 θmax + 3 sin2 φ cos θmax dφ

]
, (16.64a)

d11 =
1

4pec(θx, θy)

∫ π

−π
sin2 θmax dφ, (16.64b)

d22 = 0, (16.64c)

d33 = d11, (16.64d)

d44 =
1

6pec(θx, θy)

[
4π −

∫ π

−π
sin2 φ cos3 θmax + 3cos2 φ cos θmax dφ

]
, (16.64e)

d55 = 0, (16.64f)

d66 = 0, (16.64g)

d77 = 0, (16.64h)

d88 =
1

3pec(θx, θy)

[
2π −

∫ π

−π
cos3 θmax dφ

]
, (16.64i)

d04 = d00, (16.64j)

d40 = d44, (16.64k)

16.12. DOUBLE ROTOR FRAME ORDER MODEL 433

d08 =
1

3pec(θx, θy)

[
2π +

∫ π

−π
cos2 φ

(
cos3 θmax − 3 cos θmax

)
dφ

]
, (16.64l)

d80 =
1

6pec(θx, θy)

[
4π +

∫ π

−π
cos3 θmax − 3 cos θmax dφ

]
, (16.64m)

d48 =
1

3pec(θx, θy)

[
2π +

∫ π

−π
sin2 φ

(
cos3 θmax − 3 cos θmax

)
dφ

]
, (16.64n)

d84 = d80, (16.64o)

d13 = −d11, (16.64p)

d31 = −d11, (16.64q)

d26 = 0, (16.64r)

d62 = 0, (16.64s)

d57 = 0, (16.64t)

d75 = 0. (16.64u)

Free rotor pseudo-ellipse frame order matrix simulation and calculation The
frame order matrix element simulation script from Section 16.2, page 375 was used to
compare the implementation of equations 16.63 and 16.64 above. Frame order matrix d(1)

and d(2) values were both simulated and calculated, both within and out of the motional
eigenframe. The in-frame d(1) values are shown in figure 16.23 and d(2) in figure 16.24.
The out-of-frame d(1) values are shown in figure 16.25 and d(2) in figure 16.26.

16.12 Double rotor frame order model

The eigenframe of the motion of the double rotor model is characterised by two pivot
points and two rotor axes. To simplify the modelling, the two axes are assumed to be
orthogonal. Due to the nature of the RDC and PCS data used, it may not be possible to
distinguish deviations from orthogonality from the noise.

434 CHAPTER 16. THE FRAME ORDER MODELS

16.12.1 Double rotor parameterisation

Assuming the axes are orthogonal for the model, the size of the set of non-redundant
parameters is 15. To eliminate the redundant parameters, the geometry of the system can
be used to construct a 3D eigenframe of the motion consisting of three Euler angles:

x-axis This axis of the eigensystem can be defined as a vector parallel to the 1st rotor
axis.

y-axis This axis of the eigensystem can be defined as a vector parallel to the 2nd rotor
axis.

z-axis This can be defined as a vector parallel to the line of shortest distance connecting
the two rotor axes. As x and y are orthogonal by definition of the model, the line of
shortest distance will be orthogonal to both x and y.

The two pivot points defining the position in space of the two rotor axes define the system.
Using the above eigenframe, these can be parameterised using only four parameters:

1st pivot point This is defined using three coordinates and is located at the intersection
of the 1st rotor axis and the line of shortest distance between the axes.

2nd pivot point This is defined as the intersection of the 2nd rotor axis and the line
of shortest distance. Using the z-axis of the eigenframe and the 1st pivot, the 3D
position can be defined as a simple displacement, pd.

The set of all parameters of the system is therefore

M = P+ E+ p1 + p2 +S, (16.65a)

= {Px, Py, Pz, Pα, Pβ , Pγ}+ {Eα, Eβ , Eγ}+ {px, py, pz}+ {pd}+ {σmax, σmax,2} ,
(16.65b)

where Pi are the average domain position translations and rotations, Ei are the eigenframe
Euler angles, pi are the coordinates of the 1st pivot point, pd is the displacement for the
2nd pivot point, and σmax,i are the two torsion half-angles of the rotors.

16.12.2 Double rotor equations

The double rotor model consists of two standard rotations, the first about the x-axis and
the second about the y-axis. Hence the frame order matrix is simply the integration over
both torsion angles of the Kronecker product of the product of the Rx and Ry rotation
matrices, divided by the surface area normalisation factor.

16.12. DOUBLE ROTOR FRAME ORDER MODEL 435

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Double rotor frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Double rotor frame order model, 1

st
 degree matrix

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Double rotor frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Double rotor frame order model, 1

st
 degree matrix

Figure 16.27: The double rotor model simulated and calculated in-frame d(1) frame order
matrix elements. In these plots, θX corresponds to the torsion half-angle σmax,1 and θY to
the torsion half-angle σmax,2. When the half-angle is not varied, the angle is fixed to either
σmax,1 = π/4 or σmax,2 = 3π/8. Frame order matrix values have been calculated every 10
degrees.

436 CHAPTER 16. THE FRAME ORDER MODELS

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Double rotor frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Double rotor frame order model, 2

nd
 degree matrix

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Double rotor frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Double rotor frame order model, 2

nd
 degree matrix

Figure 16.28: The double rotor model simulated and calculated in-frame d(2) frame order
matrix elements. In these plots, θX corresponds to the torsion half-angle σmax,1 and θY to
the torsion half-angle σmax,2. When the half-angle is not varied, the angle is fixed to either
σmax,1 = π/4 or σmax,2 = 3π/8. Frame order matrix values have been calculated every 10
degrees.

16.12. DOUBLE ROTOR FRAME ORDER MODEL 437

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Double rotor frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Double rotor frame order model, 1

st
 degree matrix

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Simulated frame order matrix elements
Double rotor frame order model, 1

st
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.2

0

0.2

0.4

0.6

0.8

O
rd

er
 p

ar
am

et
er

 S
ij

<c
11

>

<c
12

>

<c
13

>

<c
21

>

<c
22

>

<c
23

>

<c
31

>

<c
32

>

<c
33

>

Calculated frame order matrix elements
Double rotor frame order model, 1

st
 degree matrix

Figure 16.29: The double rotor model simulated and calculated out-of-frame d(1) frame
order matrix elements. In these plots, θX corresponds to the torsion half-angle σmax,1 and
θY to the torsion half-angle σmax,2. When the half-angle is not varied, the angle is fixed
to either σmax,1 = π/4 or σmax,2 = 3π/8. Frame order matrix values have been calculated
every 10 degrees.

438 CHAPTER 16. THE FRAME ORDER MODELS

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Double rotor frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

X
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Double rotor frame order model, 2

nd
 degree matrix

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Simulated frame order matrix elements
Double rotor frame order model, 2

nd
 degree matrix, 1000000 simulations

0 45 90 135 180
Cone half-angle θ

Y
 (deg.)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

 S
ij

k
l

Calculated frame order matrix elements
Double rotor frame order model, 2

nd
 degree matrix

Figure 16.30: The double rotor model simulated and calculated out-of-frame d(2) frame
order matrix elements. In these plots, θX corresponds to the torsion half-angle σmax,1 and
θY to the torsion half-angle σmax,2. When the half-angle is not varied, the angle is fixed
to either σmax,1 = π/4 or σmax,2 = 3π/8. Frame order matrix values have been calculated
every 10 degrees.

16.12. DOUBLE ROTOR FRAME ORDER MODEL 439

Double rotor rotation matrices

The individual rotations are

Ry(σ1) =

cosσ1 0 sinσ1
0 1 0

− sinσ1 0 cos σ1

 , (16.66a)

Rx(σ2) =

1 0 0
0 cosσ2 − sinσ2
0 sinσ2 cos σ2

 . (16.66b)

The full rotation is then

R(σ1, σ2) = Rx(σ2) · Ry(σ1), (16.67a)

=

cos σ1 0 sinσ1
sinσ1 sinσ2 cos σ2 − cos σ1 sinσ2

− sinσ1 cos σ2 sinσ2 cos σ1 cos σ2

 . (16.67b)

Double rotor frame order matrix

The frame order matrix is

d
(n) =

∫

S
R(σ1, σ2)

⊗n dS

/∫

S
dS, (16.68)

=

∫ σmax,2

−σmax,2

∫ σmax,1

−σmax,1

R(σ1, σ2)
⊗n dσmax,1 dσmax,2

/∫

S
dS. (16.69)

The surface normalisation factor is
∫

S
dS =

∫ σmax,2

−σmax,2

∫ σmax,1

−σmax,1

dσmax,1 dσmax,2, (16.70a)

= 2σmax,1

∫ σmax,2

−σmax,2

dσmax,2, (16.70b)

= 4σmax,1σmax,2. (16.70c)

Double rotor 1st degree frame order The un-normalised 1st degress frame order
matrix with tensor rank-2 is

d
(1)′ =

∫

S
R(σ1, σ2)

⊗1 dS, (16.71a)

=

∫ σmax,2

−σmax,2

∫ σmax,1

−σmax,1

R(σ1, σ2) dσmax,1 dσmax,2, (16.71b)

=

4 sin(σmax,1)σmax,2 . .

. 4 sin(σmax,2)σmax,1 .

. . 4 sinσmax,1 sinσmax,2

 . (16.71c)

440 CHAPTER 16. THE FRAME ORDER MODELS

After normalisation, the full frame order matrix is

d
(1) =

sinc σmax,1 . .

. sincσmax,2 .

. . sinc σmax,1 sincσmax,2

 . (16.72)

Double rotor 2nd degree frame order The 2nd degree frame order matrix with tensor
rank-4 consists of the following elements, using Kronecker product double indices from 0
to 8

d00 =
1
2

(
sinc(2σmax,1) + 1

)
, (16.73a)

d11 = sincσmax,1 sincσmax,2, (16.73b)

d22 =
1
2 sincσmax,2

(
sinc(2σmax,1) + 1

)
, (16.73c)

d33 = d11, (16.73d)

d44 =
1
2

(
sinc(2σmax,2) + 1

)
, (16.73e)

d55 =
1
2 sincσmax,1

(
sinc(2σmax,2) + 1

)
, (16.73f)

d66 = d22, (16.73g)

d77 = d55, (16.73h)

d88 =
1
4 (sinc(2σmax,1) + 1) (sinc(2σmax,2) + 1) , (16.73i)

d04 = 0, (16.73j)

d40 =
1
4 (sinc(2σmax,1)− 1) (sinc(2σmax,2)− 1) , (16.73k)

d08 = −1
2 (sinc(2σmax,1)− 1) , (16.73l)

d80 = −1
4 (sinc(2σmax,1)− 1) (sinc(2σmax,2) + 1) , (16.73m)

d48 = −1
4 (sinc(2σmax,1) + 1) (sinc(2σmax,2)− 1) , (16.73n)

d84 = −1
2 (sinc(2σmax,2)− 1) , (16.73o)

d13 = 0, (16.73p)

d31 = 0, (16.73q)

d26 =
1
2 sincσmax,2 (sinc(2σmax,1)− 1) , (16.73r)

d62 = d26, (16.73s)

d57 =
1
2 sincσmax,1 (sinc(2σmax,2)− 1) , (16.73t)

d75 = d57. (16.73u)

Double rotor frame order matrix simulation and calculation The frame order
matrix element simulation script from Section 16.2, page 375 was used to compare the
implementation of equations 16.72 and 16.73 above. Frame order matrix d(1) and d(2)

values were both simulated and calculated, both within and out of the motional eigenframe.
The in-frame d(1) values are shown in figure 16.27 and d(2) in figure 16.28. The out-of-
frame d(1) values are shown in figure 16.29 and d(2) in figure 16.30.

Part V

Reference

441

Chapter 17

Alphabetical listing of user
functions

The following is a listing with descriptions of all the user functions available within the
relax prompt and scripting environments. These are simply an alphabetical list of the
docstrings which can normally be viewed in prompt mode by typing help(function).

17.1 A warning about the formatting

The following documentation of the user functions has been automatically generated by a
script which extracts and formats the docstring associated with each function. There may
therefore be instances where the formatting has failed or where there are inconsistencies.

17.2 The list of functions

Each user function is presented within it’s own subsection with the documentation bro-
ken into multiple parts: the synopsis, the default arguments, and the sections from the
function’s docstring.

17.2.1 The synopsis

The synopsis presents a brief description of the function. It is taken as the first line of the
docstring when browsing the help system.

17.2.2 Defaults

This section lists all the arguments taken by the function and their default values. To
invoke the function type the function name then in brackets type a comma separated list
of arguments.

443

444 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

The first argument printed is always ‘self’ but you can safely ignore it. ‘self’ is part of
the object oriented programming within Python and is automatically prefixed to the list
of arguments you supply. Therefore you can’t provide ‘self’ as the first argument even if
you do try.

17.2.3 Docstring sectioning

All other sections are created from the sectioning of the user function docstring.

17.2. THE LIST OF FUNCTIONS 445

17.2.4 align tensor.copy

Synopsis

Copy alignment tensor data.

Defaults

align tensor.copy(tensor from=None, pipe from=None,
tensor to=None, pipe to=None)

Keyword arguments

tensor from: The identification string of the alignment
tensor to copy the data from.

pipe from: The name of the data pipe to copy the align-
ment tensor data from.

tensor to: The identification string of the alignment
tensor to copy the data to.

pipe to: The name of the data pipe to copy the align-
ment tensor data to.

Description

This will copy the alignment tensor data to a new tensor
or a new data pipe. The destination data pipe must not
contain any alignment tensor data corresponding to the
tensor to label. If the source or destination data pipes
are not supplied, then both will default to the current
data pipe. Both the source and destination tensor IDs
must be supplied.

Prompt examples

To copy the alignment tensor data corresponding to ‘Pf1’
from the data pipe ‘old’ to the current data pipe, type
one of:

relax> align_tensor.copy('Pf1', 'old')

relax> align_tensor.copy(tensor_from='Pf1',

pipe_from='old')

To copy the alignment tensor data corresponding to
‘Otting’ from the current data pipe to the data pipe new,
type one of:

relax> align_tensor.copy('Otting', pipe_to='

new')

relax> align_tensor.copy(tensor_from='Otting

', pipe_to='new')

To copy the alignment tensor data of ‘Otting’ to that of
‘Otting new’, type one of:

relax> align_tensor.copy('Otting', tensor_to

='Otting new')

relax> align_tensor.copy(tensor_from='Pf1',

tensor_to='Otting new')

446 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.5 align tensor.delete

Synopsis

Delete alignment tensor data from the relax data store.

Defaults

align tensor.delete(tensor=None)

Keyword arguments

tensor: The alignment tensor identification string.

Description

This will delete the specified alignment tensor data from
the current data pipe. If no tensor is specified, all tensors
will be deleted.

17.2.6 align tensor.display

Synopsis

Display the alignment tensor information in full detail.

Defaults

align tensor.display(tensor=None)

Keyword arguments

tensor: The alignment tensor identification string.

Description

This will show all information relating to the alignment
tensor, including the different tensor forms:

Probability tensor.

Saupe order matrix.

Alignment tensor.

Magnetic susceptibility tensor.

All possible tensor parameters and information will also
be shown (Eigensystem, GDO, Aa, Ar, R, eta, chi ax,
chi rh, etc). The printout will be extensive.

If no tensor is specified, all tensors will be displayed.

17.2. THE LIST OF FUNCTIONS 447

17.2.7 align tensor.fix

Synopsis

Fix all alignment tensors so that they do not change dur-
ing optimisation.

Defaults

align tensor.fix(id=None, fixed=True)

Keyword arguments

id: The alignment tensor identification string.

fixed: The flag specifying if the tensors should be fixed
or variable.

Description

If the ID string is left unset, then all alignment tensors
will be fixed.

17.2.8 align tensor.init

Synopsis

Initialise an alignment tensor.

Defaults

align tensor.init(tensor=None, align id=None, domain=
None, params=None, scale=1.0, angle units=‘deg’,
param types=2, errors=False)

Keyword arguments

tensor: The optional alignment tensor ID string, re-
quired if multiple tensors exist per alignment.

align id: The alignment ID string that the tensor cor-
responds to.

domain: The optional domain ID string that the tensor
corresponds to.

params: The alignment tensor data.

scale: The alignment tensor eigenvalue scaling value.

angle units: The units for the angle parameters.

param types: A flag to select different parameter com-
binations.

errors: A flag which determines if the alignment tensor
data or its errors are being input.

Description

The tensor ID is only required if there are multiple unique
tensors per alignment. An example is if internal domain
motions cause multiple parts of the molecule to align
differently. The tensor ID is optional and in the case
of only a single tensor per alignment, the tensor can be
identified using the alignment ID instead.

The alignment tensor parameters should be a tuple
of floating point numbers (a list surrounded by round
brakets). These correspond to the parameters of the
tensor which can be specified by the parameter types
whereby the values correspond to:

0 – {Sxx, Syy, Sxy, Sxz, Syz} (unitless),

1 – {Szz, Sxx-yy, Sxy, Sxz, Syz} (Pales default format),

2 – {Axx, Ayy, Axy, Axz, Ayz} (unitless),

448 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

3 – {Azz, Axx-yy, Axy, Axz, Ayz} (unitless),

4 – {Axx, Ayy, Axy, Axz, Ayz} (units of Hertz),

5 – {Azz, Axx-yy, Axy, Axz, Ayz} (units of Hertz),

6 – {Pxx, Pyy, Pxy, Pxz, Pyz} (unitless),

7 – {Pzz, Pxx-yy, Pxy, Pxz, Pyz} (unitless).

Other formats may be added later. The relationship be-
tween the Saupe order matrix S and the alignment tensor
A is

S = 3/2 A.

The probability matrix P is related to the alignment ten-
sor A by

A = P - 1/3 I,

where I is the identity matrix. For the alignment tensor
to be supplied in Hertz, the bond vectors must all be of
equal length.

Prompt examples

To set a rhombic tensor for the domain labelled ‘domain
1’ with the alignment named ‘super media’, type one of:

relax> align_tensor.init('domain 1', 'super

media', (-8.6322e-05, -5.5786e-04, -3

.1732e-05, 2.2927e-05, 2.8599e-04),

param_types=1)

relax> align_tensor.init(tensor='domain 1',

align_id='super media', params=(-8

.6322e-05, -5.5786e-04, -3.1732e-05, 2

.2927e-05, 2.8599e-04), param_types=1)

17.2.9 align tensor.matrix angles

Synopsis

Calculate the angles between all alignment tensors.

Defaults

align tensor.matrix angles(basis set=‘matrix’, tensors=
None, angle units=‘deg’, precision=1)

Keyword arguments

basis set: The basis set to operate with.

tensors: A list of the tensors to apply the calculation
to. If None, all tensors are used.

angle units: The units for the angle parameters, either
‘deg’ or ‘rad’.

precision: The precision of the printed out angles. The
number corresponds to the number of figures to print
after the decimal point.

Description

This will calculate the inter-matrix angles between all
loaded alignment tensors for the current data pipe. For
the vector basis sets, the matrices are first mapped to
vector form and then then the inter-vector angles rather
than inter-matrix angles are calculated. The angles are
dependent upon the basis set - linear maps produce iden-
tical results whereas non-linear maps result in different
angles. The basis set can be one of:

‘matrix’ – The standard inter-matrix angles. This de-
fault option is a linear map, hence angles are pre-
served. The angle is calculated via the arccos of
the Euclidean inner product of the alignment ma-
trices in rank-2, 3D form divided by the Frobenius
norm ——A—— F of the matrices.

‘irreducible 5D’ – The inter-tensor vector angles for
the irreducible spherical tensor 5D basis set {A-
2, A-1, A0, A1, A2}. This is a linear map, hence
angles are preserved. These are the spherical har-
monic decomposition coefficients.

‘unitary 9D’ – The inter-tensor vector angles for the
unitary 9D basis set {Sxx, Sxy, Sxz, Syx, Syy,
Syz, Szx, Szy, Szz}. This is a linear map, hence
angles are preserved.

17.2. THE LIST OF FUNCTIONS 449

‘unitary 5D’ – The inter-tensor vector angles for the
unitary 5D basis set {Sxx, Syy, Sxy, Sxz, Syz}.
This is a non-linear map, hence angles are not
preserved.

‘geometric 5D’ – The inter-tensor vector angles for the
geometric 5D basis set {Szz, Sxxyy, Sxy, Sxz,
Syz}. This is a non-linear map, hence angles are
not preserved. This is also the Pales standard
notation.

The full matrix angle via the Euclidean inner product is
defined as

/ <A1 , A2> \

theta = arccos | ------------- | ,

\ ||A1||.||A2|| /

where ¡a,b¿ is the Euclidean inner product and ——a——
is the Frobenius norm of the matrix. For the irreducible
spherical tensor 5D basis set, the Am components are
defined as

/ 4pi \ 1/2

A0 = | --- | Szz ,

\ 5 /

/ 8pi \ 1/2

A+/-1 = +/- | --- | (Sxz +/- iSyz) ,

\ 15 /

/ 2pi \ 1/2

A+/-2 = | --- | (Sxx - Syy +/- 2iSxy) ,

\ 15 /

and, for this complex notation, the angle is

/ Re(<A1|A2>) \

theta = arccos | ----------- | ,

\ |A1|.|A2| /

where the inner product is defined as

\ 1 2*

<A1|A2> = > Am . Am ,

/__

m=-2,2

and where Am* = (-1)ˆm A-m, and the norm is defined
as —A1— = Re(sqrt(¡A1—A1¿)). For all other basis
sets whereby the map is real matrix -¿ real vector, the
inter-tensor angle is defined as

/ <A1|A2> \

theta = arccos | --------- | ,

\ |A1|.|A2| /

where the inner product ¡A1—A2¿ is simply the vector
dot product and —A1— is the vector length.

17.2.10 align tensor.reduction

Synopsis

Specify that one tensor is a reduction of another.

Defaults

align tensor.reduction(full tensor=None, red tensor=
None)

Keyword arguments

full tensor: The full alignment tensor.

red tensor: The reduced alignment tensor.

Description

Prior to optimisation of the N-state model and Frame
Order theories using alignment tensors, which tensor is a
reduction of which other tensor must be specified through
this user function.

Prompt examples

To state that the alignment tensor loaded as ‘chi3 C-dom’
is a reduction of ‘chi3 N-dom’, type:

relax> align_tensor.reduction(full_tensor='

chi3 N-dom', red_tensor='chi3 C-dom')

450 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.11 align tensor.set domain

Synopsis

Set the domain label for the alignment tensor.

Defaults

align tensor.set domain(tensor=None, domain=None)

Keyword arguments

tensor: The alignment tensor to assign the domain la-
bel to.

domain: The domain label.

Description

Prior to optimisation of the N-state model or Frame Or-
der theories, the domain to which each alignment tensor
belongs must be specified.

Prompt examples

To link the alignment tensor loaded as ‘chi3 C-dom’ to
the C-terminal domain ‘C’, type:

relax> align_tensor.set_domain(tensor='chi3

C-dom', domain='C')

17.2.12 align tensor.svd

Synopsis

Calculate the singular values and condition number for
all alignment tensors.

Defaults

align tensor.svd(basis set=‘irreducible 5D’, tensors=None,
precision=4)

Keyword arguments

basis set: The basis set to operate with.

tensors: A list of the tensors to apply the calculation
to. If None, all tensors are used.

precision: The precision of the printed out singular val-
ues and condition numbers. The number corresponds to
the number of figures to print after the decimal point.

Description

This will perform a singular value decomposition for all
alignment tensors and calculate the condition number.
The singular values and condition number are dependent
on the basis set - linear maps produce identical results
whereas non-linear maps result in different values. The
basis set can be one of:

‘irreducible 5D’ – The irreducible spherical tensor 5D
basis set {A-2, A-1, A0, A1, A2}. This is a linear
map, hence angles, singular values, and condition
number are preserved. These are the spherical
harmonic decomposition coefficients.

‘unitary 9D’ – The unitary 9D basis set {Sxx, Sxy, Sxz,
Syx, Syy, Syz, Szx, Szy, Szz}. This is a linear
map, hence angles, singular values, and condition
number are preserved.

‘unitary 5D’ – The unitary 5D basis set {Sxx, Syy, Sxy,
Sxz, Syz}. This is a non-linear map, hence an-
gles, singular values, and condition number are
not preserved.

‘geometric 5D’ – The geometric 5D basis set {Szz,
Sxxyy, Sxy, Sxz, Syz}. This is a non-linear map,
hence angles, singular values, and condition num-
ber are not preserved. This is also the Pales stan-
dard notation.

17.2. THE LIST OF FUNCTIONS 451

If the selected basis set is the default of ‘irreducible
5D’, the matrix on which SVD will be performed will be:

| A-2(1) A-1(1) A0(1) A1(1) A2(1) |

| A-2(2) A-1(2) A0(2) A1(2) A2(2) |

| A-2(3) A-1(3) A0(3) A1(3) A2(3) |

| |

| |

| |

| A-2(N) A-1(N) A0(N) A1(N) A2(N) |

If the selected basis set is ‘unitary 9D’, the matrix on
which SVD will be performed will be:

| Sxx1 Sxy1 Sxz1 Syx1 Syy1 Syz1 Szx1 Szy1 Szz1 |

| Sxx2 Sxy2 Sxz2 Syx2 Syy2 Syz2 Szx2 Szy2 Szz2 |

| Sxx3 Sxy3 Sxz3 Syx3 Syy3 Syz3 Szx3 Szy3 Szz3 |

| |

| |

| |

| SxxN SxyN SxzN SyxN SyyN SyzN SzxN SzyN SzzN |

Otherwise if the selected basis set is ‘unitary 5D’, the
matrix for SVD is:

| Sxx1 Syy1 Sxy1 Sxz1 Syz1 |

| Sxx2 Syy2 Sxy2 Sxz2 Syz2 |

| Sxx3 Syy3 Sxy3 Sxz3 Syz3 |

| |

| |

| |

| SxxN SyyN SxyN SxzN SyzN |

Or if the selected basis set is ‘geometric 5D’, the stretch-
ing and skewing parameters Szz and Sxx-yy will be used
instead and the matrix is:

| Szz1 Sxxyy1 Sxy1 Sxz1 Syz1 |

| Szz2 Sxxyy2 Sxy2 Sxz2 Syz2 |

| Szz3 Sxxyy3 Sxy3 Sxz3 Syz3 |

| |

| |

| |

| SzzN SxxyyN SxyN SxzN SyzN |

For the irreducible spherical tensor basis set, the Am
components are defined as

/ 4pi \ 1/2

A0 = | --- | Szz ,

\ 5 /

/ 8pi \ 1/2

A+/-1 = +/- | --- | (Sxz +/- iSyz) ,

\ 15 /

/ 2pi \ 1/2

A+/-2 = | --- | (Sxx - Syy +/- 2iSxy) .

\ 15 /

The relationships between the geometric and unitary ba-
sis sets are

Szz = - Sxx - Syy,

Sxxyy = Sxx - Syy.

452 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.13 angles.diff frame

Synopsis

Calculate the angles defining the XH bond vector within
the diffusion frame.

Defaults

angles.diff frame()

Description

If the diffusion tensor is isotropic, then nothing will be
done.

If the diffusion tensor is axially symmetric, then the angle
α will be calculated for each XH bond vector.

If the diffusion tensor is asymmetric, then the three an-
gles will be calculated.

17.2.14 bmrb.citation

Synopsis

Specify a citation to be added the BMRB data file.

Defaults

bmrb.citation(cite id=None, authors=None, doi=None,
pubmed id=None, full citation=None, title=None,
status=‘published’, type=‘journal’, journal abbrev=None,
journal full=None, volume=None, issue=None,
page first=None, page last=None, year=None)

Keyword arguments

cite id: The citation ID string.

authors: The list of authors. Each author element is
a list of four elements (the first name, last name, first
initial, and middle initials).

doi: The DOI number, e.g. ‘10.1000/182’.

pubmed id: The identification code assigned to the
publication by PubMed.

full citation: The full citation as given in a reference
list.

title: The title of the publication.

status: The status of the publication. This can be a
value such as ‘published’, ‘submitted’, etc.

type: The type of publication, for example ‘journal’.

journal abbrev: The standard journal abbreviation.

journal full: The full journal name.

volume: The volume number.

issue: The issue number.

page first: The first page number.

page last: The last page number.

year: The publication year.

17.2. THE LIST OF FUNCTIONS 453

Description

The full citation should be in a format similar to that
used in a journal article by either cutting and pasting
from another document or by typing. Please include au-
thor names, title, journal, page numbers, and year or
equivalent information for the type of publication given.

The journal status can only be one of:

‘preparation’,

‘in press’,

‘published’,

‘retracted’,

‘submitted’.

The citation type can only be one of:

‘abstract’,

‘BMRB only’,

‘book’,

‘book chapter’,

‘internet’,

‘journal’,

‘personal communication’,

‘thesis’.

The standard journal abbreviation is that defined by the
Chemical Abstract Services for the journal where the
data are or will be published. If the data in the deposi-
tion are related to a J. Biomol. NMR paper, the value
must be ‘J. Biomol. NMR’ to alert the BMRB annota-
tors so that the deposition is properly processed. If the
depositor truly does not know the journal, a value of ‘not
known’ or ‘na’ is acceptable.

Prompt examples

To add the citation ”d’Auvergne E. J., Gooley P. R.
(2007). Set theory formulation of the model-free prob-
lem and the diffusion seeded model-free paradigm. Mol.
Biosyst., 3(7), 483-494.”, type:

relax> bmrb.citation(authors=[["Edward", "d'

Auvergne", "E.", "J."], ["Paul", "

Gooley", "P.", "R."]], doi="10.1039/

b702202f", pubmed_id="17579774",

full_citation="d'Auvergne E. J., Gooley

P. R. (2007). Set theory formulation

of the model-free problem and the

diffusion seeded model-free paradigm.

Mol. Biosyst., 3(7), 483-494.", title="

Set theory formulation of the model-

free problem and the diffusion seeded

model-free paradigm.", status="

published", type="journal",

journal_abbrev="Mol. Biosyst.",

journal_full="Molecular Biosystems",

volume=3, issue=7, page_first=483,

page_last=498, year=2007)

454 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.15 bmrb.display

Synopsis

Display the BMRB data in NMR-STAR format.

Defaults

bmrb.display(version=‘3.1’)

Keyword arguments

version: The version of the BMRB NMR-STAR format
to display.

Description

This will print the BMRB NMR-STAR formatted data
to STDOUT.

17.2.16 bmrb.read

Synopsis

Read BMRB files in the NMR-STAR format.

Defaults

bmrb.read(file=None, dir=None, version=None,
sample conditions=None)

Keyword arguments

file: The name of the BMRB NMR-STAR formatted
file to read.

dir: The directory where the file is located.

version: The version of the BMRB NMR-STAR format
to read. This is not necessary as the version is normally
auto-detected.

sample conditions: The sample conditions label in the
NMR-STAR file to restrict loading to.

Description

This will allow most of the data from a BMRB NMR-
STAR formatted file to be loaded into the relax data
store. Note that an empty data pipe should be created
for storing the data, and that currently only model-free
data pipes can be used. Also, only one sample condition
can be read per relax data pipe. Therefore if one of the
sample conditions is not specified and multiple conditions
exist in the NMR-STAR file, an error will be raised.

17.2. THE LIST OF FUNCTIONS 455

17.2.17 bmrb.script

Synopsis

Specify the scripts used in the analysis.

Defaults

bmrb.script(file=None, dir=None, analysis type=None,
model selection=None, engine=‘relax’, model elim=False,
universal solution=False)

Keyword arguments

file: The name of the script file.

dir: The directory where the file is located.

analysis type: The type of analysis performed.

model selection: The model selection technique used,
if relevant. For example ‘AIC’ model selection.

engine: The software engine used in the analysis.

model elim: A model-free specific flag specifying if
model elimination was performed.

universal solution: A model-free specific flag specifying
if the universal solution was sought after.

Description

This user function allows scripts used in the analysis to
be included in the BMRB deposition. The following addi-
tion information may need to be specified with the script.

The analysis type must be set. Allowable values include
all the data pipe types used in relax, ie:

‘frame order’ – The Frame Order theories,

‘jw’ – Reduced spectral density mapping,

‘mf’ – Model-free analysis,

‘N-state’ – N-state model of domain motions,

‘noe’ – Steady state NOE calculation,

‘relax fit’ – Relaxation curve fitting,

The model selection technique only needs to be set if
the script selects between different mathematical mod-
els. This can be anything, but the following are recom-
mended:

‘AIC’ – Akaike’s Information Criteria.

‘AICc’ – Small sample size corrected AIC.

‘BIC’ – Bayesian or Schwarz Information Criteria.

‘Bootstrap’ – Bootstrap model selection.

‘CV’ – Single-item-out cross-validation.

‘Expect’ – The expected overall discrepancy (the true
values of the parameters are required).

‘Farrow’ – Old model-free method by Farrow et al.,
1994.

‘Palmer’ – Old model-free method by Mandel et al.,
1995.

‘Overall’ – The realised overall discrepancy (the true
values of the parameters are required).

The engine is the software used in the calculation, opti-
misation, etc. This can be anything, but those recognised
by relax (automatic program info, citations, etc. added)
include:

‘relax’ – hence relax was used for the full analysis.

‘modelfree4’ – Art Palmer’s Modelfree4 program was
used for optimising the model-free parameter val-
ues.

‘dasha’ – The Dasha program was used for optimising
the model-free parameter values.

‘curvefit’ – Art Palmer’s curvefit program was used to
determine the R1 or R2 values.

The model elim flag is model-free specific and should be
set if the methods from ”d’Auvergne, E. J. and Gooley,
P. R. (2006). Model-free model elimination: A new step
in the model-free dynamic analysis of NMR relaxation
data. J. Biomol. NMR, 35(2), 117-135.” were used. This
should be set to True for the full analysis.py script.

The universal solution flag is model-free specific and
should be set if the methods from ”d’Auvergne E. J.,
Gooley P. R. (2007). Set theory formulation of the
model-free problem and the diffusion seeded model-free
paradigm. Mol. Biosyst., 3(7), 483-494.” were used.
This should be set to True for the full analysis.py script.

456 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

Prompt examples

For BMRB deposition, to specify that the full analysis.py
script was used, type one of:

relax> bmrb.script('full_analysis.py', '

model-free', 'AIC', 'relax', True, True

)

relax> bmrb.script(file='full_analysis.py',

dir=None, analysis_type='model-free',

model_selection='AIC', engine='relax',

model_elim=True, universal_solution=

True)

17.2.18 bmrb.software

Synopsis

Specify the software used in the analysis.

Defaults

bmrb.software(name=None, version=None, url=None,
vendor name=None, cite ids=None, tasks=None)

Keyword arguments

name: The name of the software program utilised.

version: The version of the software, if applicable.

url: The web address of the software.

vendor name: The name of the company or person be-
hind the program.

cite ids: A list of the BMRB citation ID numbers.

tasks: A list of all the tasks performed by the software.

Description

This user function allows the software used in the analysis
to be specified in full detail.

For the tasks list, this should be a python list of strings
(e.g. [‘spectral processing’]). Although not restricted
to these, the values suggested by the BMRB are:

‘chemical shift assignment’,

‘chemical shift calculation’,

‘collection’,

‘data analysis’,

‘geometry optimization’,

‘peak picking’,

‘processing’,

‘refinement’,

‘structure solution’

17.2. THE LIST OF FUNCTIONS 457

Prompt examples

For BMRB deposition, to say that Sparky was used in
the analysis, type:

relax> cite_id = bmrb.citation(authors=[["

Tom", "Goddard", "T.", "D."], ["D", "

Kneller", "D.", "G."]], title="Goddard,

T. D. and Kneller, D. G., SPARKY 3,

University of California, San

Francisco."

relax> bmrb.software("Sparky", version="3

.110", url="http://www.cgl.ucsf.edu/

home/sparky/", vendor_name="Goddard, T.

D.", cite_ids=[cite_id], tasks=["

spectral analysis"])

17.2.19 bmrb.software select

Synopsis

Select the software used in the analysis.

Defaults

bmrb.software select(name=None, version=None)

Keyword arguments

name: The name of the software program utilised.

version: The version of the software, if applicable.

Description

Rather than specifying all the information directly, this
user function allows the software packaged used in the
analysis to be selected by name. The programs currently
supported are:

‘NMRPipe’ – http://spin.niddk.nih.gov/NMRPipe/

‘Sparky’ – http://www.cgl.ucsf.edu/home/sparky/

More can be added if all relevant information (program
name, description, website, original citation, purpose,
etc.) is emailed to relax-users@gna.org.

Note that relax is automatically added to the BMRB file.

Prompt examples

For BMRB deposition, to say that both NMRPipe and
Sparky were used prior to relax, type:

relax> bmrb.software_select('NMRPipe')

relax> bmrb.software_select('Sparky',

version='3.113')

458 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.20 bmrb.thiol state

Synopsis

Select the thiol state of the system.

Defaults

bmrb.thiol state(state=None)

Keyword arguments

state: The thiol state.

Description

The thiol state can be any text, thought the BMRB sug-
gests the following:

‘all disulfide bound’,

‘all free’,

‘all other bound’,

‘disulfide and other bound’,

‘free and disulfide bound’,

‘free and other bound’,

‘free disulfide and other bound’,

‘not available’,

‘not present’,

‘not reported’,

‘unknown’.

Alternatively the pure states ‘reduced’ or ‘oxidised’
could be specified.

Prompt examples

For BMRB deposition, to say that the protein studied is
in the oxidised state, tyype one of:

relax> bmrb.thiol_state('oxidised')

relax> bmrb.thiol_state(state='oxidised')

17.2.21 bmrb.write

Synopsis

Write the results to a BMRB NMR-STAR formatted file.

Defaults

bmrb.write(file=None, dir=‘pipe name’, version=‘3.1’,
force=False)

Keyword arguments

file: The name of the BMRB file to output results to.
Optionally this can be a file object, or any object with a
write() method.

dir: The directory name.

version: The NMR-STAR dictionary format version to
create.

force: A flag which if True will cause the any pre-
existing file to be overwritten.

Description

This will create a NMR-STAR formatted file of the data
in the current data pipe for BMRB deposition.

In the prompt/script UI modes, to place the BMRB file
in the current working directory, set dir to None. If dir
is set to the special name ‘pipe name’, then the results
file will be placed into a directory with the same name
as the current data pipe.

17.2. THE LIST OF FUNCTIONS 459

17.2.22 bruker.read

Synopsis

Read the relaxation data out of a Bruker Dynamics Cen-
ter (DC) file.

Defaults

bruker.read(ri id=None, file=None, dir=None)

Keyword arguments

ri id: The relaxation data ID string. This must be a
unique identifier.

file: The name of the Bruker Dynamics Center file con-
taining the relaxation data.

dir: The directory where the file is located.

Description

This user function is used to load the fitted relaxation
data out of a Bruker Dynamics Center (DC) file for the
analyses in relax that use relaxation data. Currently the
R1 and R2 relaxation rates and steady-state NOE data
is supported. The peak intensity information in the file,
which is used by the Dynamics Center to fit or calculate
the relaxation values, will be discarded.

17.2.23 chemical shift.read

Synopsis

Read chemical shifts from a file.

Defaults

chemical shift.read(file=None, dir=None, spin id col=
None, mol name col=None, res num col=None,
res name col=None, spin num col=None, spin name col=
None, sep=None, spin id=None)

Keyword arguments

file: The name of the peak list of generic formatted file
containing the chemical shifts.

dir: The directory where the file is located.

spin id col: The spin ID string column used by the
generic file format (an alternative to the mol, res, and
spin name and number columns).

mol name col: The molecule name column used by the
generic file format (alternative to the spin ID column).

res num col: The residue number column used by the
generic file format (alternative to the spin ID column).

res name col: The residue name column used by the
generic file format (alternative to the spin ID column).

spin num col: The spin number column used by the
generic file format (alternative to the spin ID column).

spin name col: The spin name column used by the
generic file format (alternative to the spin ID column).

sep: The column separator used by the generic format
(the default is white space).

spin id: The spin ID string used to restrict the loading
of data to certain spin subsets.

Description

This will read chemical shifts from a peak list or a generic
column formatted file.

Prompt examples

The following commands will read the chemical shifts out
of the Sparky peak list ‘10ms.list’:

relax> chemical_shift.read('10ms.list')

460 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.24 consistency tests.set frq

Synopsis

Select which relaxation data to use in the consistency
tests by NMR spectrometer frequency.

Defaults

consistency tests.set frq(frq=None)

Keyword arguments

frq: The spectrometer frequency in Hz. This must
match the currently loaded data to the last decimal point.
See the ‘sfrq’ parameter in the Varian procpar file or the
‘SFO1’ parameter in the Bruker acqus file.

Description

This will select the relaxation data to use in the consis-
tency tests corresponding to the given frequencies. The
data is selected by the spectrometer frequency in Hertz,
which should be set to the exact value (see the ‘sfrq’
parameter in the Varian procpar file or the ‘SFO1’ pa-
rameter in the Bruker acqus file). Note thought that
the R1, R2 and NOE are all expected to have the exact
same frequency in the J(ω) mapping analysis (to the last
decimal point).

Prompt examples

relax> consistency_tests.set_frq(600.0 * 1e6

)

relax> consistency_tests.set_frq(frq=600.0 *

1e6)

17.2.25 dasha.create

Synopsis

Create the Dasha script.

Defaults

dasha.create(algor=‘LM’, dir=None, force=False)

Keyword arguments

algor: The minimisation algorithm.

dir: The directory to place the files.

force: A flag which if set to True will cause the results
file to be overwritten if it already exists.

Description

The script file created is called ‘dir/dasha script’.

Optimisation algorithms

The two minimisation algorithms within Dasha are ac-
cessible through the algorithm which can be set to:

‘LM’ – The Levenberg-Marquardt algorithm,

‘NR’ – Newton-Raphson algorithm.

For Levenberg-Marquardt minimisation, the function
‘lmin’ will be called, while for Newton-Raphson, the
function ‘min’ will be executed.

17.2. THE LIST OF FUNCTIONS 461

17.2.26 dasha.execute

Synopsis

Perform a model-free optimisation using Dasha.

Defaults

dasha.execute(dir=None, force=False, binary=‘dasha’)

Keyword arguments

dir: The directory to place the files.

force: A flag which if set to True will cause the results
file to be overwritten if it already exists.

binary: The name of the executable Dasha program
file.

Description

Dasha will be executed as

$ dasha < dasha_script | tee dasha_results

If you would like to use a different Dasha executable file,
change the binary name to the appropriate file name.
If the file is not located within the environment’s path,
include the full path in front of the binary file name.

17.2.27 dasha.extract

Synopsis

Extract data from the Dasha results file.

Defaults

dasha.extract(dir=None)

Keyword arguments

dir: The directory where the file ‘dasha results’ is
found.

Description

The model-free results will be extracted from the Dasha
results file ‘dasha results’ located in the given directory.

462 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.28 deselect.all

Synopsis

Deselect all spins in the current data pipe.

Defaults

deselect.all()

Description

This will deselect all spins, irregardless of their current
state.

Prompt examples

To deselect all spins, simply type:

relax> deselect.all()

17.2.29 deselect.interatom

Synopsis

Deselect specific interatomic data containers.

Defaults

deselect.interatom(spin id1=None, spin id2=None,
boolean=‘AND’, change all=False)

Keyword arguments

spin id1: The spin ID string of the first spin of the
interatomic data container.

spin id2: The spin ID string of the second spin of the
interatomic data container.

boolean: The boolean operator specifying how inter-
atomic data containers should be selected.

change all: A flag specifying if all other interatomic
data containers should be changed.

Description

This is used to deselect specific interatomic data con-
tainers which store information about spin pairs such as
RDCs, NOEs, dipole-dipole pairs involved in relaxation,
etc. The ‘change all’ flag default is False meaning that
all interatomic data containers currently either selected
or deselected will remain that way. Setting this to True
will cause all interatomic data containers not specified by
the spin ID strings to be deselected.

Boolean operators

The boolean operator can be used to change how spin
systems or interatomic data containers are selected. The
allowed values are: ‘OR’, ‘NOR’, ‘AND’, ‘NAND’, ‘XOR’, ‘XNOR’.
The following table details how the selections will occur
for the different boolean operators.

Please see Table 17.1 on page 463.

17.2. THE LIST OF FUNCTIONS 463

Table 17.1: Boolean operators and their effects on selections

Spin system or interatomic data container 1 2 3 4 5 6 7 8 9

Original selection 0 1 1 1 1 0 1 0 1
New selection 0 1 1 1 1 1 0 0 0
OR 0 1 1 1 1 1 1 0 1
NOR 1 0 0 0 0 0 0 1 0
AND 0 1 1 1 1 0 0 0 0
NAND 1 0 0 0 0 1 1 1 1
XOR 0 0 0 0 0 1 1 0 1
XNOR 1 1 1 1 1 0 0 1 0

Prompt examples

To deselect all N-H backbone bond vectors of a protein,
assuming these interatomic data containers have been
already set up, type one of:

relax> deselect.interatom('@N', '@H')

relax> deselect.interatom(spin_id1='@N',

spin_id2='@H')

To deselect all H-H interatomic vectors of a small organic
molecule, type one of:

relax> deselect.interatom('@H*', '@H*')

relax> deselect.interatom(spin_id1='@H*',

spin_id2='@H*')

17.2.30 deselect.read

Synopsis

Deselect the spins contained in a file.

Defaults

deselect.read(file=None, dir=None, spin id col=None,
mol name col=None, res num col=None, res name col=
None, spin num col=None, spin name col=None, sep=
None, spin id=None, boolean=‘AND’, change all=False)

Keyword arguments

file: The name of the file containing the list of spins to
deselect.

dir: The directory where the file is located.

spin id col: The spin ID string column (an alternative
to the mol, res, and spin name and number columns).

mol name col: The molecule name column (alternative
to the spin id col).

res num col: The residue number column (alternative
to the spin id col).

res name col: The residue name column (alternative to
the spin id col).

spin num col: The spin number column (alternative to
the spin id col).

spin name col: The spin name column (alternative to
the spin id col).

sep: The column separator (the default is white space).

464 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

spin id: The spin ID string to restrict the loading of
data to certain spin subsets.

boolean: The boolean operator specifying how spins
should be selected.

change all: A flag specifying if all other spins should
be changed.

Description

The spin system can be identified in the file using two
different formats. The first is the spin ID string column
which can include the molecule name, the residue name
and number, and the spin name and number. Alterna-
tively the molecule name, residue number, residue name,
spin number and/or spin name columns can be supplied
allowing this information to be in separate columns. Note
that the numbering of columns starts at one. The spin
ID string can be used to restrict the reading to certain
spin types, for example only 15N spins when only residue
information is in the file.

Empty lines and lines beginning with a hash are ignored.

The ‘change all’ flag default is False meaning that all
spins currently either selected or deselected will remain
that way. Setting this to True will cause all spins not
specified in the file to be selected.

Boolean operators

The boolean operator can be used to change how spin
systems or interatomic data containers are selected. The
allowed values are: ‘OR’, ‘NOR’, ‘AND’, ‘NAND’, ‘XOR’, ‘XNOR’.
The following table details how the selections will occur
for the different boolean operators.

Please see Table 17.1 on page 463.

Prompt examples

To deselect all overlapped residues listed with residue
numbers in the first column of the file ‘unresolved’, type
one of:

relax> deselect.read('unresolved',

res_num_col=1)

relax> deselect.read(file='unresolved',

res_num_col=1)

To deselect the spins in the second column of the relax-
ation data file ‘r1.600’ while selecting all other spins, for
example type:

relax> deselect.read('r1.600', spin_num_col

=2, change_all=True)

relax> deselect.read(file='r1.600',

spin_num_col=2, change_all=True)

17.2.31 deselect.reverse

Synopsis

Reversal of the spin selection for the given spins.

Defaults

deselect.reverse(spin id=None)

Keyword arguments

spin id: The spin ID string.

Description

By supplying the spin ID string, a subset of spins can
have their selection status reversed.

Description

To deselect all currently selected spins and select those
which are deselected type:

relax> deselect.reverse()

17.2. THE LIST OF FUNCTIONS 465

17.2.32 deselect.sn ratio

Synopsis

Deselect spins with signal to noise ratio higher or lower
than the given ratio.

Defaults

deselect.sn ratio(ratio=10.0, operation=‘¡’, all sn=False)

Keyword arguments

ratio: The signal to noise ratio to compare to.

operation: The comparison operation by which to des-
elect the spins.

all sn: A flag specifying if all the signal to noise ratios
per spin should match the comparison operator, of if just
a single comparison match is enough.

Description

The comparison operation is the method which to dese-
lect spins according to: operation(sn ratio, ratio).

The possible operations are: ‘<’:strictly less than,
‘<=’:less than or equal, ‘>’:strictly greater than,
‘>=’:greater than or equal, ‘==’:equal, ‘!=’:not equal.

The ‘all sn’ flag default is False, meaning that if any of
the spin’s signal to noise levels evaluates to True in the
comparison, the spin is deselected.

Prompt examples

To deselect all spins with a signal to noise ratio lower
than 10.0:

relax> deselect.sn_ratio(ratio=10.0,

operation='<')

relax> deselect.sn_ratio(ratio=10.0,

operation='<', all_sn=True)

17.2.33 deselect.spin

Synopsis

Deselect specific spins.

Defaults

deselect.spin(spin id=None, boolean=‘AND’, change all=
False)

Keyword arguments

spin id: The spin ID string.

boolean: The boolean operator specifying how spins
should be deselected.

change all: A flag specifying if all other spins should
be changed.

Description

The ‘change all’ flag default is False meaning that all
spins currently either selected or deselected will remain
that way. Setting this to True will cause all spins not
specified by the spin ID string to be deselected.

Boolean operators

The boolean operator can be used to change how spin
systems or interatomic data containers are selected. The
allowed values are: ‘OR’, ‘NOR’, ‘AND’, ‘NAND’, ‘XOR’, ‘XNOR’.
The following table details how the selections will occur
for the different boolean operators.

Please see Table 17.1 on page 463.

Prompt examples

To deselect all glycines and alanines, type:

relax> deselect.spin(spin_id=':GLY|:ALA')

To deselect residue 12 MET type:

relax> deselect.spin(':12')

relax> deselect.spin(spin_id=':12')

relax> deselect.spin(spin_id=':12&:MET')

466 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.34 diffusion tensor.copy

Synopsis

Copy diffusion tensor data from one data pipe to another.

Defaults

diffusion tensor.copy(pipe from=None, pipe to=None)

Keyword arguments

pipe from: The name of the data pipe to copy the dif-
fusion tensor data from.

pipe to: The name of the data pipe to copy the diffu-
sion tensor data to.

Description

This will copy the diffusion tensor data between data
pipes. The destination data pipe must not contain any
diffusion tensor data. If the source or destination data
pipes are not supplied, then both will default to the cur-
rent data pipe (hence specifying at least one is essential).

Prompt examples

To copy the diffusion tensor from the data pipe ‘m1’ to
the current data pipe, type:

relax> diffusion_tensor.copy('m1')

relax> diffusion_tensor.copy(pipe_from='m1')

To copy the diffusion tensor from the current data pipe
to the data pipe ‘m9’, type:

relax> diffusion_tensor.copy(pipe_to='m9')

To copy the diffusion tensor from the data pipe ‘m1’ to
‘m2’, type:

relax> diffusion_tensor.copy('m1', 'm2')

relax> diffusion_tensor.copy(pipe_from='m1',

pipe_to='m2')

17.2.35 diffusion tensor.delete

Synopsis

Delete the diffusion tensor data from the relax data store.

Defaults

diffusion tensor.delete()

Description

This will delete all diffusion tensor data from the current
data pipe.

17.2. THE LIST OF FUNCTIONS 467

17.2.36 diffusion tensor.display

Synopsis

Display the diffusion tensor information.

Defaults

diffusion tensor.display()

Description

This will display all of the diffusion tensor information
of the current data pipe.

17.2.37 diffusion tensor.init

Synopsis

Initialise the diffusion tensor.

Defaults

diffusion tensor.init(params=None, time scale=1.0,
d scale=1.0, angle units=‘deg’, param types=0,
spheroid type=None, fixed=True)

Keyword arguments

params: The diffusion tensor data.

time scale: The correlation time scaling value.

d scale: The diffusion tensor eigenvalue scaling value.

angle units: The units for the angle parameters.

param types: A flag to select different parameter com-
binations.

spheroid type: A string which, if supplied together with
spheroid parameters, will restrict the tensor to either be-
ing ‘oblate’ or ‘prolate’.

fixed: A flag specifying whether the diffusion tensor is
fixed or can be optimised.

The sphere (isotropic diffusion)

When the molecule diffuses as a sphere, all three eigen-
values of the diffusion tensor are equal, Dx = Dy =
Dz . In this case, the orientation of the XH bond vec-
tor within the diffusion frame is inconsequential to relax-
ation, hence, the spherical or Euler angles are undefined.
Therefore solely a single geometric parameter, either τm
or Diso, can fully and sufficiently parameterise the dif-
fusion tensor. The correlation function for the global
rotational diffusion is

1 - tau / tm

C(tau) = - e ,

5

468 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

To select isotropic diffusion, the parameter should be a
single floating point number. The number is the value
of the isotropic global correlation time, τm, in seconds.
To specify the time in nanoseconds, set the time scale to
1e-9. Alternative parameters can be used by changing
the ‘param types’ flag to the following integers

0 – {tm} (Default),

1 – {Diso},

where

1 / τm = 6Diso.

The spheroid (axially symmetric diffu-
sion)

When two of the three eigenvalues of the diffusion ten-
sor are equal, the molecule diffuses as a spheroid. Four
pieces of information are required to specify this tensor,
the two geometric parameters, Diso and Da, and the two
orientational parameters, the polar angle θ and the az-
imuthal angle φ describing the orientation of the axis of
symmetry. The correlation function of the global diffu-
sion is

1

1 \ - tau / tau_i

C(tau) = - > ci . e ,

5 /__

i=-1

where

c-1 = 1/4 (3 δzˆ2 - 1)ˆ2,

c0 = 3 δzˆ2 (1 - δzˆ2),

c1 = 3/4 (δzˆ2 - 1)ˆ2,

and

1 / τ -1 = 6Diso - 2Da,

1 / τ 0 = 6Diso - Da,

1 / τ 1 = 6Diso + 2Da.

The direction cosine δz is defined as the cosine of the
angle α between the XH bond vector and the unique
axis of the diffusion tensor.

To select axially symmetric anisotropic diffusion, the pa-
rameters should be a tuple of floating point numbers of
length four. A tuple is a type of data structure enclosed
in round brackets, the elements of which are separated by
commas. Alternative sets of parameters, ‘param types’,
are

0 – {τm, Da, θ, φ} (Default),

1 – {Diso, Da, θ, φ},

2 – {τm, Dratio, θ, φ},

3 – {D‖, D⊥, θ, φ},

4 – {Diso, Dratio, θ, φ},

where

τm = 1 / 6Diso,

Diso = 1/3 (D‖ + 2D⊥),

Da = D‖ - D⊥,

Dratio = D‖ / D⊥.

The spherical angles {θ, φ} orienting the unique axis of
the diffusion tensor within the PDB frame are defined
between

0 ≤ θ ≤ π,

0 ≤ φ ≤ 2π,

while the angle α which is the angle between this axis
and the given XH bond vector is defined between

0 ≤ α ≤ 2π.

The spheroid type should be ‘oblate’, ‘prolate’, or
None. This will be ignored if the diffusion tensor is not
axially symmetric. If ‘oblate’ is given, then the con-
straint Da ≤ 0 is used while if ‘prolate’ is given, then
the constraint Da ≥ 0 is used. If nothing is supplied,
then Da will be allowed to have any values. To prevent
minimisation of diffusion tensor parameters in a space
with two minima, it is recommended to specify which
tensor is to be minimised, thereby partitioning the two
minima into the two subspaces along the boundary Da

= 0.

The ellipsoid (rhombic diffusion)

When all three eigenvalues of the diffusion tensor are
different, the molecule diffuses as an ellipsoid. This dif-
fusion is also known as fully anisotropic, asymmetric, or
rhombic. The full tensor is specified by six pieces of in-
formation, the three geometric parameters Diso, Da, and
Dr representing the isotropic, anisotropic, and rhombic
components of the tensor, and the three Euler angles α,
β, and γ orienting the tensor within the PDB frame. The
correlation function is

17.2. THE LIST OF FUNCTIONS 469

2

1 \ - tau / tau_i

C(tau) = - > ci . e ,

5 /__

i=-2

where the weights on the exponentials are

c-2 = 1/4 (d + e),

c-1 = 3 δyˆ2 δzˆ2,

c0 = 3 δxˆ2 δzˆ2,

c1 = 3 δxˆ2 δyˆ2,

c2 = 1/4 (d + e).

Let

R = sqrt(1 + 3Dr),

then

d = 3 (δxˆ4 + δyˆ4 + δzˆ4) - 1,

e = - 1 / R ((1 + 3Dr)(δxˆ4 + 2δyˆ2 δzˆ2) +
(1 - 3Dr)(δyˆ4 + 2δxˆ2 δzˆ2) - 2(δzˆ4 + 2δxˆ2
δyˆ2)).

The correlation times are

1 / τ -2 = 6Diso - 2Da . R,

1 / τ -1 = 6Diso - Da (1 + 3Dr),

1 / τ 0 = 6Diso - Da (1 - 3Dr),

1 / τ 1 = 6Diso + 2Da,

1 / τ 1 = 6Diso + 2Da . R.

The three direction cosines δx, δy, and δz are the coor-
dinates of a unit vector parallel to the XH bond vector.
Hence the unit vector is [δx, δy, δz].

To select fully anisotropic diffusion, the parameters
should be a tuple of length six. A tuple is a type of
data structure enclosed in round brackets, the elements
of which are separated by commas. Alternative sets of
parameters, ‘param types’, are

0 – {τm, Da, Dr , α, β, γ} (Default),

1 – {Diso, Da, Dr , α, β, γ},

2 – {Dx, Dy , Dz , α, β, γ},

3 – {Dxx, Dyy, Dzz, Dxy, Dxz, Dyz},

where

τm = 1 / 6Diso,

Diso = 1/3 (Dx + Dy + Dz),

Da = Dz - (Dx + Dy)/2,

Dr = (Dy - Dx)/2Da.

The angles α, β, and γ are the Euler angles describing
the diffusion tensor within the PDB frame. These angles
are defined using the z-y-z axis rotation notation where
α is the initial rotation angle around the z-axis, β is
the rotation angle around the y-axis, and γ is the final
rotation around the z-axis again. The angles are defined
between

0 ≤ α ≤ 2π,

0 ≤ β ≤ π,

0 ≤ γ ≤ 2π.

Within the PDB frame, the XH bond vector is described
using the spherical angles θ and φ where θ is the polar
angle and φ is the azimuthal angle defined between

0 ≤ θ ≤ π,

0 ≤ φ ≤ 2π.

When param types is set to 3, then the elements of the
diffusion tensor matrix defined within the PDB frame
can be supplied.

Units

The correlation time scaling value should be a floating
point number. The only parameter affected by this value
is τm.

The diffusion tensor eigenvalue scaling value should also
be a floating point number. Parameters affected by this
value are Diso, D‖, D⊥, Da, Dx, Dy , and Dz . Signifi-
cantly, Dr is not affected.

The units for the angle parameters should be either ‘deg’
or ‘rad’. Parameters affected are θ, φ, α, β, and γ.

470 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

Prompt examples

To set an isotropic diffusion tensor with a correlation
time of 10 ns, type:

relax> diffusion_tensor.init(10e-9)

relax> diffusion_tensor.init(params=10e-9)

relax> diffusion_tensor.init(10.0, 1e-9)

relax> diffusion_tensor.init(params=10.0,

time_scale=1e-9, fixed=True)

To select axially symmetric diffusion with a τm value of
8.5 ns, Dratio of 1.1, θ value of 20 degrees, and φ value
of 20 degrees, type:

relax> diffusion_tensor.init((8.5e-9, 1.1,

20.0, 20.0), param_types=2)

To select a spheroid diffusion tensor with a D‖ value of
1.698e7, D⊥ value of 1.417e7, θ value of 67.174 degrees,
and φ value of -83.718 degrees, type one of:

relax> diffusion_tensor.init((1.698e7, 1

.417e7, 67.174, -83.718), param_types

=3)

relax> diffusion_tensor.init(params=(1.698e7

, 1.417e7, 67.174, -83.718),

param_types=3)

relax> diffusion_tensor.init((1.698e-1, 1

.417e-1, 67.174, -83.718), param_types

=3, d_scale=1e8)

relax> diffusion_tensor.init(params=(1.698e

-1, 1.417e-1, 67.174, -83.718),

param_types=3, d_scale=1e8)

relax> diffusion_tensor.init((1.698e-1, 1

.417e-1, 1.1724, -1.4612), param_types

=3, d_scale=1e8, angle_units='rad')

relax> diffusion_tensor.init(params=(1.698e

-1, 1.417e-1, 1.1724, -1.4612),

param_types=3, d_scale=1e8, angle_units

='rad', fixed=True)

To select ellipsoidal diffusion, type:

relax> diffusion_tensor.init((1.340e7, 1

.516e7, 1.691e7, -82.027, -80.573, 65

.568), param_types=2)

17.2.38 domain

Synopsis

Definition of structural domains.

Defaults

domain(id=None, spin id=None)

Keyword arguments

id: The ID string used to identify molecular domains.

spin id: The spin ID string of all atomic members of
the domain.

Description

This is used to define structural domains. Multiple do-
mains can be defined, and these can overlap. Rather than
labelling the currently loaded spins with the ID string,
the spin ID string is stored for later use. This allows new
spins to be loaded later and still be included within the
same domain.

17.2. THE LIST OF FUNCTIONS 471

17.2.39 dx.execute

Synopsis

Execute an OpenDX program.

Defaults

dx.execute(file prefix=‘map’, dir=‘dx’, dx exe=‘dx’,
vp exec=True)

Keyword arguments

file prefix: The file name prefix. For example if file is
set to ‘temp’, then the OpenDX program temp.net will
be loaded.

dir: The directory to change to for running OpenDX.
If this is set to None, OpenDX will be run in the current
directory.

dx exe: The OpenDX executable file.

vp exec: A flag specifying whether to execute the visual
program automatically at start-up. The default of True
causes the program to be executed.

Description

This will execute OpenDX to display the space maps
created previously by the δx.map user function. This
will work for any type of OpenDX map.

17.2.40 dx.map

Synopsis

Create a map of the given space in OpenDX format.

Defaults

dx.map(params=None, map type=‘Iso3D’, spin id=None,
inc=20, lower=None, upper=None, axis incs=5,
file prefix=‘map’, dir=‘dx’, point=None, point file=
‘point’, chi surface=None, create par file=False)

Keyword arguments

params: The parameters to be mapped. This should be
an array of strings, the meanings of which are described
below.

map type: The type of map to create. For example the
default, a 3D isosurface, the type is ‘Iso3D’. See below
for more details.

spin id: The spin ID string.

inc: The number of increments to map in each dimen-
sion. This value controls the resolution of the map.

lower: The lower bounds of the space. If you wish to
change the lower bounds of the map then supply an array
of length equal to the number of parameters in the model.
A lower bound for each parameter must be supplied. If
nothing is supplied then the defaults will be used.

upper: The upper bounds of the space. If you wish
to change the upper bounds of the map then supply an
array of length equal to the number of parameters in
the model. A upper bound for each parameter must be
supplied. If nothing is supplied then the defaults will be
used.

axis incs: The number of increments or ticks displaying
parameter values along the axes of the OpenDX plot.

file prefix: The file name. All the output files are pre-
fixed with this name. The main file containing the data
points will be called the value of ‘file’. The OpenDX
program will be called ‘file.net’ and the OpenDX im-
port file will be called ‘file.general’.

dir: The directory to output files to. Set this to ‘None’
if you do not want the files to be placed in subdirectory.
If the directory does not exist, it will be created.

point: This argument allows specific points in the opti-
misation space to be displayed as coloured spheres. This
can be used to highlight a minimum or other any other
feature of the space. Either a single point or a list of

472 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

points can be supplied. Each point is a list of floating
point numbers in the form [x, y, z]

point file: The name of that the point output files will
be prefixed with.

chi surface: A list of 4 numbers, setting the level for
the 4 isosurfaces. Useful in scripting if you create a set
of OpenDX maps with all the same contour levels. Ideal
for comparisons.

create par file: A flag specifying whether to create a file
with parameters and associated chi2 value. The default
of False causes the file not to be created.

Description

This will map the space corresponding to the spin iden-
tifier and create the OpenDX files. The map type can be
changed to one of the following supported map types:

Please see Table 17.2 on page 473.

Model-free parameters

Please see Table 17.3 on page 473.

N-state model parameters

Please see Table 17.4 on page 473.

Relaxation dispersion parameters

Please see Table 17.5 on page 474.

Frame order parameters

Please see Table 17.6 on page 474.

Prompt examples

The following commands will generate a map of the ex-
tended model-free space for model ‘m5’ consisting of the
parameters {S2, S2

f
, τs}. Files will be output into the

directory ‘dx’ and will be prefixed by ‘map’. In this case,
the system is a protein and residue number 6 will be
mapped.

relax> dx.map(['s2', 's2f', 'ts'], spin_id='

:6')

relax> dx.map(['s2', 's2f', 'ts'], spin_id='

:6', file_prefix='map', dir='dx')

relax> dx.map(params=['s2', 's2f', 'ts'],

spin_id=':6', inc=20, file_prefix='map'

, dir='dx')

relax> dx.map(params=['s2', 's2f', 'ts'],

spin_id=':6', map_type='Iso3D', inc=20,

file_prefix='map', dir='dx')

To map the model-free space ‘m4’ for residue 2, spin N6
defined by the parameters {S2, τe, Rex}, name the re-
sults ‘test’, and to place the files in the current directory,
use one of the following commands:

relax> dx.map(['s2', 'te', 'rex'], spin_id='

:2@N6', file_prefix='test', dir=None)

relax> dx.map(params=['s2', 'te', 'rex'],

spin_id=':2@N6', inc=100, file_prefix='

test', dir=None)

17.2. THE LIST OF FUNCTIONS 473

Table 17.2: OpenDx mapping types.

Surface type Name

3D isosurface ’Iso3D’

Table 17.3: Model-free parameters.

Name Description

tm Global correlation time
Diso Isotropic component of the diffusion tensor
Dx Eigenvalue associated with the x-axis of the diffusion tensor
Dy Eigenvalue associated with the y-axis of the diffusion tensor
Dz Eigenvalue associated with the z-axis of the diffusion tensor
Dpar Diffusion coefficient parallel to the major axis of the spheroid diffusion tensor
Dper Diffusion coefficient perpendicular to the major axis of the spheroid diffusion tensor
Da Anisotropic component of the diffusion tensor
Dr Rhombic component of the diffusion tensor
Dratio Ratio of the parallel and perpendicular components of the spheroid diffusion tensor
alpha The first Euler angle of the ellipsoid diffusion tensor
beta The second Euler angle of the ellipsoid diffusion tensor
gamma The third Euler angle of the ellipsoid diffusion tensor
theta The polar angle defining the major axis of the spheroid diffusion tensor
phi The azimuthal angle defining the major axis of the spheroid diffusion tensor
s2 S2, the model-free generalised order parameter (S2 = S2

f
.S2s)

s2f S2
f
, the faster motion model-free generalised order parameter

s2s S2
s , the slower motion model-free generalised order parameter

local tm The spin specific global correlation time (seconds)
te Single motion effective internal correlation time (seconds)
tf Faster motion effective internal correlation time (seconds)
ts Slower motion effective internal correlation time (seconds)
rex Chemical exchange relaxation (sigma ex = Rex / omega**2)
csa Chemical shift anisotropy (unitless)

Table 17.4: N-state model parameters.

Name Description Type

Axx The Axx component of the alignment tensor float
Ayy The Ayy component of the alignment tensor float
Axy The Axy component of the alignment tensor float
Axz The Axz component of the alignment tensor float
Ayz The Ayz component of the alignment tensor float
probs The probabilities of each state list
alpha The α Euler angles (for the rotation of each state) list
beta The β Euler angles (for the rotation of each state) list
gamma The γ Euler angles (for the rotation of each state) list
paramagnetic centre The paramagnetic centre list

474 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 17.5: Relaxation dispersion parameters.

Name Description Type

r2eff The effective transversal relaxation rate dict
i0 The initial intensity dict
r1 The longitudinal relaxation rate dict
r2 The transversal relaxation rate dict
r2a The transversal relaxation rate for state A in the absence of exchange dict
r2b The transversal relaxation rate for state B in the absence of exchange dict
pA The population for state A float
pB The population for state B float
pC The population for state C float
phi ex The φ ex = pA.pB.dw**2 value (ppmˆ2) float
phi ex B The fast exchange factor between sites A and B (ppmˆ2) float
phi ex C The fast exchange factor between sites A and C (ppmˆ2) float
padw2 The pA.dw**2 value (ppmˆ2) float
dw The chemical shift difference between states A and B (in ppm) float
dw AB The chemical shift difference between states A and B for 3-site exchange (in ppm) float
dw AC The chemical shift difference between states A and C for 3-site exchange (in ppm) float
dw BC The chemical shift difference between states B and C for 3-site exchange (in ppm) float
dwH The proton chemical shift difference between states A and B (in ppm) float
dwH AB The proton chemical shift difference between states A and B for 3-site exchange (in ppm) float
dwH AC The proton chemical shift difference between states A and C for 3-site exchange (in ppm) float
dwH BC The proton chemical shift difference between states B and C for 3-site exchange (in ppm) float
kex The exchange rate float
kex AB The exchange rate between sites A and B for 3-site exchange with kex AB = k AB + k BA (rad.sˆ-1) float
kex AC The exchange rate between sites A and C for 3-site exchange with kex AC = k AC + k CA (rad.sˆ-1) float
kex BC The exchange rate between sites B and C for 3-site exchange with kex BC = k BC + k CB (rad.sˆ-1) float
kB Approximate chemical exchange rate constant between sites A and B (rad.sˆ-1) float
kC Approximate chemical exchange rate constant between sites A and C (rad.sˆ-1) float
tex The time of exchange (tex = 1/kex) float
k AB The exchange rate from state A to state B float
k BA The exchange rate from state B to state A float

Table 17.6: Frame order parameters.

Name Description

pivot x The pivot point position x coordinate
pivot y The pivot point position y coordinate
pivot z The pivot point position z coordinate
pivot disp The 2nd pivot point displacement - the minimum distance between the two rotor axes
ave pos x The average position x translation
ave pos y The average position y translation
ave pos z The average position z translation
ave pos alpha The average position α Euler angle
ave pos beta The average position β Euler angle
ave pos gamma The average position γ Euler angle
eigen alpha The Eigenframe α Euler angle
eigen beta The Eigenframe β Euler angle
eigen gamma The Eigenframe γ Euler angle
axis theta The cone axis polar angle (for the isotropic cone model)
axis phi The cone axis azimuthal angle (for the isotropic cone model)
axis alpha The rotor axis α angle (the rotation angle out of the xy plane)
cone theta x The pseudo-ellipse cone opening half-angle for the x-axis
cone theta y The pseudo-ellipse cone opening half-angle for the y-axis
cone theta The isotropic cone opening half-angle
cone sigma max The torsion angle
cone sigma max 2 The torsion angle of the 2nd motional mode

17.2. THE LIST OF FUNCTIONS 475

17.2.41 eliminate

Synopsis

Elimination or rejection of models.

Defaults

eliminate(function=None, args=None)

Keyword arguments

function: An optional user supplied function for model
elimination.

args: A tuple of arguments used by the optional func-
tion for model elimination.

Description

This is used for model validation to eliminate or reject
models prior to model selection. Model validation is a
part of mathematical modelling whereby models are ei-
ther accepted or rejected.

Empirical rules are used for model rejection and are listed
below. However these can be overridden by supplying a
function in the prompt and scripting modes. The func-
tion should accept five arguments, a string defining a cer-
tain parameter, the value of the parameter, the minimisa-
tion instance (ie the residue index if the model is residue
specific), and the function arguments. If the model is
rejected, the function should return True, otherwise it
should return False. The function will be executed mul-
tiple times, once for each parameter of the model.

The function arguments should be a tuple, a list enclosed
in round brackets, and will be passed to the user supplied
function or the inbuilt function. For a description of the
arguments accepted by the inbuilt functions, see below.

Once a model is rejected, the select flag corresponding to
that model will be set to False so that model selection,
or any other function, will then skip the model.

Local tm model elimination rule

The local τm, in some cases, may exceed the value ex-
pected for a global correlation time. Generally the τm
value will be stuck at the upper limit defined for the pa-
rameter. These models are eliminated using the rule:

tm >= c

The default value of c is 50 ns, although this can be
overridden by supplying the value (in seconds) as the
first element of the args tuple.

Internal correlation times te, tf, ts
model elimination rules

These parameters may experience the same problem as
the local τm in that the model fails and the parameter
value is stuck at the upper limit. These parameters are
constrained using the formula (τe, τf , τs ≤ 2τm). These
failed models are eliminated using the rule:

te, tf, ts >= c . tm.

The default value of c is 1.5. Because of round-off errors
and the constraint algorithm, setting c to 2 will result in
no models being eliminated as the minimised parameters
will always be less than 2τm. The value can be changed
by supplying the value as the second element of the tuple.

Arguments

The ‘args’ argument must be a tuple of length 2, the
elements of which must be numbers. For example, to
eliminate models which have a local τm value greater
than 25 ns and models with internal correlation times
greater than 1.5 times τm, set ‘args’ to (25 * 1e-9, 1.5).

476 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.42 error analysis.covariance-
matrix

Synopsis

Parameter error estimation via the covariance matrix.

Defaults

error analysis.covariance matrix(epsrel=0.0, verbosity=1)

Keyword arguments

epsrel: The parameter to remove linear-dependent
columns when J is rank deficient.

verbosity: The higher the value, the greater the ver-
bosity.

Description

This is a new experimental feature from version 3.3.

This will estimate parameter errors by using the expo-
nential decay Jacobian matrix ‘J’ to compute the covari-
ance matrix of the best-fit parameters.

This can be used to for comparison to Monte-Carlo sim-
ulations.

This method is inspired from the GNU Scientific Library
(GSL).

The covariance matrix is given by: covar = Qxx =
(JˆT.W.J)ˆ-1, where the weight matrix W is constructed
by the multiplication of an Identity matrix I and a weight
array w. The weight array is 1/errorsˆ2, which then gives
W = I.w = I x 1/errorsˆ2.

Qxx is computed by QR decomposition, JˆT.W.J=QR,
Qxx=Rˆ-1. QˆT. The columns of R which satisfy:
—R {kk}— ≤ epsrel —R {11}— are considered linearly-
dependent and are excluded from the covariance matrix
(the corresponding rows and columns of the covariance
matrix are set to zero).

The parameter ‘epsrel’ is used to remove linear-
dependent columns when J is rank deficient.

17.2.43 fix

Synopsis

Fix or allow parameter values to change during optimi-
sation.

Defaults

fix(element=None, fixed=True)

Keyword arguments

element: Which element to fix.

fixed: A flag specifying if the parameters should be
fixed or allowed to change.

Description

The element can be any of the following:

‘diff’ – The diffusion tensor parameters. This will al-
low all diffusion tensor parameters to be toggled.

‘all spins’ – Using this keyword, all parameters from
all spins will be toggled.

‘all’ – All parameters will be toggled. This is equiva-
lent to combining both ‘diff’ and ‘all spins’.

The flag ‘fixed’, if set to True, will fix parameters during
optimisation whereas a value of False will allow parame-
ters to vary.

17.2. THE LIST OF FUNCTIONS 477

17.2.44 frame order.count sobol-
points

Synopsis

Count the number of Sobol’ points used for the current
parameter values.

Defaults

frame order.count sobol points()

Description

This allows the number of Sobol’ integration points used
during the Frame Order target function optimisation to
be counted. This uses the current parameter values to
determine how many are used for the PCS calculation
compared to the total number.

17.2.45 frame order.decompose

Synopsis

Structural representation of the individual frame order
motional components.

Defaults

frame order.decompose(root=‘decomposed’, dir=None,
atom id=None, model=1, total=None, reverse=False,
mirror=False, force=False)

Keyword arguments

root: The file root for the PDB files created. Each
motional component will be represented by a differ-
ent PDB file appended with ‘ mode1.pdb’, ‘ mode2.pdb’,
‘ mode3.pdb’, etc.

dir: The directory where the files are to be saved.

atom id: The atom identification string to allow the
representation to be applied to a subset of all atoms.

model: Only one model from an analysed ensemble
of structures can be used for the representation, as the
decomposition PDB files consist of one model per state.

total: The total number of structures to distribute
along the motional modes. This overrides the fixed angle
value.

reverse: Set this to reverse the ordering of the models
distributed along the motional mode.

mirror: Set this to have the models distributed along
the motional mode shift from the negative angle to pos-
itive angle, and then return to the negative angle.

force: A flag which, if set to True, will overwrite the
any pre-existing file.

Description

An alternative way to visualise the frame order motions
is to decompose the motions and visualise each mode
separately. This user function will create a uniform dis-
tribution of structures shifted from the original position
and rotated around the eigenvector for that motional
mode. Each distribution will be output to a PDB file
appended with ‘ modeX.pdb’, where X are the discrete
motional modes ordered from largest to smallest. The
curved line of positions will extend over the full distribu-
tion of structures.

478 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.46 frame order.distribute

Synopsis

Structural distribution of the frame order motions.

Defaults

frame order.distribute(file=‘distribution.pdb.gz’, dir=
None, atom id=None, total=1000, max rotations=
100000, model=1, force=False)

Keyword arguments

file: The PDB file for storing the frame order mo-
tional distribution. The compression is determined auto-
matically by the file extensions ‘*.pdb’, ‘*.pdb.gz’, and
‘*.pdb.bz2’.

dir: The directory where the files are to be located.

atom id: The atom identification string to allow the
distribution to be a subset of all atoms.

total: The total number of structures to include in the
uniform distribution.

max rotations: The maximum number of rotations to
generate the distribution from. This prevents the user
function from executing for an infinite amount of time.
This occurs whenever a frame order amplitude parameter
(cone opening angle or torsion angle) is zero so that the
subset of all rotations within the motional distribution is
also zero.

model: Only one model from an analysed ensemble of
structures can be used for the distribution, as the distri-
bution PDB file consists of one model per state.

force: A flag which, if set to True, will overwrite the
any pre-existing file.

Description

To visualise the frame order motions, this user function
generates a distribution of structures randomly within
the bounds of the uniform distribution of the frame or-
der model. The original structure is rotated randomly
and only accepted for the distribution if it is within the
bounds. This is a more faithful representation of the dy-
namics than the pseudo-Brownian simulation user func-
tion.

Note that the RDC and PCS data does not contain infor-
mation about all parts of the real distribution of struc-
tures. Therefore the structures in this distribution only

represent the components of the distribution present in
the data, as modelled by the frame order models.

As the distribution consists of one model per state, if an
ensemble of structures has been analysed, only one model
from the ensemble can be used for the representation.

17.2. THE LIST OF FUNCTIONS 479

17.2.47 frame order.pdb model

Synopsis

Create a PDB file representation of the frame order dy-
namics.

Defaults

frame order.pdb model(ave pos=‘ave pos’, rep=
‘frame order’, dir=None, compress type=0, size=30.0,
inc=36, model=1, force=False)

Keyword arguments

ave pos: The file root of the 3D structure PDB file for
the molecular structure with the moving domains shifted
to the average position.

rep: The file root of the PDB file for the geometric
object representation of the frame order dynamics.

dir: The directory where the files are to be located.

compress type: The type of compression to use when
creating the files.

size: The size of the geometric object in Å.

inc: The number of increments used to create the geo-
metric object.

model: Only one model from an analysed ensemble can
be used for the PDB representation of the Monte Carlo
simulations of the average domain position, as these con-
sists of one model per simulation.

force: A flag which, if set to True, will overwrite the
any pre-existing files.

Description

This function creates a set of PDB files for representing
the frame order cone models. This includes a file for the
average position of the molecule and a file containing a
geometric representation of the frame order motions.

The three files are specified via the file root whereby the
extensions ‘.pdb’, ‘.pdb.gz’, etc. should not be pro-
vided. This is important for the geometric represen-
tation whereby different files are created for the posi-
tive and negative representations (due to symmetry in
the NMR data, these cannot be differentiated), and for
the Monte Carlo simulations. For example if the file
root is ‘frame order’, the positive and negative represen-
tations will be placed in the ‘frame order pos.pdb.gz’

and ‘frame order neg.pdb.gz’ files and the Monte
Carlo simulations in the ‘frame order sim pos.pdb.gz’
and ‘frame order sim neg.pdb.gz’ files. For mod-
els where there is no difference in representation be-
tween the positive and negative directions, the files
‘frame order.pdb.gz’ and ‘frame order sim.pdb.gz’ will
be produced.

There are four different types of residue within the PDB.
The pivot point is represented as as a single carbon
atom of the residue ‘PIV’. The cone consists of numer-
ous H atoms of the residue ‘CON’. The cone axis vector
is presented as the residue ‘AXE’ with one carbon atom
positioned at the pivot and the other x Åaway on the
cone axis (set by the geometric object size). Finally, if
Monte Carlo have been performed, there will be multiple
‘MCC’ residues representing the cone for each simulation,
and multiple ‘MCA’ residues representing the multiple cone
axes.

To create the diffusion in a cone PDB representation, a
uniform distribution of vectors on a sphere is generated
using spherical coordinates with the polar angle defined
by the cone axis. By incrementing the polar angle using
an arccos distribution, a radial array of vectors represent-
ing latitude are created while incrementing the azimuthal
angle evenly creates the longitudinal vectors. These are
all placed into the PDB file as H atoms and are all con-
nected using PDB CONECT records. Each H atom is
connected to its two neighbours on the both the longi-
tude and latitude. This creates a geometric PDB object
with longitudinal and latitudinal lines representing the
filled cone.

The PDB representation of the Monte Carlo simula-
tions consists of one model per simulation. Therefore
if an ensemble of structures has been analysed, only one
model from the ensemble can be used for the representa-
tion. This defaults to model number 1, but this can be
changed.

480 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.48 frame order.permute axes

Synopsis

Permute the axes of the motional eigenframe to switch
between local minima.

Defaults

frame order.permute axes(permutation=‘A’)

Keyword arguments

permutation: Which of the two permutations ‘A’ or ‘B’
to create. Three permutations are possible, and ‘A’ and
‘B’ select those which are not the starting combination.

Description

The isotropic and pseudo-elliptic cone frame order mod-
els consist of multiple solutions as the optimisation space
contains multiple local minima. Because of the con-
straint cone theta x ≤ cone theta y in the pseudo-ellipse
model, there are exactly three local minima (out of 6
possible permutations). However the cone theta x ==
cone theta y condition of the isotropic cone collapses
this to two minima. The multiple minima correspond
to permutations of the motional system - the eigen-
frame x, y and z-axes as well as the cone opening angles
cone theta x, cone theta y, and cone sigma max associ-
ated with these axes. But as the mechanics of the cone
angles is not identical to that of the torsion angle, only
one of the three local minima is the global minimum.

When optimising the pseudo-elliptic models, specif-
ically the ‘pseudo-ellipse’ and ‘pseudo-ellipse,
torsionless’ model, any of the three local minima can
be found. Convergence to the global minimum is not
guaranteed. Therefore this user function can be used
to permute the motional system to jump from one local
minimum to the other. Optimisation will be required
as the permuted parameters will not be exactly at the
minimum.

Please see Table 17.7 on page 481.

In this table, the condition and cone angle values [x,
y, z] correspond to cone theta x, cone theta y, and
cone sigma max.

Prompt examples

For combination ‘A’, simply type:

relax> frame_order.permute_axes('A')

17.2.49 frame order.pivot

Synopsis

Set the pivot points for the two body motion in the struc-
tural coordinate system.

Defaults

frame order.pivot(pivot=None, order=1, fix=False)

Keyword arguments

pivot: The pivot point for the motion (e.g. the position
between the 2 domains in PDB coordinates).

order: The ordinal number of the pivot point. The
value of 1 is for the first pivot point, the value of 2 for
the second pivot point, and so on.

fix: A flag specifying if the pivot point should be fixed
during optimisation.

Description

This will set the pivot points for the two domain system
within the PDB coordinate system. This is required for
interpreting PCS data as well as for the generation of
cone or other PDB representations of the domain mo-
tions.

This user function can also be used to change the opti-
misation status of an already set pivot point. By simply
providing the fixed flag and not the pivot point values,
the pivot can be changed to be either fixed during opti-
misation or that it will be optimised.

Prompt examples

To set the pivot point, type one of:

relax> frame_order.pivot([12.067, 14.313, -3

.2675])

relax> frame_order.pivot(pivot=[12.067, 14

.313, -3.2675])

To change an already set and fixed pivot point so that it
can now be optimised, type:

relax> frame_order.pivot(fix=False)

17.2. THE LIST OF FUNCTIONS 481

Table 17.7: The motional eigenframe axis permutations for the frame order models.

Condition Permutation name Cone angles Axes

x < y < z Self [x, y, z] [x, y, z]
A [x, z, y] [-z, y, x]
B [y, z, x] [z, x, y]

x < z < y Self [x, y, z] [x, y, z]
A [x, z, y] [-z, y, x]
B [z, y, x] [x, -z, y]

z < x < y Self [x, y, z] [x, y, z]
A [z, x, y] [y, z, x]
B [z, y, x] [x, -z, y]

17.2.50 frame order.quad int

Synopsis

Turn the high precision quadratic integration on or off.

Defaults

frame order.quad int(flag=True)

Keyword arguments

flag: The flag with if True will perform high preci-
sion numerical integration via the scipy.integrate quad(),
dblquad() and tplquad() integration methods rather than
the rough quasi-random numerical integration.

Description

This allows the high precision numerical integration of
the Scipy quad() and related functions to be used instead
of the lower precision quasi-random Sobol’ sequence inte-
gration. This is for the optimisation of the Frame Order
target functions. The quadratic integration is orders of
magnitude slower than the Sobol’ sequence integration,
but the precision is much higher.

17.2.51 frame order.ref domain

Synopsis

Set the reference non-moving domain for the 2-domain
frame order theories.

Defaults

frame order.ref domain(ref=None)

Keyword arguments

ref: The non-moving domain which will act as the
frame of reference.

Description

Prior to optimisation of the frame order model, the frame
of reference non-moving domain must be specified. This
is essential for determining which spins will be used in
the analysis, which will be shifted to the average position,
etc.

Prompt examples

To set up the isotropic cone frame order model with
‘centre’ domain being the frame of reference, type:

relax> frame_order.ref_domain(ref='centre')

482 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.52 frame order.select model

Synopsis

Select and set up the Frame Order model.

Defaults

frame order.select model(model=None)

Keyword arguments

model: The name of the preset Frame Order model.

Description

Prior to optimisation, the Frame Order model should
be selected. These models consist of three parameter
categories:

The average domain position. This includes
the parameters ave pos alpha, ave pos beta, and
ave pos gamma. These Euler angles rotate the
tensors from the arbitrary PDB frame of the mov-
ing domain to the average domain position.

The frame order eigenframe. This includes
the parameters eigen alpha, eigen beta, and
eigen gamma. These Euler angles define the ma-
jor modes of motion. The cone central axis is
defined as the z-axis. The pseudo-elliptic cone x
and y-axes are defined as the x and y-axes of the
eigenframe.

The cone parameters. These are defined as
the tilt-torsion angles cone theta x, cone theta y,
and cone sigma max. The cone theta x and
cone theta y parameters define the two cone
opening angles of the pseudo-ellipse. The amount
of domain torsion is defined as the average do-
main position, plus and minus cone sigma max.
The isotropic cones are defined by setting
cone theta x = cone theta y and converting the
single parameter into a 2nd rank order parame-
ter.

The list of available models are:

‘pseudo-ellipse’ – The pseudo-elliptic cone model.
This is the full model consisting of the
parameters ave pos alpha, ave pos beta,
ave pos gamma, eigen alpha, eigen beta,
eigen gamma, cone theta x, cone theta y, and
cone sigma max.

‘pseudo-ellipse, torsionless’ – The pseudo-elliptic
cone with the torsion angle cone sigma max set
to zero.

‘pseudo-ellipse, free rotor’ – The pseudo-elliptic
cone with no torsion angle restriction.

‘iso cone’ – The isotropic cone model. The cone is
defined by a single order parameter s1 which
is related to the single cone opening angle
cone theta x = cone theta y. Due to rotational
symmetry about the cone axis, the average po-
sition α Euler angle ave pos alpha is dropped
from the model. The symmetry also collapses
the eigenframe to a single z-axis defined by the
parameters axis theta and axis phi.

‘iso cone, torsionless’ – The isotropic cone model
with the torsion angle cone sigma max set to
zero.

‘iso cone, free rotor’ – The isotropic cone model
with no torsion angle restriction.

‘rotor’ – The only motion is a rotation about the
cone axis restricted by the torsion angle
cone sigma max.

‘rigid’ – No domain motions.

‘free rotor’ – The only motion is free rotation about
the cone axis.

‘double rotor’ – Restricted motions about two inde-
pendent but orthogonal rotor axes. The first ro-
tation is about the y-axis and the second is about
the x-axis.

Prompt examples

To select the isotropic cone model, type:

relax> frame_order.select_model(model='iso

cone')

17.2. THE LIST OF FUNCTIONS 483

17.2.53 frame order.simulate

Synopsis

Pseudo-Brownian dynamics simulation of the frame order
motions.

Defaults

frame order.simulate(file=‘simulation.pdb.gz’, dir=None,
step size=2.0, snapshot=10, total=1000, model=1,
force=False)

Keyword arguments

file: The PDB file for storing the frame order pseudo-
Brownian dynamics simulation. The compression is de-
termined automatically by the file extensions ‘*.pdb’,
‘*.pdb.gz’, and ‘*.pdb.bz2’.

dir: The directory where the files are to be located.

step size: The rotation will be of a random direction
but with this fixed angle. The value is in degrees.

snapshot: The number of steps in the simulation when
snapshots will be taken.

total: The total number of snapshots to take before
stopping the simulation.

model: Only one model from an analysed ensemble
of structures can be used for the pseudo-Brownian sim-
ulation, as the simulation and corresponding PDB file
consists of one model per simulation.

force: A flag which, if set to True, will overwrite the
any pre-existing file.

Description

To visualise the frame order motions, this user function
performs a type of simulation whereby structures are ran-
domly rotated by a fixed angle within the bounds of the
uniform distribution of the frame order model. This can
be thought of as a pseudo-Brownian dynamics simula-
tion. It is in no way a real molecular or Brownian dy-
namics simulation.

Note that the RDC and PCS data does not contain infor-
mation about all parts of the real distribution of struc-
tures. Therefore the snapshots in this simulation only
represent the components of the distribution present in
the data, as modelled by the frame order models.

The simulation algorithm is as follows. The current state
is initially defined as the identity matrix I. The maximum
opening angle θ or the torsion angle sigma are defined
by the parameter values of the frame order model. The
algorithm for one step of the simulation is:

1 – Generate a random vector in 3D.

2 – Construct a rotation matrix from the random vector
and the fixed rotation angle.

3 – Pre-multiply the current state by the rotation ma-
trix.

4 – Decompose the new state into the torsion-tilt an-
gles.

5 – If θ or sigma are greater than model parameter val-
ues, set them to these maximum values.

6 – Back convert the modified torsion-tilt angles to a
rotation matrix - this is the current state.

7 – Store a snapshot if the correct number of iterations
has been reached. This consists of rotating a new
model about the pivot(s), as defined by the frame
order model.

8 – Terminate the loop if the maximum number of snap-
shots has been reached.

The setting of the steps outside of the distribution to
the maximum parameter values is specifically to allow
for models with parameter values close to zero. Without
this, the simulation would take a huge amount of time to
complete.

As the simulation consists of one model per snapshot, if
an ensemble of structures has been analysed, only one
model from the ensemble can be used for the representa-
tion. This defaults to model number 1, but this can be
changed.

484 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.54 frame order.sobol setup

Synopsis

Set up the quasi-random Sobol’ sequence points for nu-
merical PCS integration.

Defaults

frame order.sobol setup(max num=200, oversample=1)

Keyword arguments

max num: The maximum number of integration points
to use in the Sobol’ sequence during optimisation. This
can be considered as the number of molecular structures
in an ensemble used form a uniform distribution of the
dynamics.

oversample: The generation of the Sobol’ sequence
oversamples as N * Ov * 10**M, where N is the max-
imum number of points, Ov is the oversamling value,
and M is the number of dimensions or torsion-tilt angles
used in the system.

Description

This allows the maximum number of integration points N
used during the frame order target function optimisation
to be specified. This is used in the quasi-random Sobol’
sequence for the numerical integration of the PCS. The
formula used to find the total number of Sobol’ points is:

total_num = N * Ov * 10**M,

where:

N is the maximum number of Sobol’ integration
points,

Ov is the oversampling factor.

M is the number of dimensions or torsion-tilt an-
gles used in the system.

The aim of the oversampling is to try to reach the max-
imum number of points. However if the system is not
very dynamic, the maximum number of points may not
be reached. In this case, simply increase the oversam-
pling factor. The algorithm used for uniformly sampling
the motional space is:

Generate the Sobol’ sequence for the total num-
ber of points.

Convert all points to the torsion-tilt angle system.

Skip all Sobol’ points with angles greater than the
current parameter values.

Terminate the loop over the Sobol’ points once
the maximum number of points has been reached.

17.2. THE LIST OF FUNCTIONS 485

17.2.55 grace.view

Synopsis

Visualise the file within Grace.

Defaults

grace.view(file=None, dir=‘grace’, grace exe=‘xmgrace’)

Keyword arguments

file: The name of the file.

dir: The directory name.

grace exe: The Grace executable file.

Description

This can be used to view the specified Grace ‘*.agr’ file
by opening it with the Grace program.

Prompt examples

To view the file ‘s2.agr’ in the directory ‘grace’, type:

relax> grace.view(file='s2.agr')

relax> grace.view(file='s2.agr', dir='grace'

)

17.2.56 grace.write

Synopsis

Create a grace ‘.agr’ file to visualise the 2D data.

Defaults

grace.write(x data type=‘res num’, y data type=None,
spin id=None, plot data=‘value’, norm type=‘first’, file=
None, dir=‘grace’, force=False, norm=False)

Keyword arguments

x data type: The data type for the X-axis (no regular
expression is allowed).

y data type: The data type for the Y-axis (no regular
expression is allowed).

spin id: The spin ID string.

plot data: The data to use for the plot.

norm type: How the graph should be normalised, if the
norm flag is set.

file: The name of the file.

dir: The directory name.

force: A flag which, if set to True, will cause the file to
be overwritten.

norm: A flag which, if set to True, will cause all graphs
to be normalised to 1. This is for the normalisation of
series type data. The point for normalisation is set with
the norm type argument.

Description

This is designed to be as flexible as possible so that any
combination of data can be plotted. The output is in the
format of a Grace plot (also known as ACE/gr, Xmgr,
and xmgrace) which only supports two dimensional plots.
Three types of information can be used to create various
types of plot. These include the x-axis and y-axis data
types, the spin ID string, and the type of data plot.

The x-axis and y-axis data types should be plain strings,
regular expression is not allowed. The two axes of the
Grace plot can be any of the data types listed in the
tables below. The only limitation is that the data must
belong to the same data pipe.

If the x-axis data type is not given, the plot will default
to having the residue numbering along the x-axis.Two
special data types for the axes are:

486 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

‘res num’ – The axis will consist of the residue number-
ing.

‘spin num’ – The axis will consist of the spin numbering.

The spin ID string can be used to limit which spins are
used in the plot. The default is that all spins will be used,
however, the ID string can be used to select a subset
of all spins, or a single spin for plots of Monte Carlo
simulations, etc.

The property which is actually plotted can be controlled
by the plot data setting. This can be one of the following:

‘value’ – Plot values (with errors if they exist).

‘error’ – Plot errors.

‘sims’ – Plot the simulation values.

Normalisation is only allowed for series type data, for
example the R2 exponential curves, and will be ignored
for all other data types. If the norm flag is set to True
then the y-value of the first point of the series will be set
to 1. This normalisation is useful for highlighting errors
in the data sets.

Relaxation curve fitting parameters

Please see Table 17.8 on page 487.

Steady-state NOE parameters

Please see Table 17.9 on page 487.

Model-free parameters

Please see Table 17.10 on page 487.

Reduced spectral density mapping pa-
rameters

Please see Table 17.11 on page 487.

Consistency testing parameters

Please see Table 17.12 on page 488.

Relaxation dispersion parameters

Please see Table 17.13 on page 488.

Prompt examples

To write the NOE values for all spins to the Grace file
‘noe.agr’, type one of:

relax> grace.write('res_num', 'noe', file='

noe.agr')

relax> grace.write(y_data_type='noe', file='

noe.agr')

relax> grace.write(x_data_type='res_num',

y_data_type='noe', file='noe.agr')

relax> grace.write(y_data_type='noe', file='

noe.agr', force=True)

To create a Grace file of ‘s2’ vs. ‘te’ for all spins, type
one of:

relax> grace.write('s2', 'te', file='

s2_te.agr')

relax> grace.write(x_data_type='s2',

y_data_type='te', file='s2_te.agr')

relax> grace.write(x_data_type='s2',

y_data_type='te', file='s2_te.agr',

force=True)

To create a Grace file of the Monte Carlo simulation val-
ues of ‘rex’ vs. ‘te’ for residue 123, type one of:

relax> grace.write('rex', 'te', spin_id='

:123', plot_data='sims', file='

s2_te.agr')

relax> grace.write(x_data_type='rex',

y_data_type='te', spin_id=':123',

plot_data='sims', file='s2_te.agr')

By plotting the peak intensities, the integrity of expo-
nential relaxation curves can be checked and anomalies
searched for prior to model-free analysis or reduced spec-
tral density mapping. For example the normalised aver-
age peak intensities can be plotted verses the relaxation
time periods for the relaxation curves of all residues of
a protein. The normalisation, whereby the initial peak
intensity of each residue I(0) is set to 1, emphasises any
problems. To produce this Grace file, type:

relax> grace.write(x_data_type='relax_times'

, y_data_type='ave_int', file='

intensities_norm.agr', force=True, norm

=True)

17.2. THE LIST OF FUNCTIONS 487

Table 17.8: Relaxation curve fitting parameters and minimisation statistics.

Name Description

rx Either the R1 or R2 relaxation rate
i0 The initial intensity
iinf The intensity at infinity
chi2 Chi-squared value
iter Optimisation iterations
f count Number of function calls
g count Number of gradient calls
h count Number of Hessian calls
warning Optimisation warning

Table 17.9: Steady-state NOE parameters.

Name Description

noe The steady-state NOE value

Table 17.10: Model-free parameters and minimisation statistics.

Name Description

s2 S2, the model-free generalised order parameter (S2 = S2
f
.S2s)

s2f S2
f
, the faster motion model-free generalised order parameter

s2s S2
s , the slower motion model-free generalised order parameter

local tm The spin specific global correlation time (seconds)
te Single motion effective internal correlation time (seconds)
tf Faster motion effective internal correlation time (seconds)
ts Slower motion effective internal correlation time (seconds)
rex Chemical exchange relaxation (sigma ex = Rex / omega**2)
csa Chemical shift anisotropy (unitless)

Table 17.11: Reduced spectral density mapping parameters.

Name Description

j0 Spectral density value at 0 MHz - J(0)
jwx Spectral density value at the frequency of the heteronucleus - J(ωX)
jwh Spectral density value at the frequency of the proton - J(ωH)
csa Chemical shift anisotropy (unitless)

488 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 17.12: Consistency testing parameters.

Name Description

j0 Spectral density value at 0 MHz (from Farrow et al. (1995) JBNMR, 6: 153-162)
f eta Eta-test (from Fushman et al. (1998) JACS, 120: 10947-10952)
f r2 R2-test (from Fushman et al. (1998) JACS, 120: 10947-10952)
csa Chemical shift anisotropy (unitless)
orientation Angle between the 15N-1H vector and the principal axis of the 15N chemical shift tensor
tc The single global correlation time estimate/approximation

Table 17.13: Relaxation dispersion parameters and minimisation statistics.

Name Description

r2eff The effective transversal relaxation rate
i0 The initial intensity
r1 The longitudinal relaxation rate
r2 The transversal relaxation rate
r2a The transversal relaxation rate for state A in the absence of exchange
r2b The transversal relaxation rate for state B in the absence of exchange
pA The population for state A
pB The population for state B
pC The population for state C
phi ex The φ ex = pA.pB.dw**2 value (ppmˆ2)
phi ex B The fast exchange factor between sites A and B (ppmˆ2)
phi ex C The fast exchange factor between sites A and C (ppmˆ2)
padw2 The pA.dw**2 value (ppmˆ2)
dw The chemical shift difference between states A and B (in ppm)
dw AB The chemical shift difference between states A and B for 3-site exchange (in ppm)
dw AC The chemical shift difference between states A and C for 3-site exchange (in ppm)
dw BC The chemical shift difference between states B and C for 3-site exchange (in ppm)
dwH The proton chemical shift difference between states A and B (in ppm)
dwH AB The proton chemical shift difference between states A and B for 3-site exchange (in ppm)
dwH AC The proton chemical shift difference between states A and C for 3-site exchange (in ppm)
dwH BC The proton chemical shift difference between states B and C for 3-site exchange (in ppm)
kex The exchange rate
kex AB The exchange rate between sites A and B for 3-site exchange with kex AB = k AB + k BA (rad.sˆ-1)
kex AC The exchange rate between sites A and C for 3-site exchange with kex AC = k AC + k CA (rad.sˆ-1)
kex BC The exchange rate between sites B and C for 3-site exchange with kex BC = k BC + k CB (rad.sˆ-1)
kB Approximate chemical exchange rate constant between sites A and B (rad.sˆ-1)
kC Approximate chemical exchange rate constant between sites A and C (rad.sˆ-1)
tex The time of exchange (tex = 1/kex)
k AB The exchange rate from state A to state B
k BA The exchange rate from state B to state A
chi2 Chi-squared value
iter Optimisation iterations
f count Number of function calls
g count Number of gradient calls
h count Number of Hessian calls
warning Optimisation warning

17.2. THE LIST OF FUNCTIONS 489

17.2.57 interatom.copy

Synopsis

Copy all data associated with a interatomic data con-
tainer.

Defaults

interatom.copy(pipe from=None, pipe to=None,
spin id1=None, spin id2=None)

Keyword arguments

pipe from: The data pipe containing the interatomic
data container from which the data will be copied. This
defaults to the current data pipe.

pipe to: The data pipe to copy the interatomic data
container to. This defaults to the current data pipe.

spin id1: The spin ID of the first spin.

spin id2: The spin ID of the first spin.

Description

This will copy all the data associated with the identified
interatomic data container to a different data pipe. The
new interatomic data container must not already exist.

Prompt examples

To copy the interatomic data container between ‘:2@C’
and ‘:2@H’, from the ‘orig’ data pipe to the current data
pipe, type one of:

relax> interatom.copy('orig', spin_id1=':2@C

', spin_id2=':2@H')

relax> interatom.copy(pipe_from='orig',

spin_id1=':2@C', spin_id2=':2@H')

17.2.58 interatom.define

Synopsis

Define interatomic interactions between pairs of spins.

Defaults

interatom.define(spin id1=‘@N’, spin id2=‘@H’,
direct bond=True, spin selection=True, pipe=None)

Keyword arguments

spin id1: The spin ID string for the first spin of the
interatomic interaction.

spin id2: The spin ID string for the second spin of the
interatomic interaction.

direct bond: This is a flag which if True means that
the two spins are directly bonded. This flag is useful to
simplify the set up of the main heteronuclear relaxation
mechanism or one-bond residual dipolar couplings.

spin selection: Define the interatomic data container
selection based on the spin selection. If either spin is
deselected, the interatomic container will also be dese-
lected. Otherwise the container will be selected.

pipe: The data pipe to create the interatomic data
container for. This defaults to the current data pipe if
not supplied.

Description

To analyse relaxation or residual dipolar coupling (RDC)
data, for example, pairs of spins which are coupled need
to be defined. This can be via the magnetic dipole-dipole
interaction or scalar coupling interaction. This function
will create an interatomic data object connecting two ex-
isting spins. This data container will be used to store all
information about the interactomic interaction including
interatomic vectors and distances.

For analyses which use relaxation data, simply defining
the interatomic interaction will indicate that there is a
dipolar relaxation mechanism operating between the two
spins. Note that for model-free analyses or reduced spec-
tral density mapping, only a single relaxation mechanism
can be handled. For RDC dependent analyses, the pres-
ence of the interatomic interaction indicates that dipolar
coupling is expected between the two spins.

If the spin selection flag is set, then the newly created
interatomic data container will be selected based on the

490 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

current selection status of the two spins defining the in-
teraction. If either of the spins are deselected, then the
new interatomic data container will also be deselected.
If both spins are selected, then the interatomic data con-
tainer will also be selected.

Prompt examples

To connect the spins ‘:1@N’ to ‘:1@H’, type one of:

relax> interatom.define(':1@N', ':1@H')

relax> interatom.define(spin_id1=':1@N',

spin_id2=':1@H')

To define the protein 15N heteronuclear relaxation mech-
anism for a model-free analysis, type one of the following:

relax> interatom.define('@N', '@H', True)

relax> interatom.define(spin_id1='@N',

spin_id2='@H', direct_bond=True)

17.2.59 interatom.read dist

Synopsis

Read inter-spin distances from a file.

Defaults

interatom.read dist(file=None, dir=None, unit=‘meter’,
spin id1 col=1, spin id2 col=2, data col=3, sep=None)

Keyword arguments

file: The name of the file containing the averaged dis-
tance data.

dir: The directory where the file is located.

unit: The unit of distance. The default is meter, but
Åcan also be specified.

spin id1 col: The spin ID string column for the first
spin.

spin id2 col: The spin ID string column for the second
spin.

data col: The distance data column.

sep: The column separator (the default is white space).

Description

This allows interatomic distances to be read from a file.
This is useful in the case when the distances vary, avoid-
ing having to tediously use the interatom.set dist user
function for each spin-pair separately. The format of the
file should be columnar, with the two spin ID strings
in two separate columns and the distances in any other.
The default measurement unit is meter but this can be
changed to Å.

For RDC and relaxation based analyses, as the magnetic
dipole-dipole interaction is averaged in NMR over the
interatomic distance to the inverse third power, the in-
teratomic distances within a 3D structural file are of no
use for defining the interaction. Therefore these rˆ-3 av-
erage distances must be explicitly defined.

17.2. THE LIST OF FUNCTIONS 491

Prompt examples

To load the distances in meters from the fifth column of
the ‘distances’ file, and where the spin IDs are in the
first and second columns, type one of the following:

relax> interatom.read_dist('distances', 1,

2, 5)

relax> interatom.read_dist(file='distances',

unit='meter', spin_id1_col=1,

spin_id2_col=2, data_col=5)

17.2.60 interatom.set dist

Synopsis

Set the inter-spin distances.

Defaults

interatom.set dist(spin id1=‘@N’, spin id2=‘@H’,
ave dist=1.0200000000000001e-10, unit=‘meter’)

Keyword arguments

spin id1: The spin identification string for the first spin
of the dipole pair.

spin id2: The spin identification string for the second
spin of the dipole pair.

ave dist: The rˆ-3 averaged distance between the two
spins to be used in the magnetic dipole constant, default-
ing to meters.

unit: The unit of distance (the default is ‘meter’).

Description

For many NMR interactions, the distance between the
spin of interest and another spin or atom must be defined.
This information can be extracted from a 3D structure
but, in many cases, these distances are not of interest.
For example the empirical or fixed distance calculation of
proton positions in X-ray crystallographic structures will
often not correspond to the real interatomic distances.

Another example is the magnetic dipole-dipole interac-
tion which is averaged over the interatomic distance to
the inverse third power. In this case, the interatomic
distances from any 3D structural file can be of no use
for defining the interaction. The average distances must
be explicitly supplied. This user function allows these
distances to be set up. The default measurement unit is
meter but this can be changed to Å. Alternatively the
distances can be read from a file using other user func-
tions in this class.

Prompt examples

To set the N-H distance for protein the 15N heteronu-
clear relaxation mechanism to 1.02 Å, type one of the
following:

relax> interatom.set_dist('@N', '@H', 1.02 *

1e-10)

492 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

relax> interatom.set_dist(spin_id1='@N',

spin_id2='@H', ave_dist=1.02 * 1e-10,

unit='meter')

relax> interatom.set_dist(spin_id1='@N',

spin_id2='@H', ave_dist=1.02, unit='

Angstrom')

17.2.61 interatom.unit vectors

Synopsis

Calculate the unit vectors for all interatomic interactions.

Defaults

interatom.unit vectors(ave=True)

Keyword arguments

ave: A flag which if True will cause the bond vectors
from all models to be averaged. If vectors from only one
model is extracted, this will have no effect.

Description

For an orientational dependent analysis, such as model-
free analysis with the spheroidal and ellipsoidal global
diffusion tensors or any analysis using RDCs, the unit
vectors between the two dipoles must be calculated prior
to starting the analysis. For the unit vector extrac-
tion, the two interacting spins should already possess
positional information and the dipole-dipole interaction
should already be defined via the interatom.define user
function. This information will be used to calculate unit
vectors between the two spins. Without positional infor-
mation from a 3D structure, no vectors can be calculated
and an orientational dependent analysis will not be pos-
sible.

The number of unit vectors per interaction will be defined
by the number of positions each spin possesses together
with the averaging flag. If both spins have N and M
positions loaded, the number of positions for both must
match (N=M). In this case, as well as when one spin has
N positions and the other a single position, then N unit
vectors will be calculated. This is unless the averaging
flag is set in which case an averaged vector of unit length
will be calculated.

Prompt examples

To calculate the unit vectors prior to a model-free anal-
ysis, type one of the following:

relax> interatom.unit_vectors(True)

relax> interatom.unit_vectors(ave=True)

17.2. THE LIST OF FUNCTIONS 493

17.2.62 j coupling.copy

Synopsis

Copy J coupling data from one data pipe to another.

Defaults

j coupling.copy(pipe from=None, pipe to=None)

Keyword arguments

pipe from: The name of the pipe to copy the J coupling
data from.

pipe to: The name of the pipe to copy the J coupling
data to.

Description

This function will copy J coupling data from one pipe to
another.

Prompt examples

To copy all J coupling data from pipe ‘DMSO’ to pipe
‘CDCl3’, type one of:

relax> j_coupling.copy('DMSO', 'CDCl3')

relax> j_coupling.copy(pipe_from='DMSO',

pipe_to='CDCl3')

17.2.63 j coupling.delete

Synopsis

Delete the J coupling values.

Defaults

j coupling.delete()

Description

This will delete all J coupling data in the current data
pipe.

Prompt examples

To delete all J coupling data, type:

relax> j_coupling.delete()

494 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.64 j coupling.display

Synopsis

Display the J coupling data in the current data pipe.

Defaults

j coupling.display()

Description

This will display all of the J coupling data in the current
data pipe.

Prompt examples

To display all J coupling data, type:

relax> j_coupling.display()

17.2.65 j coupling.read

Synopsis

Read the J coupling data from file.

Defaults

j coupling.read(file=None, dir=None, spin id1 col=1,
spin id2 col=2, data col=None, error col=None,
sign col=None, sep=None)

Keyword arguments

file: The name of the file containing the J coupling
data.

dir: The directory where the file is located.

spin id1 col: The spin ID string column for the first
spin.

spin id2 col: The spin ID string column for the second
spin.

data col: The J coupling data column.

error col: The experimental error column.

sign col: A special column holding the sign of the J
coupling, being either 1 or -1, in case this data is obtained
separately.

sep: The column separator (the default is white space).

Description

This will read J coupling data from a file. If the sign
of the J coupling has been determined by a different ex-
periment, this information can be present in a different
column having either the value of 1 or -1.

Prompt examples

The following commands will read the J coupling data
out of the file ‘J.txt’ where the columns are separated
by the symbol ‘,’:

relax> j_coupling.read('J.txt', sep=',')

If the individual spin J coupling errors are located in the
file ‘j err.txt’ in column number 5 then, to read these
values into relax, type one of:

17.2. THE LIST OF FUNCTIONS 495

relax> j_coupling.read('j_err.txt',

error_col=5)

relax> j_coupling.read(file='j_err.txt',

error_col=5)

17.2.66 j coupling.write

Synopsis

Write the J coupling data to file.

Defaults

j coupling.write(file=None, dir=None, force=False)

Keyword arguments

file: The name of the file.

dir: The directory name.

force: A flag which if True will cause the file to be
overwritten.

Description

This will write the J coupling values to file. If no direc-
tory name is given, the file will be placed in the current
working directory.

496 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.67 jw mapping.set frq

Synopsis

Select which relaxation data to use in the J(ω) mapping
by NMR spectrometer frequency.

Defaults

jw mapping.set frq(frq=None)

Keyword arguments

frq: The spectrometer frequency in Hz. This must
match the currently loaded data to the last decimal point.
See the ‘sfrq’ parameter in the Varian procpar file or the
‘SFO1’ parameter in the Bruker acqus file.

Description

This will select the relaxation data to use in the reduced
spectral density mapping corresponding to the given fre-
quency. The data is selected by the spectrometer fre-
quency in Hertz, which should be set to the exact value
(see the ‘sfrq’ parameter in the Varian procpar file or the
‘SFO1’ parameter in the Bruker acqus file). Note thought
that the R1, R2 and NOE are all expected to have the
exact same frequency in the J(ω) mapping analysis (to
the last decimal point).

Prompt examples

relax> jw_mapping.set_frq(600.0 * 1e6)

relax> jw_mapping.set_frq(frq=600.0 * 1e6)

17.2.68 minimise.calculate

Synopsis

Calculate the model parameters or the current target
function value.

Defaults

minimise.calculate(verbosity=1)

Keyword arguments

verbosity: The amount of information to print to
screen. Zero corresponds to minimal output while higher
values increase the amount of output. The default value
is 1.

Description

The operation of this user function is two-fold and de-
pends on whether the solution for the models of the cur-
rent analysis are found by direct calculation or by opti-
misation. The dual operations are:

Direct calculation models – For these models, the
parameters will be directly calculated from the
base data. This will be the exact solution and
the user function will store the parameter values.
The grid search and optimisation user functions
are not implemented for this analysis type.

Optimised models – This will call the target function
normally used for optimisation for each model us-
ing the current parameter values. This can be
used to manually find the chi-squared value for
different parameter values. The parameter values
will not be affected.

17.2. THE LIST OF FUNCTIONS 497

17.2.69 minimise.execute

Synopsis

Perform an optimisation.

Defaults

minimise.execute(min algor=‘newton’, line search=None,
hessian mod=None, hessian type=None, func tol=1e-25,
grad tol=None, max iter=10000000, constraints=True,
scaling=True, verbosity=1)

Keyword arguments

min algor: The optimisation algorithm to use.

line search: The line search algorithm which will only
be used in combination with the line search and conju-
gate gradient methods. This will default to the More and
Thuente line search.

hessian mod: The Hessian modification. This will only
be used in the algorithms which use the Hessian, and
defaults to Gill, Murray, and Wright modified Cholesky
algorithm.

hessian type: The Hessian type. This will only be used
in a few trust region algorithms, and defaults to BFGS.

func tol: The function tolerance. This is used to ter-
minate minimisation once the function value between it-
erations is less than the tolerance. The default value is
1e-25.

grad tol: The gradient tolerance. Minimisation is ter-
minated if the current gradient value is less than the
tolerance. The default value is None.

max iter: The maximum number of iterations. The
default value is 1e7.

constraints: A boolean flag specifying whether the pa-
rameters should be constrained. The default is to turn
constraints on (constraints=True).

scaling: The diagonal scaling boolean flag. The default
that scaling is on (scaling=True).

verbosity: The amount of information to print to
screen. Zero corresponds to minimal output while higher
values increase the amount of output. The default value
is 1.

Description

This will perform an optimisation starting from the cur-
rent parameter values. This is only suitable for data pipe
types which have target functions and hence support op-
timisation.

Diagonal scaling

Diagonal scaling is the transformation of parameter val-
ues such that each value has a similar order of magnitude.
Certain minimisation techniques, for example the trust
region methods, perform extremely poorly with badly
scaled problems. In addition, methods which are insen-
sitive to scaling such as Newton minimisation may still
benefit due to the minimisation of round off errors.

In Model-free analysis for example, if S2 = 0.5, τe =
200 ps, and Rex = 15 1/s at 600 MHz, the unscaled pa-
rameter vector would be [0.5, 2.0e-10, 1.055e-18]. Rex

is divided by (2 * π * 600,000,000)**2 to make it field
strength independent. The scaling vector for this model
may be something like [1.0, 1e-9, 1/(2 * π * 6e8)**2].
By dividing the unscaled parameter vector by the scal-
ing vector the scaled parameter vector is [0.5, 0.2, 15.0].
To revert to the original unscaled parameter vector, the
scaled parameter vector and scaling vector are multiplied.

Minimisation algorithms

A minimisation function is selected if the minimisation
algorithm matches a certain pattern. Because the python
regular expression ‘match’ statement is used, various
strings can be supplied to select the same minimisation
algorithm. Below is a list of the minimisation algorithms
available together with the corresponding patterns.

This is a short description of python regular expression,
for more information, see the regular expression syntax
section of the Python Library Reference. Some of the
regular expression syntax used in this function is:

‘[]’ – A sequence or set of characters to match to a
single character. For example, ‘[Nn]ewton’ will
match both ‘Newton’ and ‘newton’.

‘^’ – Match the start of the string.

‘$’ – Match the end of the string. For example,
‘^[Ll][Mm]$’ will match ‘lm’ and ‘LM’ but will not
match if characters are placed either before or af-
ter these strings.

To select a minimisation algorithm, use a string which
matches one of the following patterns given in the tables.

Unconstrained line search methods:

Please see Table 17.14 on page 498.

Unconstrained trust-region methods:

Please see Table 17.15 on page 498.

498 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 17.14: Minimisation algorithms – unconstrained line search methods.

Minimisation algorithm Patterns

Back-and-forth coordinate descent ’ˆ[Cc][Dd]$’ or ’ˆ[Cc]oordinate[-][Dd]escent$’
Steepest descent ’ˆ[Ss][Dd]$’ or ’ˆ[Ss]teepest[-][Dd]escent$’
Quasi-Newton BFGS ’ˆ[Bb][Ff][Gg][Ss]$’
Newton ’ˆ[Nn]ewton$’
Newton-CG ’ˆ[Nn]ewton[-][Cc][Gg]$’ or ’ˆ[Nn][Cc][Gg]$’

Table 17.15: Minimisation algorithms – unconstrained trust-region methods.

Minimisation algorithm Patterns

Cauchy point ’ˆ[Cc]auchy’
Dogleg ’ˆ[Dd]ogleg’
CG-Steihaug ’ˆ[Cc][Gg][-][Ss]teihaug’ or ’ˆ[Ss]teihaug’
Exact trust region ’ˆ[Ee]xact’

Unconstrained conjugate gradient methods:

Please see Table 17.16 on page 499.

Miscellaneous unconstrained methods:

Please see Table 17.17 on page 499.

Global minimisation methods:

Please see Table 17.18 on page 499.

Minimisation options

The minimisation options can be given in any order.

Line search algorithms. These are used in the line search
methods and the conjugate gradient methods. The de-
fault is the Backtracking line search. The algorithms are:

Please see Table 17.19 on page 499.

Hessian modifications. These are used in the Newton,
Dogleg, and Exact trust region algorithms:

Please see Table 17.20 on page 499.

Hessian type, these are used in a few of the trust region
methods including the Dogleg and Exact trust region al-
gorithms. In these cases, when the Hessian type is set
to Newton, a Hessian modification can also be supplied
as above. The default Hessian type is Newton, and the
default Hessian modification when Newton is selected is
the GMW algorithm:

Please see Table 17.21 on page 499.

For Newton minimisation, the default line search algo-
rithm is the More and Thuente line search, while the
default Hessian modification is the GMW algorithm.

Prompt examples

To apply Newton minimisation together with the
GMW81 Hessian modification algorithm, the More and
Thuente line search algorithm, a function tolerance of
1e-25, no gradient tolerance, a maximum of 10,000,000
iterations, constraints turned on to limit parameter val-
ues, and have normal printout, type any combination of:

relax> minimise.execute('newton')

relax> minimise.execute('Newton')

relax> minimise.execute('newton', 'gmw')

relax> minimise.execute('newton', 'mt')

relax> minimise.execute('newton', 'gmw', 'mt

')

relax> minimise.execute('newton', 'mt', 'gmw

')

relax> minimise.execute('newton', func_tol=1

e-25)

relax> minimise.execute('newton', func_tol=1

e-25, grad_tol=None)

relax> minimise.execute('newton', max_iter=1

e7)

relax> minimise.execute('newton',

constraints=True, max_iter=1e7)

relax> minimise.execute('newton', verbosity

=1)

17.2. THE LIST OF FUNCTIONS 499

Table 17.16: Minimisation algorithms – unconstrained conjugate gradient methods.

Minimisation algorithm Patterns

Fletcher-Reeves ’ˆ[Ff][Rr]$’ or ’ˆ[Ff]letcher[-][Rr]eeves$’
Polak-Ribiere ’ˆ[Pp][Rr]$’ or ’ˆ[Pp]olak[-][Rr]ibiere$’
Polak-Ribière + ’ˆ[Pp][Rr]\+$’ or ’ˆ[Pp]olak[-][Rr]ibiere\+$’
Hestenes-Stiefel ’ˆ[Hh][Ss]$’ or ’ˆ[Hh]estenes[-][Ss]tiefel$’

Table 17.17: Minimisation algorithms – miscellaneous unconstrained methods.

Minimisation algorithm Patterns

Simplex ’ˆ[Ss]implex$’
Levenberg-Marquardt ’ˆ[Ll][Mm]$’ or ’ˆ[Ll]evenburg-[Mm]arquardt$’

Table 17.18: Minimisation algorithms – global minimisation methods.

Minimisation algorithm Patterns

Simulated Annealing ’ˆ[Ss][Aa]$’ or ’ˆ[Ss]imulated [Aa]nnealing$’

Table 17.19: Minimisation sub-algorithms – line search algorithms.

Line search algorithm Patterns

Backtracking line search ’ˆ[Bb]ack’
Nocedal and Wright interpolation based line search ’ˆ[Nn][Ww][Ii]’ or ’ˆ[Nn]ocedal[][Ww]right[][Ii]nt’
Nocedal and Wright line search for the Wolfe conditions ’ˆ[Nn][Ww][Ww]’ or ’ˆ[Nn]ocedal[][Ww]right[][Ww]olfe’
More and Thuente line search ’ˆ[Mm][Tt]’ or ’ˆ[Mm]ore[][Tt]huente$’
No line search ’ˆ[Nn]o [Ll]ine [Ss]earch$’

Table 17.20: Minimisation sub-algorithms – Hessian modifications.

Hessian modification Patterns

Unmodified Hessian ’ˆ[Nn]o [Hh]essian [Mm]od’
Eigenvalue modification ’ˆ[Ee]igen’
Cholesky with added multiple of the identity ’ˆ[Cc]hol’
The Gill, Murray, and Wright modified Cholesky algorithm ’ˆ[Gg][Mm][Ww]$’
The Schnabel and Eskow 1999 algorithm ’ˆ[Ss][Ee]99’

Table 17.21: Minimisation sub-algorithms – Hessian type.

Hessian type Patterns

Quasi-Newton BFGS ’ˆ[Bb][Ff][Gg][Ss]$’
Newton ’ˆ[Nn]ewton$’

500 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

To use constrained Simplex minimisation with a maxi-
mum of 5000 iterations, type:

relax> minimise.execute('simplex',

constraints=True, max_iter=5000)

17.2.70 minimise.grid search

Synopsis

Perform a grid search to find an initial non-biased pa-
rameter set for optimisation.

Defaults

minimise.grid search(lower=None, upper=None, inc=21,
verbosity=1, constraints=True, skip preset=True)

Keyword arguments

lower: An array of the lower bound parameter values
for the grid search. The length of the array should be
equal to the number of parameters in the model.

upper: An array of the upper bound parameter values
for the grid search. The length of the array should be
equal to the number of parameters in the model.

inc: The number of increments to search over. If a sin-
gle integer is given then the number of increments will be
equal in all dimensions. Different numbers of increments
in each direction can be set if ‘inc’ is set to an array of
integers of length equal to the number of parameters.

verbosity: The amount of information to print to
screen. Zero corresponds to minimal output while higher
values increase the amount of output. The default value
is 1.

constraints: A boolean flag specifying whether the pa-
rameters should be constrained. The default is to turn
constraints on (constraints=True).

skip preset: This argument, when True, allows any pa-
rameter which already has a value set to be skipped in
the grid search. This value will be overridden and turned
off when a zooming grid search is active.

Description

The optimisation of a mathematical model normally con-
sists of two parts - a coarse grid search across the pa-
rameter space to find an initial set of parameter values
followed by the use of a high precision optimisation al-
gorithm to exactly find the local or global solution. The
grid search is an essential tool as it allows a non-biased
initial optimisation position to be found. It avoids the
statistical bias and preconditioning introduced by using
a self chosen initial parameter set. The high computa-
tional cost of the grid search is almost always favourable
to the statistical bias of a user defined starting position.

17.2. THE LIST OF FUNCTIONS 501

The region of the parameter space that the grid search
covers is defined by the lower and upper grid bounds.
These will generally default to the entire parameter space
except for when the parameter is non-bounded, for exam-
ple a 3D position in the PDB space. This user function
will print out the grid bounds used and, if the default
bounds are deemed to be insufficient, then the lower, up-
per or both bounds can supplied. This only works if all
active models have the same parameters. The coarseness
or fineness of the grid is defined by the number of in-
crements to search across between the bounds. For an
alternative to using large numbers of increments, see the
zooming grid search.

It is possible to decrease the dimensionality of the grid
search, and hence drop the computational cost by orders
of magnitude, if certain parameter values are know a pri-
ori. For example if the values are determined via a dif-
ferent experiment. Such parameters can be set with the
value setting user function. Then, when the skip preset
flag is set, these parameters will be skipped in the grid
search. This feature should not be abused and statistical
bias should be avoided at all cost.

The parameter skipping logic is as follows. Firstly setting
the increments argument to a list with None elements
causes the corresponding parameters to be skipped in the
grid search, or an error to be raised if no preset parameter
is present. This overrides all other settings. Secondly the
preset skipping flag only allows parameters to be skipped
if the zooming grid search is non-active and a value is
preset.

17.2.71 minimise.grid zoom

Synopsis

Activate the zooming grid search by setting the zoom
level.

Defaults

minimise.grid zoom(level=0)

Keyword arguments

level: The zooming grid search level. This can be any
number, positive or negative.

Description

The optimisation of a mathematical model normally con-
sists of two parts - a coarse grid search to find an initial
set of parameter values followed by the use of a high pre-
cision optimisation algorithm to exactly find the local or
global solution. But in certain situations, for example
where a parallelised grid search is advantageous, a finer
grid may be desired. The zooming grid search provides a
more efficient alternative to simply increasing the number
of increments used in the initial grid search. Note that
in most situations, standard optimisation algorithms will
be by far computationally less expensive.

The zooming grid search can be activated via this user
function. After setting the desired zoom level, the origi-
nal grid search user function should be called again. The
zoom level is used to decrease the total area of the grid
search. The grid width for each dimension of the param-
eter space will be divided by 2**zoom level. So a level of
1 will halve all dimensions, a level of 2 will quarter the
widths, a level of 3 will be an eighth of the widths, etc.

The zooming algorithm proceeds as follows. The new
zoomed grid will be centred at the current parameter
values. However if the new grid is outside of the bounds
of the original grid, the entire grid will be translated so
that it lies entirely within the original bounds. This is
to avoid grid points lying within undefined regions of the
space. An exception is when the zoom factor is negative,
hence the new grid will be larger than the original.

An example of using the zooming grid search is to first
perform a standard initial grid search, then set the zoom
level to 1 and perform a second grid search. Continue
for zoom levels 2, 3, etc. until the desired fineness is ob-
tained. Note that convergence is not guaranteed - as the
zoom level is increased to infinity, the parameter values
do not necessarily converge to the local minimum. There-
fore performing standard optimisation is recommended
after completing a zooming grid search.

502 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.72 model free.create model

Synopsis

Create a model-free model.

Defaults

model free.create model(model=None, equation=None,
params=None, spin id=None)

Keyword arguments

model: The new name of the model-free model.

equation: The model-free equation.

params: The array of parameter names of the model.

spin id: The spin identification string.

Description

This user function should almost never be used. It is pro-
vided for academic reasons for the study of old analyses
and published results. If you are looking for a normal
model-free model, use the model free.select model user
function instead.

Model-free equation

The model-free equation can be one of the following:

‘mf orig’ selects the original model-free equations
with parameters {S2, τe}.

‘mf ext’ selects the extended model-free equations
with parameters {S2

f
, τf , S

2, τs}.

‘mf ext2’ selects the extended model-free equa-
tions with parameters {S2

f
, τf , S

2
s , τs}.

Model-free parameters

The following parameters are accepted for the original
model-free equation:

‘s2’ – The square of the generalised order parameter.

‘te’ – The effective correlation time.

The following parameters are accepted for the extended
model-free equation:

‘s2f’ – The square of the generalised order parameter
of the faster motion.

‘tf’ – The effective correlation time of the faster mo-
tion.

‘s2’ – The square of the generalised order parameter S2

= S2
f
* S2

s .

‘ts’ – The effective correlation time of the slower mo-
tion.

The following parameters are accepted for the extended
2 model-free equation:

‘s2f’ – The square of the generalised order parameter
of the faster motion.

‘tf’ – The effective correlation time of the faster mo-
tion.

‘s2s’ – The square of the generalised order parameter
of the slower motion.

‘ts’ – The effective correlation time of the slower mo-
tion.

The following parameters are accepted for all equations:

‘rex’ – The chemical exchange relaxation.

‘r’ – The average bond length <r>.

‘csa’ – The chemical shift anisotropy.

Spin identification string

If ‘spin id’ is supplied then the model will only be cre-
ated for the corresponding spins. Otherwise the model
will be created for all spins.

Prompt examples

The following commands will create the model-free model
‘m1’ which is based on the original model-free equation
and contains the single parameter ‘s2’.

relax> model_free.create_model('m1', '

mf_orig', ['s2'])

relax> model_free.create_model(model='m1',

params=['s2'], equation='mf_orig')

17.2. THE LIST OF FUNCTIONS 503

The following commands will create the model-free model
‘large model’ which is based on the extended model-free
equation and contains the seven parameters ‘s2f’, ‘tf’,
‘s2’, ‘ts’, ‘rex’, ‘csa’, ‘r’.

relax> model_free.create_model('large_model'

, 'mf_ext', ['s2f', 'tf', 's2', 'ts', '

rex', 'csa', 'r'])

relax> model_free.create_model(model='

large_model', params=['s2f', 'tf', 's2'

, 'ts', 'rex', 'csa', 'r'], equation='

mf_ext')

17.2.73 model free.delete

Synopsis

Delete all model-free data from the current data pipe.

Defaults

model free.delete()

Description

This will delete all of the model-free data - parameters,
model, etc. - from the current data pipe.

Prompt examples

To delete all model-free data, type:

relax> model_free.delete()

504 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.74 model free.remove tm

Synopsis

Remove the local τm parameter from a model.

Defaults

model free.remove tm(spin id=None)

Keyword arguments

spin id: The spin identification string.

Description

This function will remove the local τm parameter from
the model-free parameter set. If there is no local τm
parameter within the set nothing will happen.

If no spin identification string is given, then the function
will apply to all spins.

Prompt examples

The following command will remove the parameter ‘tm’:

relax> model_free.remove_tm()

17.2.75 model free.select model

Synopsis

Select a preset model-free model.

Defaults

model free.select model(model=None, spin id=None)

Keyword arguments

model: The name of the preset model.

spin id: The spin identification string.

Description

This allows a standard model-free model to be selected
from a long list of models.

The preset models

The standard preset model-free models are

‘m0’ – {},

‘m1’ – {S2},

‘m2’ – {S2, τe},

‘m3’ – {S2, Rex},

‘m4’ – {S2, τe, Rex},

‘m5’ – {S2
f
, S2, τs},

‘m6’ – {S2
f
, τf , S

2, τs},

‘m7’ – {S2
f
, S2, τs, Rex},

‘m8’ – {S2
f
, τf , S

2, τs, Rex},

‘m9’ – {Rex}.

The preset model-free models with optimisation of the
CSA value are

‘m10’ – {CSA},

17.2. THE LIST OF FUNCTIONS 505

‘m11’ – {CSA, S2},

‘m12’ – {CSA, S2, τe},

‘m13’ – {CSA, S2, Rex},

‘m14’ – {CSA, S2, τe, Rex},

‘m15’ – {CSA, S2
f
, S2, τs},

‘m16’ – {CSA, S2
f
, τf , S

2, τs},

‘m17’ – {CSA, S2
f
, S2, τs, Rex},

‘m18’ – {CSA, S2
f
, τf , S

2, τs, Rex},

‘m19’ – {CSA, Rex}.

The preset model-free models with optimisation of the
bond length are

‘m20’ – {r},

‘m21’ – {r, S2},

‘m22’ – {r, S2, τe},

‘m23’ – {r, S2, Rex},

‘m24’ – {r, S2, τe, Rex},

‘m25’ – {r, S2
f
, S2, τs},

‘m26’ – {r, S2
f
, τf , S

2, τs},

‘m27’ – {r, S2
f
, S2, τs, Rex},

‘m28’ – {r, S2
f
, τf , S

2, τs, Rex},

‘m29’ – {r, CSA, Rex}.

The preset model-free models with both optimisation of
the bond length and CSA are

‘m30’ – {r, CSA},

‘m31’ – {r, CSA, S2},

‘m32’ – {r, CSA, S2, τe},

‘m33’ – {r, CSA, S2, Rex},

‘m34’ – {r, CSA, S2, τe, Rex},

‘m35’ – {r, CSA, S2
f
, S2, τs},

‘m36’ – {r, CSA, S2
f
, τf , S

2, τs},

‘m37’ – {r, CSA, S2
f
, S2, τs, Rex},

‘m38’ – {r, CSA, S2
f
, τf , S

2, τs, Rex},

‘m39’ – {r, CSA, Rex}.

Warning: The models in the thirties range fail when us-
ing standard R1, R2, and NOE relaxation data. This
is due to the extreme flexibly of these models where a
change in the parameter ‘r’ is compensated by a corre-
sponding change in the parameter ‘csa’ and vice versa.

The preset local tm models

Additional preset model-free models, which are simply
extensions of the above models with the addition of a
local τm parameter are:

‘tm0’ – {tm},

‘tm1’ – {τm, S2},

‘tm2’ – {τm, S2, τe},

‘tm3’ – {τm, S2, Rex},

‘tm4’ – {τm, S2, τe, Rex},

‘tm5’ – {τm, S2
f
, S2, τs},

‘tm6’ – {τm, S2
f
, τf , S

2, τs},

‘tm7’ – {τm, S2
f
, S2, τs, Rex},

‘tm8’ – {τm, S2
f
, τf , S

2, τs, Rex},

‘tm9’ – {τm, Rex}.

The preset model-free models with optimisation of the
CSA value are

‘tm10’ – {τm, CSA},

‘tm11’ – {τm, CSA, S2},

‘tm12’ – {τm, CSA, S2, τe},

‘tm13’ – {τm, CSA, S2, Rex},

‘tm14’ – {τm, CSA, S2, τe, Rex},

‘tm15’ – {τm, CSA, S2
f
, S2, τs},

‘tm16’ – {τm, CSA, S2
f
, τf , S

2, τs},

‘tm17’ – {τm, CSA, S2
f
, S2, τs, Rex},

‘tm18’ – {τm, CSA, S2
f
, τf , S

2, τs, Rex},

‘tm19’ – {τm, CSA, Rex}.

The preset model-free models with optimisation of the
bond length are

‘tm20’ – {τm, r},

‘tm21’ – {τm, r, S2},

‘tm22’ – {τm, r, S2, τe},

‘tm23’ – {τm, r, S2, Rex},

‘tm24’ – {τm, r, S2, τe, Rex},

‘tm25’ – {τm, r, S2
f
, S2, τs},

506 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

‘tm26’ – {τm, r, S2
f
, τf , S

2, τs},

‘tm27’ – {τm, r, S2
f
, S2, τs, Rex},

‘tm28’ – {τm, r, S2
f
, τf , S

2, τs, Rex},

‘tm29’ – {τm, r, CSA, Rex}.

The preset model-free models with both optimisation of
the bond length and CSA are

‘tm30’ – {τm, r, CSA},

‘tm31’ – {τm, r, CSA, S2},

‘tm32’ – {τm, r, CSA, S2, τe},

‘tm33’ – {τm, r, CSA, S2, Rex},

‘tm34’ – {τm, r, CSA, S2, τe, Rex},

‘tm35’ – {τm, r, CSA, S2
f
, S2, τs},

‘tm36’ – {τm, r, CSA, S2
f
, τf , S

2, τs},

‘tm37’ – {τm, r, CSA, S2
f
, S2, τs, Rex},

‘tm38’ – {τm, r, CSA, S2
f
, τf , S

2, τs, Rex},

‘tm39’ – {τm, r, CSA, Rex}.

Spin identification string

If ‘spin id’ is supplied then the model will only be se-
lected for the corresponding spins. Otherwise the model
will be selected for all spins.

Prompt examples

To pick model ‘m1’ for all selected spins, type:

relax> model_free.select_model('m1')

relax> model_free.select_model(model='m1')

17.2.76 model selection

Synopsis

Select the best model from a set of optimised models.

Defaults

model selection(method=‘AIC’, modsel pipe=None,
bundle=None, pipes=None)

Keyword arguments

method: The model selection technique (see below).

modsel pipe: The name of the new data pipe which
will be created by this user function by the copying of
the selected data pipe.

bundle: The optional pipe bundle is a special grouping
or clustering of data pipes. If this is specified, the newly
created data pipe will be added to this bundle.

pipes: An array containing the names of all data pipes
to include in model selection.

Description

The following model selection methods are supported:

AIC – Akaike’s Information Criteria.

AICc – Small sample size corrected AIC.

BIC – Bayesian or Schwarz Information Criteria.

Bootstrap – Bootstrap model selection.

CV – Single-item-out cross-validation.

Expect – The expected overall discrepancy (the true
values of the parameters are required).

Farrow – Old model-free method by Farrow et al.,
1994.

Palmer – Old model-free method by Mandel et al.,
1995.

Overall – The realised overall discrepancy (the true
values of the parameters are required).

For the methods ‘Bootstrap’, ‘Expect’, and ‘Overall’,
the Monte Carlo simulations should have previously been
executed with the monte carlo.create data method set to
Bootstrapping to modify its behaviour.

If the data pipes have not been specified, then all data
pipes will be used for model selection.

17.2. THE LIST OF FUNCTIONS 507

Prompt examples

For model-free analysis, if the preset models 1 to 5 are
minimised and loaded into the program, the following
commands will carry out AIC model selection and to
place the selected results into the ‘mixed’ data pipe, type
one of:

relax> model_selection('AIC', 'mixed')

relax> model_selection(method='AIC',

modsel_pipe='mixed')

relax> model_selection('AIC', 'mixed', ['m1'

, 'm2', 'm3', 'm4', 'm5'])

relax> model_selection(method='AIC',

modsel_pipe='mixed', pipes=['m1', 'm2',

'm3', 'm4', 'm5'])

17.2.77 molecule.copy

Synopsis

Copy all data associated with a molecule.

Defaults

molecule.copy(pipe from=None, mol from=None,
pipe to=None, mol to=None)

Keyword arguments

pipe from: The data pipe containing the molecule from
which the data will be copied. This defaults to the cur-
rent data pipe.

mol from: The name of the molecule from which to
copy data from.

pipe to: The data pipe to copy the data to. This de-
faults to the current data pipe.

mol to: The name of the new molecule. If left blank,
the new molecule will have the same name as the old.
This needs to be a molecule ID string, starting with ‘#’.

Description

This will copy all the data associated with a molecule
to a second molecule. This includes all residue and spin
system information. The new molecule name must be
unique in the destination data pipe.

Spin ID string documentation

The identification string is composed of three com-
ponents: the molecule ID token beginning with the
‘#’ character, the residue ID token beginning with
the ‘:’ character, and the atom or spin system ID
token beginning with the ‘@’ character. Each token
can be composed of multiple elements - one per spin
- separated by the ‘,’ character and each individual
element can either be a number (which must be an
integer, in string format), a name, or a range of
numbers separated by the ‘-’ character. Negative
numbers are supported. The full ID string specification
is ‘#<mol name> :<res id>[, <res id>[, <res id>,

...]] @<atom id>[, <atom id>[, <atom id>, ...]]’,
where the token elements are ‘<mol name>’, the name of
the molecule, ‘<res id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

508 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match the
string. If only the molecule ID component is specified,
then all spins of the molecule will match.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

Prompt examples

To copy the molecule data from the molecule ‘GST’ to the
new molecule ‘wt-GST’, type:

relax> molecule.copy('#GST', '#wt-GST')

relax> molecule.copy(mol_from='#GST', mol_to

='#wt-GST')

To copy the molecule data of the molecule ‘Ap4Aase’ from
the data pipe ‘m1’ to ‘m2’, assuming the current data pipe
is ‘m1’, type:

relax> molecule.copy(mol_from='#ApAase',

pipe_to='m2')

relax> molecule.copy(pipe_from='m1',

mol_from='#ApAase', pipe_to='m2',

mol_to='#ApAase')

17.2.78 molecule.create

Synopsis

Create a new molecule.

Defaults

molecule.create(mol name=None, mol type=None)

Keyword arguments

mol name: The name of the new molecule.

mol type: The type of molecule.

Description

This adds a new molecule data container to the relax data
storage object. The same molecule name cannot be used
more than once. The molecule type need not be specified.
However, if given, it should be one of ‘protein’, ‘DNA’,
‘RNA’, ‘organic molecule’, or ‘inorganic molecule’.

Prompt examples

To create the molecules ‘Ap4Aase’, ‘ATP’, and ‘MgF4’, type:

relax> molecule.create('Ap4Aase')

relax> molecule.create('ATP')

relax> molecule.create('MgF4')

17.2. THE LIST OF FUNCTIONS 509

17.2.79 molecule.delete

Synopsis

Deleting molecules from the relax data store.

Defaults

molecule.delete(mol id=None)

Keyword arguments

mol id: The molecule ID string.

Description

This can be used to delete a single or sets of molecules
from the relax data store. The molecule will be deleted
from the current data pipe.

Spin ID string documentation

The identification string is composed of three com-
ponents: the molecule ID token beginning with the
‘#’ character, the residue ID token beginning with
the ‘:’ character, and the atom or spin system ID
token beginning with the ‘@’ character. Each token
can be composed of multiple elements - one per spin
- separated by the ‘,’ character and each individual
element can either be a number (which must be an
integer, in string format), a name, or a range of
numbers separated by the ‘-’ character. Negative
numbers are supported. The full ID string specification
is ‘#<mol name> :<res id>[, <res id>[, <res id>,

...]] @<atom id>[, <atom id>[, <atom id>, ...]]’,
where the token elements are ‘<mol name>’, the name of
the molecule, ‘<res id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match the
string. If only the molecule ID component is specified,
then all spins of the molecule will match.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

17.2.80 molecule.display

Synopsis

Display the molecule information.

Defaults

molecule.display(mol id=None)

Keyword arguments

mol id: The molecule ID string.

Spin ID string documentation

The identification string is composed of three com-
ponents: the molecule ID token beginning with the
‘#’ character, the residue ID token beginning with
the ‘:’ character, and the atom or spin system ID
token beginning with the ‘@’ character. Each token
can be composed of multiple elements - one per spin
- separated by the ‘,’ character and each individual
element can either be a number (which must be an
integer, in string format), a name, or a range of
numbers separated by the ‘-’ character. Negative
numbers are supported. The full ID string specification
is ‘#<mol name> :<res id>[, <res id>[, <res id>,

...]] @<atom id>[, <atom id>[, <atom id>, ...]]’,
where the token elements are ‘<mol name>’, the name of
the molecule, ‘<res id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match the
string. If only the molecule ID component is specified,
then all spins of the molecule will match.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

510 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.81 molecule.name

Synopsis

Name a molecule.

Defaults

molecule.name(mol id=None, name=None, force=False)

Keyword arguments

mol id: The molecule ID string corresponding to one
or more molecules.

name: The new molecule name.

force: A flag which if True will cause the molecule to
be renamed.

Description

This simply allows molecules to be named (or renamed).

Prompt examples

To rename the molecule ‘Ap4Aase’ to ‘Inhib Ap4Aase’,
type one of:

relax> molecule.name('#Ap4Aase', 'Inhib

Ap4Aase', True)

relax> molecule.name(mol_id='#Ap4Aase', name

='Inhib Ap4Aase', force=True)

This assumes the molecule ‘Ap4Aase’ already exists.

Spin ID string documentation

The identification string is composed of three com-
ponents: the molecule ID token beginning with the
‘#’ character, the residue ID token beginning with
the ‘:’ character, and the atom or spin system ID
token beginning with the ‘@’ character. Each token
can be composed of multiple elements - one per spin
- separated by the ‘,’ character and each individual
element can either be a number (which must be an
integer, in string format), a name, or a range of
numbers separated by the ‘-’ character. Negative
numbers are supported. The full ID string specification
is ‘#<mol name> :<res id>[, <res id>[, <res id>,

...]] @<atom id>[, <atom id>[, <atom id>, ...]]’,
where the token elements are ‘<mol name>’, the name of
the molecule, ‘<res id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match the
string. If only the molecule ID component is specified,
then all spins of the molecule will match.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

17.2. THE LIST OF FUNCTIONS 511

17.2.82 molecule.type

Synopsis

Set the molecule type.

Defaults

molecule.type(mol id=None, type=None, force=False)

Keyword arguments

mol id: The molecule ID string corresponding to one
or more molecules.

type: The molecule type.

force: A flag which if True will cause the molecule to
type to be overwritten.

Description

This allows the type of the molecule to be specified. It
can be one of:

‘protein’,

‘DNA’,

‘RNA’,

‘organic molecule’,

‘inorganic molecule’.

Prompt examples

To set the molecule ‘Ap4Aase’ to the ‘protein’ type, type
one of:

relax> molecule.type('#Ap4Aase', 'protein',

True)

relax> molecule.type(mol_id='#Ap4Aase', type

='protein', force=True)

Spin ID string documentation

The identification string is composed of three com-
ponents: the molecule ID token beginning with the
‘#’ character, the residue ID token beginning with
the ‘:’ character, and the atom or spin system ID
token beginning with the ‘@’ character. Each token
can be composed of multiple elements - one per spin
- separated by the ‘,’ character and each individual
element can either be a number (which must be an
integer, in string format), a name, or a range of
numbers separated by the ‘-’ character. Negative
numbers are supported. The full ID string specification
is ‘#<mol name> :<res id>[, <res id>[, <res id>,

...]] @<atom id>[, <atom id>[, <atom id>, ...]]’,
where the token elements are ‘<mol name>’, the name of
the molecule, ‘<res id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match the
string. If only the molecule ID component is specified,
then all spins of the molecule will match.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

512 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.83 molmol.clear history

Synopsis

Clear the Molmol command history.

Defaults

molmol.clear history()

Description

This will clear the Molmol history from memory.

17.2.84 molmol.command

Synopsis

Execute a user supplied Molmol command.

Defaults

molmol.command(command=None)

Keyword arguments

command: The Molmol command to execute.

Description

This allows Molmol commands to be passed to the pro-
gram. This can be useful for automation or scripting.

Prompt examples

To reinitialise the Molmol instance, type:

relax> molmol.command("InitAll yes")

17.2. THE LIST OF FUNCTIONS 513

17.2.85 molmol.macro apply

Synopsis

Execute Molmol macros.

Defaults

molmol.macro apply(data type=None, style=‘classic’,
colour start name=None, colour start rgb=None,
colour end name=None, colour end rgb=None,
colour list=None)

Keyword arguments

data type: The data type to map to the structure.

style: The style of the macro.

colour start name: The name of the starting colour of
the linear colour gradient. This can be either one of the
X11 or one of the Molmol colour names listed in the
description. If this is set, then the starting colour RGB
colour array cannot be given.

colour start rgb: The starting colour of the linear
colour gradient. This is an RGB colour array with val-
ues ranging from 0 to 1. If this is set, then the starting
colour name cannot be given.

colour end name: The name of the ending colour of
the linear colour gradient. This can be either one of the
X11 or one of the Molmol colour names listed in the
description. If this is set, then the ending colour RGB
colour array cannot be given.

colour end rgb: The ending colour of the linear colour
gradient. This is an RGB colour array with values rang-
ing from 0 to 1. If this is set, then the ending colour
name cannot be given.

colour list: The colour list to search for the colour
names. This can be either ‘molmol’ or ‘x11’.

Description

This allows spin specific values to be mapped to a
structure through Molmol macros. Currently only the
‘classic’ style, which is described below, is available.

Colour

The values are coloured based on a linear colour gradient
which is specified through starting and ending colours.
These can either be a string to identify one of the RGB
(red, green, blue) colour arrays listed in the tables be-
low, or you can give the RGB vector itself. For example,
‘white’ and [1.0, 1.0, 1.0] both select the same colour.
Leaving both colours unset will select the default colour
gradient which for each type of analysis is described be-
low.

When supplying the colours as strings, two lists of colours
can be selected from which to match the strings. These
are the default Molmol colour list and the X11 colour
list, both of which are described in the tables below. The
default behaviour is to first search the Molmol list and
then the X11 colour list, raising an error if neither contain
the name. To explicitly select these lists, set the colour
list to either ‘molmol’ or ‘x11’.

Model-free classic style

Creator: Edward d’Auvergne

Argument string: ”classic”

Description: The classic style draws the backbone of a
protein in a cylindrical bond style. Rather than colouring
the amino acids to which the NH bond belongs, the three
covalent bonds of the peptide bond from Ca to Ca in
which the NH bond is located are coloured. Deselected
residues are shown as black lines.

Supported data types:

Please see Table 17.22 on page 514.

Molmol RGB colour arrays

The following table is a list of colours used in Molmol
and their corresponding RGB colour values ranging from
0 to 1.

Please see Table 17.23 on page 515.

X11 RGB colour arrays

The following table is the list of X11 colour names and
their corresponding RGB colour values ranging from 0 to
255.

Please see Table 17.24 on page 516.

514 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 17.22: The model-free classic style for mapping model spin specific data onto 3D
molecular structures using either PyMOL or Molmol.

Data type String Description

S2. ’s2’ The standard model-free order parameter, equal to S2
f
.S2s for the

two timescale models. The default colour gradient starts at ’yellow’
and ends at ’red’.

S2
f
. ’s2f’ The order parameter of the faster of two internal motions. Residues

which are described by model-free models m1 to m4, the single
timescale models, are illustrated as white neon bonds. The default
colour gradient is the same as that for the S2 data type.

S2
s . ’s2s’ The order parameter of the slower of two internal motions. This

functions exactly as S2
f
except that S2

s is plotted instead.

Amplitude of fast motions. ’amp fast’ Model independent display of the amplite of fast motions. For
residues described by model-free models m5 to m8, the value plotted
is that of S2

f
. However, for residues described by models m1 to m4,

what is shown is dependent on the timescale of the motions. This
is because these single timescale models can, at times, be perfect
approximations to the more complex two timescale models. Hence
if τe is less than 200 ps, S2 is plotted. Otherwise the peptide bond
is coloured white. The default colour gradient is the same as that
for S2.

Amplitude of slow motions. ’amp slow’ Model independent display of the amplite of slow motions, arbitrar-
ily defined as motions slower than 200 ps. For residues described
by model-free models m5 to m8, the order parameter S2 is plotted
if τs > 200 ps. For models m1 to m4, S2 is plotted if τe > 200 ps.
The default colour gradient is the same as that for S2.

τe. ’te’ The correlation time, τe. The default colour gradient starts at
’turquoise’ and ends at ’blue’.

τf . ’tf’ The correlation time, τf . The default colour gradient is the same
as that of τe.

τs. ’ts’ The correlation time, τs. The default colour gradient starts at ’blue’
and ends at ’black’.

Timescale of fast motions ’time fast’ Model independent display of the timescale of fast motions. For
models m5 to m8, only the parameter τf is plotted. For models m2
and m4, the parameter τe is plotted only if it is less than 200 ps.
All other residues are assumed to have a correlation time of zero.
The default colour gradient is the same as that of τe.

Timescale of slow motions ’time slow’ Model independent display of the timescale of slow motions. For
models m5 to m8, only the parameter τs is plotted. For models m2
and m4, the parameter τe is plotted only if it is greater than 200 ps.
All other residues are coloured white. The default colour gradient
is the same as that of τs.

Chemical exchange ’rex’ The chemical exchange, Rex. Residues which experience no chemi-
cal exchange are coloured white. The default colour gradient starts
at ’yellow’ and finishes at ’red’.

17.2. THE LIST OF FUNCTIONS 515

Table 17.23: Molmol colour names and corresponding RGB colour values (from 0 to 1)

Name Red Green Blue

’black’ 0.000 0.000 0.000
’navy’ 0.000 0.000 0.502
’blue’ 0.000 0.000 1.000
’dark green’ 0.000 0.392 0.000
’green’ 0.000 1.000 0.000
’cyan’ 0.000 1.000 1.000
’turquoise’ 0.251 0.878 0.816
’royal blue’ 0.255 0.412 0.882
’aquamarine’ 0.498 1.000 0.831
’sky green’ 0.529 0.808 0.922
’dark violet’ 0.580 0.000 0.827
’pale green’ 0.596 0.984 0.596
’purple’ 0.627 0.125 0.941
’brown’ 0.647 0.165 0.165
’light blue’ 0.678 0.847 0.902
’grey’ 0.745 0.745 0.745
’light grey’ 0.827 0.827 0.827
’violet’ 0.933 0.510 0.933
’light coral’ 0.941 0.502 0.502
’khaki’ 0.941 0.902 0.549
’beige’ 0.961 0.961 0.863
’red’ 1.000 0.000 0.000
’magenta’ 1.000 0.000 1.000
’deep pink’ 1.000 0.078 0.576
’orange red’ 1.000 0.271 0.000
’hot pink’ 1.000 0.412 0.706
’coral’ 1.000 0.498 0.314
’dark orange’ 1.000 0.549 0.000
’orange’ 1.000 0.647 0.000
’pink’ 1.000 0.753 0.796
’gold’ 1.000 0.843 0.000
’yellow’ 1.000 1.000 0.000
’light yellow’ 1.000 1.000 0.878
’ivory’ 1.000 1.000 0.941
’white’ 1.000 1.000 1.000

516 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 17.24: X11 colour names and corresponding RGB colour values

Name Red Green Blue

snow 255 250 250
ghost white 248 248 255
white smoke 245 245 245
gainsboro 220 220 220
floral white 255 250 240
old lace 253 245 230
linen 250 240 230
antique white 250 235 215
papaya whip 255 239 213
blanched almond 255 235 205
bisque 255 228 196
peach puff 255 218 185
navajo white 255 222 173
moccasin 255 228 181
cornsilk 255 248 220
ivory 255 255 240
lemon chiffon 255 250 205
seashell 255 245 238
honeydew 240 255 240
mint cream 245 255 250
azure 240 255 255
alice blue 240 248 255
lavender 230 230 250
lavender blush 255 240 245
misty rose 255 228 225
white 255 255 255
black 0 0 0
dark slate grey 47 79 79
dim grey 105 105 105
slate grey 112 128 144
light slate grey 119 136 153
grey 190 190 190
light grey 211 211 211
midnight blue 25 25 112
navy 0 0 128
cornflower blue 100 149 237
dark slate blue 72 61 139
slate blue 106 90 205
medium slate blue 123 104 238
light slate blue 132 112 255
medium blue 0 0 205
royal blue 65 105 225
blue 0 0 255
dodger blue 30 144 255
deep sky blue 0 191 255
sky blue 135 206 235
light sky blue 135 206 250
steel blue 70 130 180
light steel blue 176 196 222
light blue 173 216 230
powder blue 176 224 230
pale turquoise 175 238 238
dark turquoise 0 206 209
medium turquoise 72 209 204
turquoise 64 224 208
cyan 0 255 255
light cyan 224 255 255
cadet blue 95 158 160
medium aquamarine 102 205 170
aquamarine 127 255 212
dark green 0 100 0
dark olive green 85 107 47
dark sea green 143 188 143
sea green 46 139 87
medium sea green 60 179 113
light sea green 32 178 170

17.2. THE LIST OF FUNCTIONS 517

Table 17.24: X11 colour names and corresponding RGB colour values

Name Red Green Blue

pale green 152 251 152
spring green 0 255 127
lawn green 124 252 0
green 0 255 0
chartreuse 127 255 0
medium spring green 0 250 154
green yellow 173 255 47
lime green 50 205 50
yellow green 154 205 50
forest green 34 139 34
olive drab 107 142 35
dark khaki 189 183 107
khaki 240 230 140
pale goldenrod 238 232 170
light goldenrod yellow 250 250 210
light yellow 255 255 224
yellow 255 255 0
gold 255 215 0
light goldenrod 238 221 130
goldenrod 218 165 32
dark goldenrod 184 134 11
rosy brown 188 143 143
indian red 205 92 92
saddle brown 139 69 19
sienna 160 82 45
peru 205 133 63
burlywood 222 184 135
beige 245 245 220
wheat 245 222 179
sandy brown 244 164 96
tan 210 180 140
chocolate 210 105 30
firebrick 178 34 34
brown 165 42 42
dark salmon 233 150 122
salmon 250 128 114
light salmon 255 160 122
orange 255 165 0
dark orange 255 140 0
coral 255 127 80
light coral 240 128 128
tomato 255 99 71
orange red 255 69 0
red 255 0 0
hot pink 255 105 180
deep pink 255 20 147
pink 255 192 203
light pink 255 182 193
pale violet red 219 112 147
maroon 176 48 96
medium violet red 199 21 133
violet red 208 32 144
magenta 255 0 255
violet 238 130 238
plum 221 160 221
orchid 218 112 214
medium orchid 186 85 211
dark orchid 153 50 204
dark violet 148 0 211
blue violet 138 43 226
purple 160 32 240
medium purple 147 112 219
thistle 216 191 216
snow 1 255 250 250
snow 2 238 233 233
snow 3 205 201 201

518 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 17.24: X11 colour names and corresponding RGB colour values

Name Red Green Blue

snow 4 139 137 137
seashell 1 255 245 238
seashell 2 238 229 222
seashell 3 205 197 191
seashell 4 139 134 130
antique white 1 255 239 219
antique white 2 238 223 204
antique white 3 205 192 176
antique white 4 139 131 120
bisque 1 255 228 196
bisque 2 238 213 183
bisque 3 205 183 158
bisque 4 139 125 107
peach puff 1 255 218 185
peach puff 2 238 203 173
peach puff 3 205 175 149
peach puff 4 139 119 101
navajo white 1 255 222 173
navajo white 2 238 207 161
navajo white 3 205 179 139
navajo white 4 139 121 94
lemon chiffon 1 255 250 205
lemon chiffon 2 238 233 191
lemon chiffon 3 205 201 165
lemon chiffon 4 139 137 112
cornsilk 1 255 248 220
cornsilk 2 238 232 205
cornsilk 3 205 200 177
cornsilk 4 139 136 120
ivory 1 255 255 240
ivory 2 238 238 224
ivory 3 205 205 193
ivory 4 139 139 131
honeydew 1 240 255 240
honeydew 2 224 238 224
honeydew 3 193 205 193
honeydew 4 131 139 131
lavender blush 1 255 240 245
lavender blush 2 238 224 229
lavender blush 3 205 193 197
lavender blush 4 139 131 134
misty rose 1 255 228 225
misty rose 2 238 213 210
misty rose 3 205 183 181
misty rose 4 139 125 123
azure 1 240 255 255
azure 2 224 238 238
azure 3 193 205 205
azure 4 131 139 139
slate blue 1 131 111 255
slate blue 2 122 103 238
slate blue 3 105 89 205
slate blue 4 71 60 139
royal blue 1 72 118 255
royal blue 2 67 110 238
royal blue 3 58 95 205
royal blue 4 39 64 139
blue 1 0 0 255
blue 2 0 0 238
blue 3 0 0 205
blue 4 0 0 139
dodger blue 1 30 144 255
dodger blue 2 28 134 238
dodger blue 3 24 116 205
dodger blue 4 16 78 139
steel blue 1 99 184 255

17.2. THE LIST OF FUNCTIONS 519

Table 17.24: X11 colour names and corresponding RGB colour values

Name Red Green Blue

steel blue 2 92 172 238
steel blue 3 79 148 205
steel blue 4 54 100 139
deep sky blue 1 0 191 255
deep sky blue 2 0 178 238
deep sky blue 3 0 154 205
deep sky blue 4 0 104 139
sky blue 1 135 206 255
sky blue 2 126 192 238
sky blue 3 108 166 205
sky blue 4 74 112 139
light sky blue 1 176 226 255
light sky blue 2 164 211 238
light sky blue 3 141 182 205
light sky blue 4 96 123 139
slate grey 1 198 226 255
slate grey 2 185 211 238
slate grey 3 159 182 205
slate grey 4 108 123 139
light steel blue 1 202 225 255
light steel blue 2 188 210 238
light steel blue 3 162 181 205
light steel blue 4 110 123 139
light blue 1 191 239 255
light blue 2 178 223 238
light blue 3 154 192 205
light blue 4 104 131 139
light cyan 1 224 255 255
light cyan 2 209 238 238
light cyan 3 180 205 205
light cyan 4 122 139 139
pale turquoise 1 187 255 255
pale turquoise 2 174 238 238
pale turquoise 3 150 205 205
pale turquoise 4 102 139 139
cadet blue 1 152 245 255
cadet blue 2 142 229 238
cadet blue 3 122 197 205
cadet blue 4 83 134 139
turquoise 1 0 245 255
turquoise 2 0 229 238
turquoise 3 0 197 205
turquoise 4 0 134 139
cyan 1 0 255 255
cyan 2 0 238 238
cyan 3 0 205 205
cyan 4 0 139 139
dark slate grey 1 151 255 255
dark slate grey 2 141 238 238
dark slate grey 3 121 205 205
dark slate grey 4 82 139 139
aquamarine 1 127 255 212
aquamarine 2 118 238 198
aquamarine 3 102 205 170
aquamarine 4 69 139 116
dark sea green 1 193 255 193
dark sea green 2 180 238 180
dark sea green 3 155 205 155
dark sea green 4 105 139 105
sea green 1 84 255 159
sea green 2 78 238 148
sea green 3 67 205 128
sea green 4 46 139 87
pale green 1 154 255 154
pale green 2 144 238 144
pale green 3 124 205 124

520 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 17.24: X11 colour names and corresponding RGB colour values

Name Red Green Blue

pale green 4 84 139 84
spring green 1 0 255 127
spring green 2 0 238 118
spring green 3 0 205 102
spring green 4 0 139 69
green 1 0 255 0
green 2 0 238 0
green 3 0 205 0
green 4 0 139 0
chartreuse 1 127 255 0
chartreuse 2 118 238 0
chartreuse 3 102 205 0
chartreuse 4 69 139 0
olive drab 1 192 255 62
olive drab 2 179 238 58
olive drab 3 154 205 50
olive drab 4 105 139 34
dark olive green 1 202 255 112
dark olive green 2 188 238 104
dark olive green 3 162 205 90
dark olive green 4 110 139 61
khaki 1 255 246 143
khaki 2 238 230 133
khaki 3 205 198 115
khaki 4 139 134 78
light goldenrod 1 255 236 139
light goldenrod 2 238 220 130
light goldenrod 3 205 190 112
light goldenrod 4 139 129 76
light yellow 1 255 255 224
light yellow 2 238 238 209
light yellow 3 205 205 180
light yellow 4 139 139 122
yellow 1 255 255 0
yellow 2 238 238 0
yellow 3 205 205 0
yellow 4 139 139 0
gold 1 255 215 0
gold 2 238 201 0
gold 3 205 173 0
gold 4 139 117 0
goldenrod 1 255 193 37
goldenrod 2 238 180 34
goldenrod 3 205 155 29
goldenrod 4 139 105 20
dark goldenrod 1 255 185 15
dark goldenrod 2 238 173 14
dark goldenrod 3 205 149 12
dark goldenrod 4 139 101 8
rosy brown 1 255 193 193
rosy brown 2 238 180 180
rosy brown 3 205 155 155
rosy brown 4 139 105 105
indian red 1 255 106 106
indian red 2 238 99 99
indian red 3 205 85 85
indian red 4 139 58 58
sienna 1 255 130 71
sienna 2 238 121 66
sienna 3 205 104 57
sienna 4 139 71 38
burlywood 1 255 211 155
burlywood 2 238 197 145
burlywood 3 205 170 125
burlywood 4 139 115 85
wheat 1 255 231 186

17.2. THE LIST OF FUNCTIONS 521

Table 17.24: X11 colour names and corresponding RGB colour values

Name Red Green Blue

wheat 2 238 216 174
wheat 3 205 186 150
wheat 4 139 126 102
tan 1 255 165 79
tan 2 238 154 73
tan 3 205 133 63
tan 4 139 90 43
chocolate 1 255 127 36
chocolate 2 238 118 33
chocolate 3 205 102 29
chocolate 4 139 69 19
firebrick 1 255 48 48
firebrick 2 238 44 44
firebrick 3 205 38 38
firebrick 4 139 26 26
brown 1 255 64 64
brown 2 238 59 59
brown 3 205 51 51
brown 4 139 35 35
salmon 1 255 140 105
salmon 2 238 130 98
salmon 3 205 112 84
salmon 4 139 76 57
light salmon 1 255 160 122
light salmon 2 238 149 114
light salmon 3 205 129 98
light salmon 4 139 87 66
orange 1 255 165 0
orange 2 238 154 0
orange 3 205 133 0
orange 4 139 90 0
dark orange 1 255 127 0
dark orange 2 238 118 0
dark orange 3 205 102 0
dark orange 4 139 69 0
coral 1 255 114 86
coral 2 238 106 80
coral 3 205 91 69
coral 4 139 62 47
tomato 1 255 99 71
tomato 2 238 92 66
tomato 3 205 79 57
tomato 4 139 54 38
orange red 1 255 69 0
orange red 2 238 64 0
orange red 3 205 55 0
orange red 4 139 37 0
red 1 255 0 0
red 2 238 0 0
red 3 205 0 0
red 4 139 0 0
deep pink 1 255 20 147
deep pink 2 238 18 137
deep pink 3 205 16 118
deep pink 4 139 10 80
hot pink 1 255 110 180
hot pink 2 238 106 167
hot pink 3 205 96 144
hot pink 4 139 58 98
pink 1 255 181 197
pink 2 238 169 184
pink 3 205 145 158
pink 4 139 99 108
light pink 1 255 174 185
light pink 2 238 162 173
light pink 3 205 140 149

522 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 17.24: X11 colour names and corresponding RGB colour values

Name Red Green Blue

light pink 4 139 95 101
pale violet red 1 255 130 171
pale violet red 2 238 121 159
pale violet red 3 205 104 137
pale violet red 4 139 71 93
maroon 1 255 52 179
maroon 2 238 48 167
maroon 3 205 41 144
maroon 4 139 28 98
violet red 1 255 62 150
violet red 2 238 58 140
violet red 3 205 50 120
violet red 4 139 34 82
magenta 1 255 0 255
magenta 2 238 0 238
magenta 3 205 0 205
magenta 4 139 0 139
orchid 1 255 131 250
orchid 2 238 122 233
orchid 3 205 105 201
orchid 4 139 71 137
plum 1 255 187 255
plum 2 238 174 238
plum 3 205 150 205
plum 4 139 102 139
medium orchid 1 224 102 255
medium orchid 2 209 95 238
medium orchid 3 180 82 205
medium orchid 4 122 55 139
dark orchid 1 191 62 255
dark orchid 2 178 58 238
dark orchid 3 154 50 205
dark orchid 4 104 34 139
purple 1 155 48 255
purple 2 145 44 238
purple 3 125 38 205
purple 4 85 26 139
medium purple 1 171 130 255
medium purple 2 159 121 238
medium purple 3 137 104 205
medium purple 4 93 71 139
thistle 1 255 225 255
thistle 2 238 210 238
thistle 3 205 181 205
thistle 4 139 123 139
grey 0 0 0 0
grey 1 3 3 3
grey 2 5 5 5
grey 3 8 8 8
grey 4 10 10 10
grey 5 13 13 13
grey 6 15 15 15
grey 7 18 18 18
grey 8 20 20 20
grey 9 23 23 23
grey 10 26 26 26
grey 11 28 28 28
grey 12 31 31 31
grey 13 33 33 33
grey 14 36 36 36
grey 15 38 38 38
grey 16 41 41 41
grey 17 43 43 43
grey 18 46 46 46
grey 19 48 48 48
grey 20 51 51 51

17.2. THE LIST OF FUNCTIONS 523

Table 17.24: X11 colour names and corresponding RGB colour values

Name Red Green Blue

grey 21 54 54 54
grey 22 56 56 56
grey 23 59 59 59
grey 24 61 61 61
grey 25 64 64 64
grey 26 66 66 66
grey 27 69 69 69
grey 28 71 71 71
grey 29 74 74 74
grey 30 77 77 77
grey 31 79 79 79
grey 32 82 82 82
grey 33 84 84 84
grey 34 87 87 87
grey 35 89 89 89
grey 36 92 92 92
grey 37 94 94 94
grey 38 97 97 97
grey 39 99 99 99
grey 40 102 102 102
grey 41 105 105 105
grey 42 107 107 107
grey 43 110 110 110
grey 44 112 112 112
grey 45 115 115 115
grey 46 117 117 117
grey 47 120 120 120
grey 48 122 122 122
grey 49 125 125 125
grey 50 127 127 127
grey 51 130 130 130
grey 52 133 133 133
grey 53 135 135 135
grey 54 138 138 138
grey 55 140 140 140
grey 56 143 143 143
grey 57 145 145 145
grey 58 148 148 148
grey 59 150 150 150
grey 60 153 153 153
grey 61 156 156 156
grey 62 158 158 158
grey 63 161 161 161
grey 64 163 163 163
grey 65 166 166 166
grey 66 168 168 168
grey 67 171 171 171
grey 68 173 173 173
grey 69 176 176 176
grey 70 179 179 179
grey 71 181 181 181
grey 72 184 184 184
grey 73 186 186 186
grey 74 189 189 189
grey 75 191 191 191
grey 76 194 194 194
grey 77 196 196 196
grey 78 199 199 199
grey 79 201 201 201
grey 80 204 204 204
grey 81 207 207 207
grey 82 209 209 209
grey 83 212 212 212
grey 84 214 214 214
grey 85 217 217 217
grey 86 219 219 219

524 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 17.24: X11 colour names and corresponding RGB colour values

Name Red Green Blue

grey 87 222 222 222
grey 88 224 224 224
grey 89 227 227 227
grey 90 229 229 229
grey 91 232 232 232
grey 92 235 235 235
grey 93 237 237 237
grey 94 240 240 240
grey 95 242 242 242
grey 96 245 245 245
grey 97 247 247 247
grey 98 250 250 250
grey 99 252 252 252
grey 100 255 255 255
dark grey 169 169 169
dark blue 0 0 139
dark cyan 0 139 139
dark magenta 139 0 139
dark red 139 0 0
light green 144 238 144

17.2. THE LIST OF FUNCTIONS 525

Prompt examples

To map the order parameter values, S2, onto the struc-
ture using the classic style, type:

relax> molmol.macro_apply('s2')

relax> molmol.macro_apply(data_type='s2')

relax> molmol.macro_apply(data_type='s2',

style="classic")

17.2.86 molmol.macro run

Synopsis

Open and execute the Molmol macro file.

Defaults

molmol.macro run(file=None, dir=‘molmol’)

Keyword arguments

file: The name of the Molmol macro file.

dir: The directory name.

Description

This user function is for opening and running a Molmol
macro located within a text file.

Prompt examples

To execute the macro file ‘s2.mac’ located in the direc-
tory ‘molmol’, type:

relax> molmol.macro_run(file='s2.mac')

relax> molmol.macro_run(file='s2.mac', dir='

molmol')

526 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.87 molmol.macro write

Synopsis

Create Molmol macros.

Defaults

molmol.macro write(data type=None, style=‘classic’,
colour start name=None, colour start rgb=None,
colour end name=None, colour end rgb=None,
colour list=None, file=None, dir=‘molmol’, force=False)

Keyword arguments

data type: The data type to map to the structure.

style: The style of the macro.

colour start name: The name of the starting colour of
the linear colour gradient. This can be either one of the
X11 or one of the Molmol colour names listed in the
description. If this is set, then the starting colour RGB
colour array cannot be given.

colour start rgb: The starting colour of the linear
colour gradient. This is an RGB colour array with val-
ues ranging from 0 to 1. If this is set, then the starting
colour name cannot be given.

colour end name: The name of the ending colour of
the linear colour gradient. This can be either one of the
X11 or one of the Molmol colour names listed in the
description. If this is set, then the ending colour RGB
colour array cannot be given.

colour end rgb: The ending colour of the linear colour
gradient. This is an RGB colour array with values rang-
ing from 0 to 1. If this is set, then the ending colour
name cannot be given.

colour list: The colour list to search for the colour
names. This can be either ‘molmol’ or ‘x11’.

file: The optional name of the file.

dir: The optional directory to save the file to.

force: A flag which, if set to True, will cause the file to
be overwritten.

Description

This allows residues specific values to be mapped to a
structure through the creation of a Molmol ‘*.mac’ macro
which can be executed in Molmol by clicking on ‘File,
Macro, Execute User...’. Currently only the ‘classic’
style, which is described below, is available.

Colour

The values are coloured based on a linear colour gradient
which is specified through starting and ending colours.
These can either be a string to identify one of the RGB
(red, green, blue) colour arrays listed in the tables be-
low, or you can give the RGB vector itself. For example,
‘white’ and [1.0, 1.0, 1.0] both select the same colour.
Leaving both colours unset will select the default colour
gradient which for each type of analysis is described be-
low.

When supplying the colours as strings, two lists of colours
can be selected from which to match the strings. These
are the default Molmol colour list and the X11 colour
list, both of which are described in the tables below. The
default behaviour is to first search the Molmol list and
then the X11 colour list, raising an error if neither contain
the name. To explicitly select these lists, set the colour
list to either ‘molmol’ or ‘x11’.

Model-free classic style

Creator: Edward d’Auvergne

Argument string: ”classic”

Description: The classic style draws the backbone of a
protein in a cylindrical bond style. Rather than colouring
the amino acids to which the NH bond belongs, the three
covalent bonds of the peptide bond from Ca to Ca in
which the NH bond is located are coloured. Deselected
residues are shown as black lines.

Supported data types:

Please see Table 17.22 on page 514.

Molmol RGB colour arrays

The following table is a list of colours used in Molmol
and their corresponding RGB colour values ranging from
0 to 1.

Please see Table 17.23 on page 515.

X11 RGB colour arrays

The following table is the list of X11 colour names and
their corresponding RGB colour values ranging from 0 to
255.

Please see Table 17.24 on page 516.

Prompt examples

To create a Molmol macro mapping the order parame-
ter values, S2, onto the structure using the classic style,
type:

relax> molmol.macro_write('s2')

17.2. THE LIST OF FUNCTIONS 527

relax> molmol.macro_write(data_type='s2')

relax> molmol.macro_write(data_type='s2',

style="classic", file='s2.mac', dir='

molmol')

17.2.88 molmol.ribbon

Synopsis

Apply the Molmol ribbon style.

Defaults

molmol.ribbon()

Description

This applies the Molmol ribbon style which is equivalent
to clicking on ‘ribbon’ in the Molmol side menu. To do
this, the following commands are executed:

CalcAtom ‘H’

CalcAtom ‘HN’

CalcSecondary

XMacStand ribbon.mac

Prompt examples

To apply the ribbon style to the PDB file loaded, type:

relax> molmol.ribbon()

528 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.89 molmol.tensor pdb

Synopsis

Display the diffusion tensor PDB geometric object over
the loaded PDB.

Defaults

molmol.tensor pdb(file=None)

Keyword arguments

file: The name of the PDB file containing the tensor
geometric object.

Description

In executing this user function, a PDB file must have
previously been loaded , a geometric object or poly-
gon representing the Brownian rotational diffusion tensor
will be overlain with the loaded PDB file and displayed
within Molmol. The PDB file containing the geometric
object must be created using the complementary struc-
ture.create diff tensor pdb user function.

To display the diffusion tensor, the multiple commands
will be executed. To overlay the structure with the dif-
fusion tensor, everything will be selected and reoriented
and moved to their original PDB frame positions:

SelectAtom ‘’

SelectBond ‘’

SelectAngle ‘’

SelectDist ‘’

SelectPrim ‘’

RotateInit

MoveInit

Next the tensor PDB file is read in, selected, and the
covalent bonds of the PDB CONECT records calculated:

ReadPdb file

SelectMol ‘@file’

CalcBond 1 1 1

Then only the atoms and bonds of the geometric object
are selected and the ‘ball/stick’ style applied:

SelectAtom ‘0’

SelectBond ‘0’

SelectAtom ‘:TNS’

SelectBond ‘:TNS’

XMacStand ball stick.mac

The appearance is finally touched up:

RadiusAtom 1

SelectAtom ‘:TNS@C*’

RadiusAtom 1.5

17.2. THE LIST OF FUNCTIONS 529

17.2.90 molmol.view

Synopsis

View the collection of molecules from the loaded PDB
file.

Defaults

molmol.view()

Description

This will simply launch Molmol.

Prompt examples

relax> molmol.view()

17.2.91 monte carlo.create data

Synopsis

Create the Monte Carlo simulation data.

Defaults

monte carlo.create data(method=‘back calc’,
distribution=‘measured’, fixed error=None)

Keyword arguments

method: The simulation method.

distribution: The error distribution method.

fixed error: The fixed value to use when distribution is
set to ‘fixed’.

Description

The method can either be set to back calculation (Monte
Carlo) or direct (bootstrapping), the choice of which de-
termines the simulation type. If the values or param-
eters are calculated rather than minimised, this option
will have no effect. Errors should only be propagated via
Monte Carlo simulations if errors have been measured.

For error analysis, the method should be set to back cal-
culation which will result in proper Monte Carlo simula-
tions. The data used for each simulation is back calcu-
lated from the minimised model parameters and is ran-
domised using Gaussian noise where the standard devi-
ation is from the original error set. When the method
is set to back calculation, this function should only be
called after the model is fully minimised.

The simulation type can be changed by setting the
method to direct. This will result in bootstrapping simu-
lations which cannot be used in error analysis (and which
are no longer Monte Carlo simulations). However, these
simulations are required for certain model selection tech-
niques (see the documentation for the model selection
user function for details), and can be used for other pur-
poses. Rather than the data being back calculated from
the fitted model parameters, the data is generated by
taking the original data and randomising using Gaussian
noise with the standard deviations set to the original er-
ror set.

The errors generated per simulation can either be gen-
erated indidual per datapoint and drawn from a gauss
distrubtion described by the standard deviation of the in-
didual point, or it can be generated from a overall gauss
distribution described by the standard deviation of the
goodness of fit, where SD fit = sqrt(chi2/(N-p)). The

530 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

last possibility is to supply a fixed value of the standard
deviation, from which gauss distribution to draw errors
from.

Monte Carlo Simulation Overview

For proper error analysis using Monte Carlo simulations,
a sequence of function calls is required for running the
various simulation components. The steps necessary for
implementing Monte Carlo simulations are:

1 – The measured data set together with the corre-
sponding error set should be loaded into relax.

2 – Either minimisation is used to optimise the param-
eters of the chosen model, or a calculation is run.

3 – To initialise and turn on Monte Carlo simulations,
the number of simulations, n, needs to be set.

4 – The simulation data needs to be created either by
back calculation from the fully minimised model
parameters from step 2 or by direct calcula-
tion when values are calculated rather than min-
imised. The error set is used to randomise each
simulation data set by assuming Gaussian errors.
This creates a synthetic data set for each Monte
Carlo simulation.

5 – Prior to minimisation of the parameters of each sim-
ulation, initial parameter estimates are required.
These are taken as the optimised model parame-
ters. An alternative is to use a grid search for each
simulation to generate initial estimates, however
this is extremely computationally expensive. For
the case where values are calculated rather than
minimised, this step should be skipped (although
the results will be unaffected if this is accidentally
run).

6 – Each simulation requires minimisation or calcula-
tion. The same techniques as used in step 2, ex-
cluding the grid search when minimising, should
be used for the simulations.

7 – Failed simulations are removed using the techniques
of model elimination.

8 – The model parameter errors are calculated from the
distribution of simulation parameters.

Monte Carlo simulations can be turned on or off using
functions within this class. Once the function for setting
up simulations has been called, simulations will be turned
on. The effect of having simulations turned on is that the
functions used for minimisation (grid search, minimise,
etc) or calculation will only affect the simulation param-
eters and not the model parameters. By subsequently
turning simulations off using the appropriate function,
the functions used in minimisation will affect the model
parameters and not the simulation parameters.

An example for model-free analysis using the prompt UI
mode which includes only the functions required for im-
plementing the above steps is:

relax> minimise.grid_search(inc=11)

Step 2.

relax> minimise.execute('newton')

Step 2.

relax> monte_carlo.setup(number=500)

Step 3.

relax> monte_carlo.create_data(method='

back_calc') # Step 4.

relax> monte_carlo.initial_values()

Step 5.

relax> minimise.execute('newton')

Step 6.

relax> eliminate()

Step 7.

relax> monte_carlo.error_analysis()

Step 8.

An example for reduced spectral density mapping is:

relax> minimise.calculate()

Step 2.

relax> monte_carlo.setup(number=500)

Step 3.

relax> monte_carlo.create_data(method='

back_calc') # Step 4.

relax> minimise.calculate()

Step 6.

relax> monte_carlo.error_analysis()

Step 8.

17.2. THE LIST OF FUNCTIONS 531

17.2.92 monte carlo.error analysis

Synopsis

Calculate parameter errors from the Monte Carlo simu-
lations.

Defaults

monte carlo.error analysis()

Description

Parameter errors are calculated as the standard deviation
of the distribution of parameter values. This function
should never be used if parameter values are obtained
by minimisation and the simulation data are generated
using the method ‘direct’. The reason is because only
true Monte Carlo simulations can give the true parameter
errors.

Monte Carlo Simulation Overview

For proper error analysis using Monte Carlo simulations,
a sequence of function calls is required for running the
various simulation components. The steps necessary for
implementing Monte Carlo simulations are:

1 – The measured data set together with the corre-
sponding error set should be loaded into relax.

2 – Either minimisation is used to optimise the param-
eters of the chosen model, or a calculation is run.

3 – To initialise and turn on Monte Carlo simulations,
the number of simulations, n, needs to be set.

4 – The simulation data needs to be created either by
back calculation from the fully minimised model
parameters from step 2 or by direct calcula-
tion when values are calculated rather than min-
imised. The error set is used to randomise each
simulation data set by assuming Gaussian errors.
This creates a synthetic data set for each Monte
Carlo simulation.

5 – Prior to minimisation of the parameters of each sim-
ulation, initial parameter estimates are required.
These are taken as the optimised model parame-
ters. An alternative is to use a grid search for each
simulation to generate initial estimates, however
this is extremely computationally expensive. For
the case where values are calculated rather than
minimised, this step should be skipped (although
the results will be unaffected if this is accidentally
run).

6 – Each simulation requires minimisation or calcula-
tion. The same techniques as used in step 2, ex-
cluding the grid search when minimising, should
be used for the simulations.

7 – Failed simulations are removed using the techniques
of model elimination.

8 – The model parameter errors are calculated from the
distribution of simulation parameters.

Monte Carlo simulations can be turned on or off using
functions within this class. Once the function for setting
up simulations has been called, simulations will be turned
on. The effect of having simulations turned on is that the
functions used for minimisation (grid search, minimise,
etc) or calculation will only affect the simulation param-
eters and not the model parameters. By subsequently
turning simulations off using the appropriate function,
the functions used in minimisation will affect the model
parameters and not the simulation parameters.

An example for model-free analysis using the prompt UI
mode which includes only the functions required for im-
plementing the above steps is:

relax> minimise.grid_search(inc=11)

Step 2.

relax> minimise.execute('newton')

Step 2.

relax> monte_carlo.setup(number=500)

Step 3.

relax> monte_carlo.create_data(method='

back_calc') # Step 4.

relax> monte_carlo.initial_values()

Step 5.

relax> minimise.execute('newton')

Step 6.

relax> eliminate()

Step 7.

relax> monte_carlo.error_analysis()

Step 8.

An example for reduced spectral density mapping is:

relax> minimise.calculate()

Step 2.

relax> monte_carlo.setup(number=500)

Step 3.

relax> monte_carlo.create_data(method='

back_calc') # Step 4.

relax> minimise.calculate()

Step 6.

relax> monte_carlo.error_analysis()

Step 8.

532 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.93 monte carlo.initial values

Synopsis

Set the initial simulation parameter values.

Defaults

monte carlo.initial values()

Description

This only effects where minimisation occurs and can
therefore be skipped if the values or parameters are cal-
culated rather than minimised. However, if accidentally
run in this case, the results will be unaffected. It should
only be called after the model or run is fully minimised.
Once called, the user functions minimise.grid search and
minimise.execute will only effect the simulations and not
the model parameters.

The initial values of the parameters for each simulation
is set to the minimised parameters of the model. A grid
search can be undertaken for each simulation instead,
although this is computationally expensive and unneces-
sary. The minimisation function should be executed for
a second time after running this function.

Monte Carlo Simulation Overview

For proper error analysis using Monte Carlo simulations,
a sequence of function calls is required for running the
various simulation components. The steps necessary for
implementing Monte Carlo simulations are:

1 – The measured data set together with the corre-
sponding error set should be loaded into relax.

2 – Either minimisation is used to optimise the param-
eters of the chosen model, or a calculation is run.

3 – To initialise and turn on Monte Carlo simulations,
the number of simulations, n, needs to be set.

4 – The simulation data needs to be created either by
back calculation from the fully minimised model
parameters from step 2 or by direct calcula-
tion when values are calculated rather than min-
imised. The error set is used to randomise each
simulation data set by assuming Gaussian errors.
This creates a synthetic data set for each Monte
Carlo simulation.

5 – Prior to minimisation of the parameters of each sim-
ulation, initial parameter estimates are required.
These are taken as the optimised model parame-
ters. An alternative is to use a grid search for each
simulation to generate initial estimates, however
this is extremely computationally expensive. For
the case where values are calculated rather than
minimised, this step should be skipped (although
the results will be unaffected if this is accidentally
run).

6 – Each simulation requires minimisation or calcula-
tion. The same techniques as used in step 2, ex-
cluding the grid search when minimising, should
be used for the simulations.

7 – Failed simulations are removed using the techniques
of model elimination.

8 – The model parameter errors are calculated from the
distribution of simulation parameters.

Monte Carlo simulations can be turned on or off using
functions within this class. Once the function for setting
up simulations has been called, simulations will be turned
on. The effect of having simulations turned on is that the
functions used for minimisation (grid search, minimise,
etc) or calculation will only affect the simulation param-
eters and not the model parameters. By subsequently
turning simulations off using the appropriate function,
the functions used in minimisation will affect the model
parameters and not the simulation parameters.

An example for model-free analysis using the prompt UI
mode which includes only the functions required for im-
plementing the above steps is:

relax> minimise.grid_search(inc=11)

Step 2.

relax> minimise.execute('newton')

Step 2.

relax> monte_carlo.setup(number=500)

Step 3.

relax> monte_carlo.create_data(method='

back_calc') # Step 4.

relax> monte_carlo.initial_values()

Step 5.

relax> minimise.execute('newton')

Step 6.

relax> eliminate()

Step 7.

relax> monte_carlo.error_analysis()

Step 8.

An example for reduced spectral density mapping is:

relax> minimise.calculate()

Step 2.

17.2. THE LIST OF FUNCTIONS 533

relax> monte_carlo.setup(number=500)

Step 3.

relax> monte_carlo.create_data(method='

back_calc') # Step 4.

relax> minimise.calculate()

Step 6.

relax> monte_carlo.error_analysis()

Step 8.

17.2.94 monte carlo.off

Synopsis

Turn the Monte Carlo simulations off.

Defaults

monte carlo.off()

Description

This will turn off the Monte Carlo simulations so that
subsequent optimisation will operate directly on the
model parameters and not on the simulations.

Monte Carlo Simulation Overview

For proper error analysis using Monte Carlo simulations,
a sequence of function calls is required for running the
various simulation components. The steps necessary for
implementing Monte Carlo simulations are:

1 – The measured data set together with the corre-
sponding error set should be loaded into relax.

2 – Either minimisation is used to optimise the param-
eters of the chosen model, or a calculation is run.

3 – To initialise and turn on Monte Carlo simulations,
the number of simulations, n, needs to be set.

4 – The simulation data needs to be created either by
back calculation from the fully minimised model
parameters from step 2 or by direct calcula-
tion when values are calculated rather than min-
imised. The error set is used to randomise each
simulation data set by assuming Gaussian errors.
This creates a synthetic data set for each Monte
Carlo simulation.

5 – Prior to minimisation of the parameters of each sim-
ulation, initial parameter estimates are required.
These are taken as the optimised model parame-
ters. An alternative is to use a grid search for each
simulation to generate initial estimates, however
this is extremely computationally expensive. For
the case where values are calculated rather than
minimised, this step should be skipped (although
the results will be unaffected if this is accidentally
run).

6 – Each simulation requires minimisation or calcula-
tion. The same techniques as used in step 2, ex-
cluding the grid search when minimising, should
be used for the simulations.

534 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

7 – Failed simulations are removed using the techniques
of model elimination.

8 – The model parameter errors are calculated from the
distribution of simulation parameters.

Monte Carlo simulations can be turned on or off using
functions within this class. Once the function for setting
up simulations has been called, simulations will be turned
on. The effect of having simulations turned on is that the
functions used for minimisation (grid search, minimise,
etc) or calculation will only affect the simulation param-
eters and not the model parameters. By subsequently
turning simulations off using the appropriate function,
the functions used in minimisation will affect the model
parameters and not the simulation parameters.

An example for model-free analysis using the prompt UI
mode which includes only the functions required for im-
plementing the above steps is:

relax> minimise.grid_search(inc=11)

Step 2.

relax> minimise.execute('newton')

Step 2.

relax> monte_carlo.setup(number=500)

Step 3.

relax> monte_carlo.create_data(method='

back_calc') # Step 4.

relax> monte_carlo.initial_values()

Step 5.

relax> minimise.execute('newton')

Step 6.

relax> eliminate()

Step 7.

relax> monte_carlo.error_analysis()

Step 8.

An example for reduced spectral density mapping is:

relax> minimise.calculate()

Step 2.

relax> monte_carlo.setup(number=500)

Step 3.

relax> monte_carlo.create_data(method='

back_calc') # Step 4.

relax> minimise.calculate()

Step 6.

relax> monte_carlo.error_analysis()

Step 8.

17.2.95 monte carlo.on

Synopsis

Turn the Monte Carlo simulations on.

Defaults

monte carlo.on()

Description

This will turn on the Monte Carlo simulations so that
subsequent optimisation will operate on the simulations
rather than on the real model parameters.

Monte Carlo Simulation Overview

For proper error analysis using Monte Carlo simulations,
a sequence of function calls is required for running the
various simulation components. The steps necessary for
implementing Monte Carlo simulations are:

1 – The measured data set together with the corre-
sponding error set should be loaded into relax.

2 – Either minimisation is used to optimise the param-
eters of the chosen model, or a calculation is run.

3 – To initialise and turn on Monte Carlo simulations,
the number of simulations, n, needs to be set.

4 – The simulation data needs to be created either by
back calculation from the fully minimised model
parameters from step 2 or by direct calcula-
tion when values are calculated rather than min-
imised. The error set is used to randomise each
simulation data set by assuming Gaussian errors.
This creates a synthetic data set for each Monte
Carlo simulation.

5 – Prior to minimisation of the parameters of each sim-
ulation, initial parameter estimates are required.
These are taken as the optimised model parame-
ters. An alternative is to use a grid search for each
simulation to generate initial estimates, however
this is extremely computationally expensive. For
the case where values are calculated rather than
minimised, this step should be skipped (although
the results will be unaffected if this is accidentally
run).

6 – Each simulation requires minimisation or calcula-
tion. The same techniques as used in step 2, ex-
cluding the grid search when minimising, should
be used for the simulations.

17.2. THE LIST OF FUNCTIONS 535

7 – Failed simulations are removed using the techniques
of model elimination.

8 – The model parameter errors are calculated from the
distribution of simulation parameters.

Monte Carlo simulations can be turned on or off using
functions within this class. Once the function for setting
up simulations has been called, simulations will be turned
on. The effect of having simulations turned on is that the
functions used for minimisation (grid search, minimise,
etc) or calculation will only affect the simulation param-
eters and not the model parameters. By subsequently
turning simulations off using the appropriate function,
the functions used in minimisation will affect the model
parameters and not the simulation parameters.

An example for model-free analysis using the prompt UI
mode which includes only the functions required for im-
plementing the above steps is:

relax> minimise.grid_search(inc=11)

Step 2.

relax> minimise.execute('newton')

Step 2.

relax> monte_carlo.setup(number=500)

Step 3.

relax> monte_carlo.create_data(method='

back_calc') # Step 4.

relax> monte_carlo.initial_values()

Step 5.

relax> minimise.execute('newton')

Step 6.

relax> eliminate()

Step 7.

relax> monte_carlo.error_analysis()

Step 8.

An example for reduced spectral density mapping is:

relax> minimise.calculate()

Step 2.

relax> monte_carlo.setup(number=500)

Step 3.

relax> monte_carlo.create_data(method='

back_calc') # Step 4.

relax> minimise.calculate()

Step 6.

relax> monte_carlo.error_analysis()

Step 8.

17.2.96 monte carlo.setup

Synopsis

Set up the Monte Carlo simulations.

Defaults

monte carlo.setup(number=500)

Keyword arguments

number: The number of Monte Carlo simulations.

Description

This must be called prior to any of the other Monte Carlo
functions. The effect is that the number of simulations
will be set and that simulations will be turned on.

Monte Carlo Simulation Overview

For proper error analysis using Monte Carlo simulations,
a sequence of function calls is required for running the
various simulation components. The steps necessary for
implementing Monte Carlo simulations are:

1 – The measured data set together with the corre-
sponding error set should be loaded into relax.

2 – Either minimisation is used to optimise the param-
eters of the chosen model, or a calculation is run.

3 – To initialise and turn on Monte Carlo simulations,
the number of simulations, n, needs to be set.

4 – The simulation data needs to be created either by
back calculation from the fully minimised model
parameters from step 2 or by direct calcula-
tion when values are calculated rather than min-
imised. The error set is used to randomise each
simulation data set by assuming Gaussian errors.
This creates a synthetic data set for each Monte
Carlo simulation.

5 – Prior to minimisation of the parameters of each sim-
ulation, initial parameter estimates are required.
These are taken as the optimised model parame-
ters. An alternative is to use a grid search for each
simulation to generate initial estimates, however
this is extremely computationally expensive. For
the case where values are calculated rather than
minimised, this step should be skipped (although
the results will be unaffected if this is accidentally
run).

536 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

6 – Each simulation requires minimisation or calcula-
tion. The same techniques as used in step 2, ex-
cluding the grid search when minimising, should
be used for the simulations.

7 – Failed simulations are removed using the techniques
of model elimination.

8 – The model parameter errors are calculated from the
distribution of simulation parameters.

Monte Carlo simulations can be turned on or off using
functions within this class. Once the function for setting
up simulations has been called, simulations will be turned
on. The effect of having simulations turned on is that the
functions used for minimisation (grid search, minimise,
etc) or calculation will only affect the simulation param-
eters and not the model parameters. By subsequently
turning simulations off using the appropriate function,
the functions used in minimisation will affect the model
parameters and not the simulation parameters.

An example for model-free analysis using the prompt UI
mode which includes only the functions required for im-
plementing the above steps is:

relax> minimise.grid_search(inc=11)

Step 2.

relax> minimise.execute('newton')

Step 2.

relax> monte_carlo.setup(number=500)

Step 3.

relax> monte_carlo.create_data(method='

back_calc') # Step 4.

relax> monte_carlo.initial_values()

Step 5.

relax> minimise.execute('newton')

Step 6.

relax> eliminate()

Step 7.

relax> monte_carlo.error_analysis()

Step 8.

An example for reduced spectral density mapping is:

relax> minimise.calculate()

Step 2.

relax> monte_carlo.setup(number=500)

Step 3.

relax> monte_carlo.create_data(method='

back_calc') # Step 4.

relax> minimise.calculate()

Step 6.

relax> monte_carlo.error_analysis()

Step 8.

17.2.97 n state model.CoM

Synopsis

The defunct centre of mass (CoM) analysis.

Defaults

n state model.CoM(pivot point=[0.0, 0.0, 0.0], centre=
None)

Keyword arguments

pivot point: The pivot point of the motions between
the two domains.

centre: Manually specify the CoM of the initial posi-
tion prior to the N rotations to the positions of the N
states. This is optional.

Description

WARNING: This analysis is now defunct!

This is used for analysing the domain motion informa-
tion content of the N states from the N-state model. The
states do not correspond to physical states, hence noth-
ing can be extracted from the individual states. This
analysis involves the calculation of the pivot to centre of
mass (pivot-CoM) order parameter and subsequent cone
of motions.

For the analysis, both the pivot point and centre of mass
must be specified. The supplied pivot point must be a
vector of floating point numbers of length 3. If the centre
of mass is supplied, it must also be a vector of floating
point numbers (of length 3). If the centre of mass is
not supplied, then the CoM will be calculated from the
selected parts of a previously loaded structure.

Prompt examples

To perform an analysis where the pivot is at the origin
and the CoM is set to the N-terminal domain of a previ-
ously loaded PDB file (the C-terminal domain has been
deselected), type:

relax> n_state_model.CoM()

To perform an analysis where the pivot is at the origin
(because the real pivot has been shifted to this position)
and the CoM is at the position [0, 0, 1], type one of:

relax> n_state_model.CoM(centre=[0, 0, 1])

17.2. THE LIST OF FUNCTIONS 537

relax> n_state_model.CoM(centre=[0.0, 0.0, 1

.0])

relax> n_state_model.CoM(pivot_point=[0.0, 0

.0, 0.0], centre=[0.0, 0.0, 1.0])

17.2.98 n state model.cone pdb

Synopsis

Create a PDB file representing the cone models from the
centre of mass (CoM) analysis.

Defaults

n state model.cone pdb(cone type=None, scale=1.0,
file=‘cone.pdb’, dir=None, force=False)

Keyword arguments

cone type: The type of cone model to represent.

scale: Value for scaling the pivot-CoM distance which
the size of the cone defaults to.

file: The name of the PDB file.

dir: The directory where the file is located.

force: A flag which, if set to True, will overwrite the
any pre-existing file.

Description

WARNING: This analysis is now defunct!

This creates a PDB file containing an artificial geometric
structure to represent the various cone models. These
models include:

‘diff in cone’

‘diff on cone’

The model can be selected by setting the cone type to one
of these values. The cone is represented as an isotropic
cone with its axis parallel to the average pivot-CoM vec-
tor, the vertex placed at the pivot point of the domain
motions, and the length of the edge of the cone equal to
the pivot-CoM distance multiplied by the scaling factor.
The resultant PDB file can subsequently read into any
molecular viewer.

There are four different types of residue within the PDB.
The pivot point is represented as as a single carbon atom
of the residue ‘PIV’. The cone consists of numerous H
atoms of the residue ‘CON’. The average pivot-CoM vec-
tor is presented as the residue ‘AVE’ with one carbon atom
positioned at the pivot and the other at the head of the

538 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

vector (after scaling by the scaling factor). Finally, if
Monte Carlo have been performed, there will be multiple
‘MCC’ residues representing the cone for each simulation,
and multiple ‘MCA’ residues representing the varying av-
erage pivot-CoM vector for each simulation.

To create the diffusion in a cone PDB representation, a
uniform distribution of vectors on a sphere is generated
using spherical coordinates with the polar angle defined
from the average pivot-CoM vector. By incrementing the
polar angle using an arccos distribution, a radial array
of vectors representing latitude are created while incre-
menting the azimuthal angle evenly creates the longitu-
dinal vectors. These are all placed into the PDB file
as H atoms and are all connected using PDB CONECT
records. Each H atom is connected to its two neighbours
on the both the longitude and latitude. This creates a
geometric PDB object with longitudinal and latitudinal
lines representing the filled cone.

17.2.99 n state model.elim no-
prob

Synopsis

Eliminate the structures or states with no probability.

Defaults

n state model.elim no prob()

Description

This will simply remove the structures from the N-state
analysis which have an optimised probability of zero.

Prompt examples

Simply type:

relax> n_state_model.elim_no_prob(N=8)

17.2. THE LIST OF FUNCTIONS 539

17.2.100 n state model.number-
of states

Synopsis

Set the number of states in the N-state model.

Defaults

n state model.number of states(N=1)

Keyword arguments

N: The number of states.

Description

Prior to optimisation, the number of states in the N-state
model can be specified. If the number of states is not set,
then this parameter will be equal to the number of loaded
structures - the ensemble size.

Prompt examples

To set up an 8-state model, type:

relax> n_state_model.number_of_states(N=8)

17.2.101 n state model.ref-
domain

Synopsis

Set the reference domain for the ‘2-domain’ N-state
model.

Defaults

n state model.ref domain(ref=None)

Keyword arguments

ref: The domain which will act as the frame of refer-
ence. This is only valid for the ‘2-domain’ N-state model.

Description

Prior to optimisation of the ‘2-domain’ N-state model,
which of the two domains will act as the frame of refer-
ence must be specified. The N-states will be rotations of
the other domain, so to switch the frame of reference to
the other domain simply transpose the rotation matrices.

Prompt examples

To set up a 5-state model with ‘C’ domain being the frame
of reference, type:

relax> n_state_model.ref_domain(ref='C')

540 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.102 n state model.select-
model

Synopsis

Select the N-state model type and set up the model.

Defaults

n state model.select model(model=‘population’)

Keyword arguments

model: The name of the preset N-state model.

Description

Prior to optimisation, the N-state model type should be
selected. The preset models are:

‘population’ – The N-state model whereby only popu-
lations are optimised. The structures loaded into
relax are assumed to be fixed, i.e. the orienta-
tions are not optimised, or if two domains are
present the Euler angles for each state are fixed.
The parameters of the model include the weight
or probability for each state and the alignment
tensors - {p0, p1, ..., pN, Axx, Ayy, Axy, Axz,
Ayz, ...}.

‘fixed’ – The N-state model whereby all motions are
fixed and all populations are fixed to the set prob-
abilities. The parameters of the model are simply
the parameters of each alignment tensor {Axx,
Ayy, Axy, Axz, Ayz, ...}.

‘2-domain’ – The N-state model for a system of two do-
mains, where one domain experiences a reduced
tensor.

Prompt examples

To analyse populations of states, type:

relax> n_state_model.select_model(model='

populations')

17.2.103 noe.read restraints

Synopsis

Read NOESY or ROESY restraints from a file.

Defaults

noe.read restraints(file=None, dir=None, proton1 col=
None, proton2 col=None, lower col=None, upper col=
None, sep=None)

Keyword arguments

file: The name of the file containing the restraint data.

dir: The directory where the file is located.

proton1 col: The column containing the first proton of
the NOE or ROE cross peak.

proton2 col: The column containing the second proton
of the NOE or ROE cross peak.

lower col: The column containing the lower NOE
bound.

upper col: The column containing the upper NOE
bound.

sep: The column separator (the default is white space).

Description

The format of the file will be automatically determined,
for example Xplor formatted restraint files. A generically
formatted file is also supported if it contains minimally
four columns with the two proton names and the upper
and lower bounds, as specified by the column numbers.
The proton names need to be in the spin ID string format.

Prompt examples

To read the Xplor formatted restraint file ‘NOE.xpl’, type
one of:

relax> noe.read_restraints('NOE.xpl')

relax> noe.read_restraints(file='NOE.xpl')

To read the generic formatted file ‘noes’, type one of:

relax> noe.read_restraints(file='NOE.xpl',

proton1_col=0, proton2_col=1, lower_col

=2, upper_col=3)

17.2. THE LIST OF FUNCTIONS 541

17.2.104 noe.spectrum type

Synopsis

Set the steady-state NOE spectrum type for pre-loaded
peak intensities.

Defaults

noe.spectrum type(spectrum type=None, spectrum id=
None)

Keyword arguments

spectrum type: The type of steady-state NOE spec-
trum, one of ‘ref’ for the reference spectrum or ‘sat’ for
the saturated spectrum.

spectrum id: The spectrum ID string.

Description

The spectrum type can be one of the following:

The steady-state NOE reference spectrum.

The steady-state NOE spectrum with proton sat-
uration turned on.

Peak intensities should be loaded before this user func-
tion via the spectrum.read intensities user function. The
intensity values will then be associated with a spectrum
ID string which can be used here.

17.2.105 palmer.create

Synopsis

Create the Modelfree4 input files.

Defaults

palmer.create(dir=None, force=False, binary=
‘modelfree4’, diff search=‘none’, sims=0, sim type=‘pred’,
trim=0, steps=20, constraints=True, heteronuc type=
‘15N’, atom1=‘N’, atom2=‘H’, spin id=None)

Keyword arguments

dir: The directory to place the files.

force: A flag which if set to True will cause the results
file to be overwritten if it already exists.

binary: The name of the executable Modelfree program
file.

diff search: See the Modelfree4 manual for
‘diffusion search’.

sims: The number of Monte Carlo simulations.

sim type: See the Modelfree4 manual.

trim: See the Modelfree4 manual.

steps: See the Modelfree4 manual.

constraints: A flag specifying whether the parameters
should be constrained. The default is to turn constraints
on (constraints=True).

heteronuc type: A three letter string describing the het-
eronucleus type, ie ‘15N’, ‘13C’, etc.

atom1: The symbol of the X heteronucleus in the PDB
file.

atom2: The symbol of the H nucleus in the PDB file.

spin id: The spin identification string.

Description

The following files are created

‘dir/mfin’

‘dir/mfdata’

542 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

‘dir/mfpar’

‘dir/mfmodel’

‘dir/run.sh’

The file ‘dir/run.sh’ contains the single command,

‘modelfree4 -i mfin -d mfdata -p mfpar -m

mfmodel -o mfout -e out’,

which can be used to execute modelfree4.

If you would like to use a different Modelfree executable
file, change the binary name to the appropriate file name.
If the file is not located within the environment’s path,
include the full path in front of the binary file name.

17.2.106 palmer.execute

Synopsis

Perform a model-free optimisation using Modelfree4.

Defaults

palmer.execute(dir=None, force=False, binary=
‘modelfree4’)

Keyword arguments

dir: The directory to place the files.

force: A flag which if set to True will cause the results
file to be overwritten if it already exists.

binary: The name of the executable Modelfree program
file.

Description

Modelfree 4 will be executed as

$ modelfree4 -i mfin -d mfdata -p mfpar -m

mfmodel -o mfout -e out

If a PDB file is loaded and non-isotropic diffusion is se-
lected, then the file name will be placed on the command
line as ‘-s pdb file name’.

If you would like to use a different Modelfree executable
file, change the binary name to the appropriate file name.
If the file is not located within the environment’s path,
include the full path in front of the binary file name.

17.2. THE LIST OF FUNCTIONS 543

17.2.107 palmer.extract

Synopsis

Extract data from the Modelfree4 ‘mfout’ star formatted
file.

Defaults

palmer.extract(dir=None)

Keyword arguments

dir: The directory where the file ‘mfout’ is found.

Description

The model-free results will be extracted from the Mod-
elfree4 results file ‘mfout’ located in the given directory.

17.2.108 paramag.centre

Synopsis

Specify which atom is the paramagnetic centre.

Defaults

paramag.centre(pos=None, atom id=None, pipe=None,
verbosity=1, fix=True, ave pos=True, force=False)

Keyword arguments

pos: The atomic position of the paramagnetic centre.

atom id: The atom ID string.

pipe: The data pipe containing the structures to ex-
tract the centre from.

verbosity: The amount of information to print out.

fix: A flag specifying if the paramagnetic centre should
be fixed during optimisation.

ave pos: A flag specifying if the position of the atom
is to be averaged across all models.

force: A flag which if True will cause the current para-
magnetic centre to be overwritten.

Description

This is required for specifying where the paramagnetic
centre is located in the loaded structure file. If no struc-
ture number is given, then the average atom position will
be calculated if multiple structures are loaded.

A different set of structures than those loaded into the
current data pipe can also be used to determine the posi-
tion, or its average. This can be achieved by loading the
alternative structures into another data pipe, and then
specifying that pipe.

If the average position flag is set to True, the average
position from all models will be used as the position of
the paramagnetic centre. If False, then the positions from
all structures will be used. If multiple positions are used,
then a fast paramagnetic centre motion will be assumed
so that PCSs for a single tensor will be calculated for
each position, and the PCS values linearly averaged.

544 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

Prompt examples

If the paramagnetic centre is the lanthanide Dysprosium
which is labelled as Dy in a loaded PDB file, then type
one of:

relax> paramag.centre('Dy')

relax> paramag.centre(atom_id='Dy')

If the carbon atom ‘C1’ of residue ‘4’ in the PDB file is
to be used as the paramagnetic centre, then type:

relax> paramag.centre(':4@C1')

To state that the Dy3+ atomic position is [0.136, 12.543,
4.356], type one of:

relax> paramag.centre([0.136, 12.543, 4.356

])

relax> paramag.centre(pos=[0.136, 12.543, 4

.356])

To find an unknown paramagnetic centre, type:

relax> paramag.centre(fix=False)

17.2.109 pcs.back calc

Synopsis

Back calculate the pseudo-contact shifts.

Defaults

pcs.back calc(align id=None)

Keyword arguments

align id: The alignment ID string.

Description

This will back calculate the pseudo-contact shifts if the
paramagnetic centre, temperature and magnetic field
strength has been specified, an alignment tensor is
present, and atomic positions have been loaded into the
relax data store.

17.2. THE LIST OF FUNCTIONS 545

17.2.110 pcs.calc q factors

Synopsis

Calculate the PCS Q factor for the selected spins.

Defaults

pcs.calc q factors(spin id=None, verbosity=1)

Keyword arguments

spin id: The spin ID string for restricting to subset of
all selected spins.

verbosity: The amount of information to print out. Set
to zero to silence the user function, or one to see all
messages.

Description

For this to work, the back-calculated PCS data must first
be generated by the analysis specific code. Otherwise a
warning will be given.

Prompt examples

To calculate the PCS Q factor for only the spins ‘@H26’,
‘@H27’, and ‘@H28’, type one of:

relax> pcs.calc_q_factors('@H26 & @H27 &

@H28')

relax> pcs.calc_q_factors(spin_id='@H26 &

@H27 & @H28')

17.2.111 pcs.copy

Synopsis

Copy PCS data from one data pipe to another.

Defaults

pcs.copy(pipe from=None, pipe to=None, align id=None,
back calc=True)

Keyword arguments

pipe from: The name of the pipe to copy the PCS data
from.

pipe to: The name of the pipe to copy the PCS data
to.

align id: The alignment ID string.

back calc: A flag which if True will cause any back-
calculated PCSs present to also be copied with the real
values and errors.

Description

This function will copy PCS data from ‘pipe from’ to
‘pipe to’. If align id is not given then all PCS data will
be copied, otherwise only a specific data set will be.

Prompt examples

To copy all PCS data from pipe ‘m1’ to pipe ‘m9’, type
one of:

relax> pcs.copy('m1', 'm9')

relax> pcs.copy(pipe_from='m1', pipe_to='m9'

)

relax> pcs.copy('m1', 'm9', None)

relax> pcs.copy(pipe_from='m1', pipe_to='m9'

, align_id=None)

To copy only the ‘Th’ PCS data from ‘m3’ to ‘m6’, type
one of:

relax> pcs.copy('m3', 'm6', 'Th')

relax> pcs.copy(pipe_from='m3', pipe_to='m6'

, align_id='Th')

546 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.112 pcs.corr plot

Synopsis

Generate a correlation plot of the measured vs. the back-
calculated PCSs.

Defaults

pcs.corr plot(format=‘grace’, title=None, subtitle=None,
file=‘pcs corr plot.agr’, dir=None, force=False)

Keyword arguments

format: The format of the plot data.

title: The title for the plot, overriding the default.

subtitle: The subtitle for the plot, overriding the de-
fault.

file: The name of the Grace file to create.

dir: The directory name.

force: A flag which if True will cause the file to be
overwritten.

Description

Two formats are currently supported. If format is set
to ‘grace’, then a Grace plot file will be created. If the
format is not set then a plain text list of the measured
and back-calculated data will be created.

Prompt examples

To create a Grace plot of the data, type:

relax> pcs.corr_plot()

To create a plain text list of the measured and back-
calculated data, type one of:

relax> pcs.corr_plot(None)

relax> pcs.corr_plot(format=None)

17.2.113 pcs.delete

Synopsis

Delete the PCS data corresponding to the alignment ID.

Defaults

pcs.delete(align id=None)

Keyword arguments

align id: The alignment ID string of the data to delete.

Description

This will delete all PCS data associated with the align-
ment ID in the current data pipe.

Prompt examples

To delete the PCS data corresponding to
align id=‘PH gel’, type:

relax> pcs.delete('PH_gel')

17.2. THE LIST OF FUNCTIONS 547

17.2.114 pcs.display

Synopsis

Display the PCS data corresponding to the alignment ID.

Defaults

pcs.display(align id=None, bc=False)

Keyword arguments

align id: The alignment ID string.

bc: A flag which if set will display the back-calculated
rather than measured RDCs.

Description

This will display all of the PCS data associated with the
alignment ID in the current data pipe.

Prompt examples

To display the ‘phage’ PCS data, type:

relax> pcs.display('phage')

17.2.115 pcs.read

Synopsis

Read the PCS data from file.

Defaults

pcs.read(align id=None, file=None, dir=None,
spin id col=None, mol name col=None, res num col=
None, res name col=None, spin num col=None,
spin name col=None, data col=None, error col=None,
sep=None, spin id=None)

Keyword arguments

align id: The alignment ID string.

file: The name of the file containing the PCS data.

dir: The directory where the file is located.

spin id col: The spin ID string column (an alternative
to the mol, res, and spin name and number columns).

mol name col: The molecule name column (alternative
to the spin id col).

res num col: The residue number column (alternative
to the spin id col).

res name col: The residue name column (alternative to
the spin id col).

spin num col: The spin number column (alternative to
the spin id col).

spin name col: The spin name column (alternative to
the spin id col).

data col: The PCS data column.

error col: The experimental error column.

sep: The column separator (the default is white space).

spin id: The spin ID string to restrict the loading of
data to certain spin subsets.

Description

This will read PCS data from a file and associate it with
an alignment ID, either a new ID or a preexisting one
with no PCS data.

548 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

The spin system can be identified in the file using two
different formats. The first is the spin ID string column
which can include the molecule name, the residue name
and number, and the spin name and number. Alterna-
tively the molecule name, residue number and name, and
spin number and name columns can be supplied allow-
ing this information to be in separate columns. Note that
the numbering of columns starts at one. The spin ID can
be used to restrict the reading to certain spin types, for
example only 15N spins when only residue information
is in the file.

Prompt examples

The following commands will read the PCS data out of
the file ‘Tb.txt’ where the columns are separated by the
symbol ‘,’, and store the PCSs under the ID ‘Tb’.

relax> pcs.read('Tb', 'Tb.txt', sep=',')

To read the 15N and 1H PCSs from the file ‘Eu.txt’,
where the 15N values are in the 4th column and the 1H
in the 9th, type both the following:

relax> pcs.read('Tb', 'Tb.txt', spin_id='@N'

, res_num_col=1, data_col=4)

relax> pcs.read('Tb', 'Tb.txt', spin_id='@H'

, res_num_col=1, data_col=9)

17.2.116 pcs.set errors

Synopsis

Set the errors for the PCSs.

Defaults

pcs.set errors(align id=None, spin id=None, sd=0.1)

Keyword arguments

align id: The optional alignment ID string.

spin id: The optional spin ID string.

sd: The PCS standard deviation value in ppm.

Description

If the PCS errors have not already been read from a PCS
data file or if they need to be changed, then the errors
can be set via this user function.

17.2. THE LIST OF FUNCTIONS 549

17.2.117 pcs.structural noise

Synopsis

Determine the PCS error due to structural noise via sim-
ulation.

Defaults

pcs.structural noise(align id=None, rmsd=0.2, sim num=
1000, file=None, dir=None, force=False)

Keyword arguments

align id: The optional alignment ID string.

rmsd: The atomic position RMSD, in Å, to randomise
the spin positions with for the simulations.

sim num: The number of simulations, N, to perform
to determine the structural noise component of the PCS
errors.

file: The optional name of the Grace file to plot the
structural errors verses the paramagnetic centre to spin
distances.

dir: The directory name to place the Grace file into.

force: A flag which if True will cause the file to be
overwritten.

Description

The analysis of the pseudo-contact shift is influenced by
two significant sources of noise - that of the NMR exper-
iment and structural noise from the 3D molecular struc-
ture used. The closer the spin to the paramagnetic cen-
tre, the greater the influence of structural noise. This
distance dependence is governed by the equation:

sqrt(3) * abs(delta) * RMSD

sigma_dist = --------------------------- ,

r

where sigma dist is the distance component of the struc-
tural noise as a standard deviation, delta is the PCS
value, RMSD is the atomic position root-mean-square de-
viation, and r is the paramagnetic centre to spin distance.
When close to the paramagnetic centre, this error source

can exceed that of the NMR experiment. The equation
for the angular component of the structural noise is more
complicated. The PCS error is influenced by distance,
angle in the alignment frame, and the magnetic suscep-
tibility tensor.

For the simulation the following must already be set up
in the current data pipe:

The position of the paramagnetic centre.

The alignment and magnetic susceptibility ten-
sor.

The protocol for the simulation is as follows:

The lanthanide or paramagnetic centre position
will be fixed. Its motion is assumed to be on the
femto- to pico- and nanosecond timescales. Hence
the motion is averaged over the evolution of the
PCS and can be ignored.

The positions of the nuclear spins will be ran-
domised N times. For each simulation a random
unit vector will be generated. Then a random
distance along the unit vector will be generated
by sampling from a Gaussian distribution cen-
tered at zero, the original spin position, with a
standard deviation set to the given RMSD. Both
positive and negative displacements will be used.

The PCS for the randomised position will be back
calculated.

The PCS standard deviation will be calculated
from the N randomised PCS values.

The standard deviation will both be stored in the spin
container data structure in the relax data store as well
as being added to the already present PCS error (using
variance addition). This will then be used in any opti-
misations involving the PCS.

If the alignment ID string is not supplied, the procedure
will be applied to the PCS data from all alignments.

550 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.118 pcs.weight

Synopsis

Set optimisation weights on the PCS data.

Defaults

pcs.weight(align id=None, spin id=None, weight=1.0)

Keyword arguments

align id: The alignment ID string.

spin id: The spin ID string.

weight: The weighting value.

Description

This can be used to force the PCS to contribute more or
less to the chi-squared optimisation statistic. The higher
the value, the more importance the PCS will have.

17.2.119 pcs.write

Synopsis

Write the PCS data to file.

Defaults

pcs.write(align id=None, file=None, dir=None, bc=False,
force=False)

Keyword arguments

align id: The alignment ID string.

file: The name of the file.

dir: The directory name.

bc: A flag which if set will write out the back-
calculated rather than measured RDCs.

force: A flag which if True will cause the file to be
overwritten.

Description

If no directory name is given, the file will be placed in the
current working directory. The alignment ID is required
for selecting which PCS data set will be written to file.

17.2. THE LIST OF FUNCTIONS 551

17.2.120 pipe.bundle

Synopsis

The grouping of data pipes into a bundle.

Defaults

pipe.bundle(bundle=None, pipe=None)

Keyword arguments

bundle: The pipe bundle is a special grouping or clus-
tering of data pipes.

pipe: The name of the data pipe to add to the bundle.

Description

Data pipes can be grouped or clustered together through
special structures known as pipe bundles. If the speci-
fied data pipe bundle does not currently exist, it will be
created.

Prompt examples

To add the data pipes ‘test 1’, ‘test 2’, and ‘test 3’
to the bundle ‘first analysis’, type the following:

relax> pipe.bundle('first analysis 1', 'test

1')

relax> pipe.bundle('first analysis 1', 'test

2')

relax> pipe.bundle('first analysis 1', 'test

3')

17.2.121 pipe.change type

Synopsis

Change the type of the current data pipe.

Defaults

pipe.change type(pipe type=None)

Keyword arguments

pipe type: The type of data pipe.

Description

The data pipe type must be one of the following:

‘ct’ – Consistency testing.

‘frame order’ – Frame Order theories.

‘jw’ – Reduced spectral density mapping.

‘hybrid’ – Special hybrid pipe.

‘mf’ – Model-free analysis.

‘N-state’ – N-state model or ensemble analysis.

‘noe’ – Steady state NOE calculation.

‘relax disp’ – Relaxation dispersion.

‘relax fit’ – Relaxation curve fitting.

Prompt examples

To change the type of the current ‘frame order’ data
pipe to the N-state model, type one of:

relax> pipe.change_type('N-state')

relax> pipe.change_type(pipe_type='N-state')

552 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.122 pipe.copy

Synopsis

Copy a data pipe.

Defaults

pipe.copy(pipe from=None, pipe to=None, bundle to=
None)

Keyword arguments

pipe from: The name of the source data pipe to copy
the data from.

pipe to: The name of the target data pipe to copy the
data to.

bundle to: If given, the new data pipe will be grouped
into this bundle.

Description

This allows the contents of a data pipe to be copied. If
the source data pipe is not set, the current data pipe will
be assumed. The target data pipe must not yet exist.

The optional bundling allows the newly created data pipe
to be placed into either a new or existing data pipe bun-
dle. If not specified, then the copied data pipe will not
be associated with a bundle.

Prompt examples

To copy the contents of the ‘m1’ data pipe to the ‘m2’ data
pipe, type:

relax> pipe.copy('m1', 'm2')

relax> pipe.copy(pipe_from='m1', pipe_to='m2

')

If the current data pipe is ‘m1’, then the following com-
mand can be used:

relax> pipe.copy(pipe_to='m2')

17.2.123 pipe.create

Synopsis

Add a new data pipe to the relax data store.

Defaults

pipe.create(pipe name=None, pipe type=None, bundle=
None)

Keyword arguments

pipe name: The name of the data pipe.

pipe type: The type of data pipe.

bundle: The optional pipe bundle is a special grouping
or clustering of data pipes. If this is specified, the newly
created data pipe will be added to this bundle.

Description

The data pipe name can be any string however the data
pipe type can only be one of the following:

‘ct’ – Consistency testing,

‘frame order’ – The Frame Order theories,

‘jw’ – Reduced spectral density mapping,

‘hybrid’ – A special hybrid pipe,

‘mf’ – Model-free analysis,

‘N-state’ – N-state model or ensemble analysis,

‘noe’ – Steady state NOE calculation,

‘relax disp’ – Relaxation dispersion curve fitting,

‘relax fit’ – Relaxation curve fitting,

The pipe bundling concept is simply a way of grouping
data pipes together. This is useful for a number of pur-
poses:

The grouping or categorisation of data pipes, for
example when multiple related analyses are per-
formed.

In the auto-analyses, as all the data pipes that
they spawn are bound together within the original
bundle.

In the graphical user interface mode as analysis
tabs are linked to specific pipe bundles.

17.2. THE LIST OF FUNCTIONS 553

Prompt examples

To set up a model-free analysis data pipe with the name
‘m5’, type:

relax> pipe.create('m5', 'mf')

17.2.124 pipe.current

Synopsis

Print the name of the current data pipe.

Defaults

pipe.current()

Prompt examples

To run the user function, type:

relax> pipe.current()

554 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.125 pipe.delete

Synopsis

Delete a data pipe from the relax data store.

Defaults

pipe.delete(pipe name=None)

Keyword arguments

pipe name: The name of the data pipe to delete.

Description

This will permanently remove the data pipe and all of its
contents from the relax data store. If the pipe name is
not given, then all data pipes will be deleted.

17.2.126 pipe.display

Synopsis

Print a list of all the data pipes.

Defaults

pipe.display()

Prompt examples

To run the user function, type:

relax> pipe.display()

17.2. THE LIST OF FUNCTIONS 555

17.2.127 pipe.hybridise

Synopsis

Create a hybrid data pipe by fusing a number of other
data pipes.

Defaults

pipe.hybridise(hybrid=None, pipes=None)

Keyword arguments

hybrid: The name of the hybrid data pipe to create.

pipes: An array containing the names of all data pipes
to hybridise.

Description

This user function can be used to construct hybrid mod-
els. An example of the use of a hybrid model could be if
the protein consists of two independent domains. These
two domains could be analysed separately, each having
their own optimised diffusion tensors. The N-terminal
domain data pipe could be called ‘N sphere’ while the
C-terminal domain could be called ‘C ellipsoid’. These
two data pipes could then be hybridised into a single data
pipe. This hybrid data pipe can then be compared via
model selection to a data pipe whereby the entire protein
is assumed to have a single diffusion tensor.

The requirements for data pipes to be hybridised is that
the molecules, sequences, and spin systems for all the
data pipes is the same, and that no spin system is al-
lowed to be selected in two or more data pipes. The se-
lections must not overlap to allow for rigorous statistical
comparisons.

Prompt examples

The two data pipes ‘N sphere’ and ‘C ellipsoid’ could
be hybridised into a single data pipe called ‘mixed model’
by typing:

relax> pipe.hybridise('mixed model', ['

N_sphere', 'C_ellipsoid'])

relax> pipe.hybridise(hybrid='mixed model',

pipes=['N_sphere', 'C_ellipsoid'])

17.2.128 pipe.switch

Synopsis

Switch between the data pipes of the relax data store.

Defaults

pipe.switch(pipe name=None)

Keyword arguments

pipe name: The name of the data pipe.

Description

This will switch between the various data pipes within
the relax data store.

Prompt examples

To switch to the ‘ellipsoid’ data pipe, type:

relax> pipe.switch('ellipsoid')

relax> pipe.switch(pipe_name='ellipsoid')

556 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.129 pymol.cartoon

Synopsis

Apply the PyMOL cartoon style and colour by secondary
structure.

Defaults

pymol.cartoon()

Description

This applies the PyMOL cartoon style which is equiva-
lent to hiding everything and clicking on show cartoon. It
also colours the cartoon with red helices, yellow strands,
and green loops. The following commands are executed:

cmd.hide(‘everything’, file)

cmd.show(‘cartoon’, file)

util.cbss(file, ‘red’, ‘yellow’, ‘green’)

where file is the file name without the ‘.pdb’ extension.

Prompt examples

To apply this user function, type:

relax> pymol.cartoon()

17.2.130 pymol.clear history

Synopsis

Clear the PyMOL command history.

Defaults

pymol.clear history()

Description

This will clear the Pymol history from memory.

17.2. THE LIST OF FUNCTIONS 557

17.2.131 pymol.command

Synopsis

Execute a user supplied PyMOL command.

Defaults

pymol.command(command=None)

Keyword arguments

command: The PyMOL command to execute.

Description

This allows PyMOL commands to be passed to the pro-
gram. This can be useful for automation or scripting.

Prompt examples

To reinitialise the PyMOL instance, type:

relax> pymol.command("reinitialise")

17.2.132 pymol.cone pdb

Synopsis

Display the cone PDB geometric object.

Defaults

pymol.cone pdb(file=None)

Keyword arguments

file: The name of the PDB file containing the cone
geometric object.

Description

The PDB file containing the geometric ob-
ject must be created using the complementary
n state model.cone pdb user function.

The cone PDB file is read in using the command:

load file

The average CoM-pivot point vector, the residue ‘AVE’ is
displayed using the commands:

select resn AVE

show sticks, ‘sele’

color blue, ‘sele’

The cone object, the residue ‘CON’, is displayed using the
commands:

select resn CON

hide (‘sele’)

show sticks, ‘sele’

color white, ‘sele’

558 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.133 pymol.frame order

Synopsis

Display the frame order results from the
frame order.pdb model and frame order.simulate
user functions.

Defaults

pymol.frame order(ave pos=‘ave pos’, rep=‘frame order’,
sim=‘simulation.pdb.gz’, dir=None)

Keyword arguments

ave pos: The file root of the 3D structure PDB file for
the molecular structure with the moving domains shifted
to the average position.

rep: The file root of the PDB file for the geometric
object representation of the frame order dynamics.

sim: The full name the Brownian simulation PDB file.

dir: The directory where the files are located.

Description

This user function is designed to be combined with the
frame order.pdb model and frame order.simulate user
functions. It will take the two PDB representations cre-
ated by frame order.pdb model, the molecular structure
with the averaged domain positions and the frame order
dynamics representation files, and the Brownian simula-
tion PDB file and display them in PyMOL. Rather than
loading the three representations into PyMOL manually,
this user function will change the representation to im-
prove visualisation.

For the PDB files, if the file roots are left to the defaults
then the following files will be loaded:

Average position – The default is to load the
‘ave pos.pdb’ and ‘ave pos sim.pdb’ files.

Frame order motional representation –

The is to load the ‘frame order.pdb’,
‘frame order A.pdb’, ‘frame order B.pdb’,
‘frame order sim.pdb’, ‘frame order sim A.pdb’
and ‘frame order sim B.pdb’ files, if present.

Brownian simulation – The default is to load the
‘simulation.pdb.gz’ file.

The user function will not only search for these files, but
also all *.gz and *.bz2 versions of the average position and
frame order representations. This is to support all output
files from the frame order.pdb model user function.

17.2. THE LIST OF FUNCTIONS 559

17.2.134 pymol.macro apply

Synopsis

Execute PyMOL macros.

Defaults

pymol.macro apply(data type=None, style=‘classic’,
colour start name=None, colour start rgb=None,
colour end name=None, colour end rgb=None,
colour list=None)

Keyword arguments

data type: The data type to map to the structure.

style: The style of the macro.

colour start name: The name of the starting colour of
the linear colour gradient. This can be either one of the
X11 or one of the Molmol colour names listed in the
description. If this is set, then the starting colour RGB
colour array cannot be given.

colour start rgb: The starting colour of the linear
colour gradient. This is an RGB colour array with val-
ues ranging from 0 to 1. If this is set, then the starting
colour name cannot be given.

colour end name: The name of the ending colour of
the linear colour gradient. This can be either one of the
X11 or one of the Molmol colour names listed in the
description. If this is set, then the ending colour RGB
colour array cannot be given.

colour end rgb: The ending colour of the linear colour
gradient. This is an RGB colour array with values rang-
ing from 0 to 1. If this is set, then the ending colour
name cannot be given.

colour list: The colour list to search for the colour
names. This can be either ‘molmol’ or ‘x11’.

Description

This allows spin specific values to be mapped to a
structure through PyMOL macros. Currently only the
‘classic’ style, which is described below, is available.

Colour

The values are coloured based on a linear colour gradient
which is specified through starting and ending colours.
These can either be a string to identify one of the RGB
(red, green, blue) colour arrays listed in the tables be-
low, or you can give the RGB vector itself. For example,
‘white’ and [1.0, 1.0, 1.0] both select the same colour.
Leaving both colours unset will select the default colour
gradient which for each type of analysis is described be-
low.

When supplying the colours as strings, two lists of colours
can be selected from which to match the strings. These
are the default Molmol colour list and the X11 colour
list, both of which are described in the tables below. The
default behaviour is to first search the Molmol list and
then the X11 colour list, raising an error if neither contain
the name. To explicitly select these lists, set the colour
list to either ‘molmol’ or ‘x11’.

Model-free classic style

Creator: Edward d’Auvergne

Argument string: ”classic”

Description: The classic style draws the backbone of a
protein in a cylindrical bond style. Rather than colouring
the amino acids to which the NH bond belongs, the three
covalent bonds of the peptide bond from Ca to Ca in
which the NH bond is located are coloured. Deselected
residues are shown as black lines.

Supported data types:

Please see Table 17.22 on page 514.

Molmol RGB colour arrays

The following table is a list of colours used in Molmol
and their corresponding RGB colour values ranging from
0 to 1.

Please see Table 17.23 on page 515.

X11 RGB colour arrays

The following table is the list of X11 colour names and
their corresponding RGB colour values ranging from 0 to
255.

Please see Table 17.24 on page 516.

Prompt examples

To map the order parameter values, S2, onto the struc-
ture using the classic style, type:

relax> pymol.macro_apply('s2')

560 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

relax> pymol.macro_apply(data_type='s2')

relax> pymol.macro_apply(data_type='s2',

style="classic")
17.2.135 pymol.macro run

Synopsis

Open and execute the PyMOL macro file.

Defaults

pymol.macro run(file=None, dir=‘pymol’)

Keyword arguments

file: The name of the PyMOL macro file.

dir: The directory name.

Description

This user function is for opening and running a PyMOL
macro located within a text file.

Prompt examples

To execute the macro file ‘s2.pml’ located in the direc-
tory ‘pymol’, type:

relax> pymol.macro_run(file='s2.pml')

relax> pymol.macro_run(file='s2.pml', dir='

pymol')

17.2. THE LIST OF FUNCTIONS 561

17.2.136 pymol.macro write

Synopsis

Create PyMOL macros.

Defaults

pymol.macro write(data type=None, style=‘classic’,
colour start name=None, colour start rgb=None,
colour end name=None, colour end rgb=None,
colour list=None, file=None, dir=‘pymol’, force=False)

Keyword arguments

data type: The data type to map to the structure.

style: The style of the macro.

colour start name: The name of the starting colour of
the linear colour gradient. This can be either one of the
X11 or one of the Molmol colour names listed in the
description. If this is set, then the starting colour RGB
colour array cannot be given.

colour start rgb: The starting colour of the linear
colour gradient. This is an RGB colour array with val-
ues ranging from 0 to 1. If this is set, then the starting
colour name cannot be given.

colour end name: The name of the ending colour of
the linear colour gradient. This can be either one of the
X11 or one of the Molmol colour names listed in the
description. If this is set, then the ending colour RGB
colour array cannot be given.

colour end rgb: The ending colour of the linear colour
gradient. This is an RGB colour array with values rang-
ing from 0 to 1. If this is set, then the ending colour
name cannot be given.

colour list: The colour list to search for the colour
names. This can be either ‘molmol’ or ‘x11’.

file: The optional name of the file.

dir: The optional directory to save the file to.

force: A flag which, if set to True, will cause the file to
be overwritten.

Description

This allows residues specific values to be mapped to a
structure through the creation of a PyMOL macro which
can be executed in PyMOL by clicking on ‘File, Macro,

Execute User...’. Currently only the ‘classic’ style,
which is described below, is available.

Colour

The values are coloured based on a linear colour gradient
which is specified through starting and ending colours.
These can either be a string to identify one of the RGB
(red, green, blue) colour arrays listed in the tables be-
low, or you can give the RGB vector itself. For example,
‘white’ and [1.0, 1.0, 1.0] both select the same colour.
Leaving both colours unset will select the default colour
gradient which for each type of analysis is described be-
low.

When supplying the colours as strings, two lists of colours
can be selected from which to match the strings. These
are the default Molmol colour list and the X11 colour
list, both of which are described in the tables below. The
default behaviour is to first search the Molmol list and
then the X11 colour list, raising an error if neither contain
the name. To explicitly select these lists, set the colour
list to either ‘molmol’ or ‘x11’.

Model-free classic style

Creator: Edward d’Auvergne

Argument string: ”classic”

Description: The classic style draws the backbone of a
protein in a cylindrical bond style. Rather than colouring
the amino acids to which the NH bond belongs, the three
covalent bonds of the peptide bond from Ca to Ca in
which the NH bond is located are coloured. Deselected
residues are shown as black lines.

Supported data types:

Please see Table 17.22 on page 514.

Molmol RGB colour arrays

The following table is a list of colours used in Molmol
and their corresponding RGB colour values ranging from
0 to 1.

Please see Table 17.23 on page 515.

X11 RGB colour arrays

The following table is the list of X11 colour names and
their corresponding RGB colour values ranging from 0 to
255.

Please see Table 17.24 on page 516.

Prompt examples

To create a PyMOL macro mapping the order parame-
ter values, S2, onto the structure using the classic style,
type:

relax> pymol.macro_write('s2')

562 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

relax> pymol.macro_write(data_type='s2')

relax> pymol.macro_write(data_type='s2',

style="classic", file='s2.pml', dir='

pymol')

17.2.137 pymol.tensor pdb

Synopsis

Display the diffusion tensor PDB geometric object over
the loaded PDB.

Defaults

pymol.tensor pdb(file=None)

Keyword arguments

file: The name of the PDB file containing the tensor
geometric object.

Description

In executing this user function, a PDB file must have
previously been loaded into this data pipe a geometric
object or polygon representing the Brownian rotational
diffusion tensor will be overlain with the loaded PDB file
and displayed within PyMOL. The PDB file containing
the geometric object must be created using the comple-
mentary structure.create diff tensor pdb user function.

The tensor PDB file is read in using the command:

load file

The centre of mass residue ‘COM’ is displayed using the
commands:

select resn COM

show dots, ‘sele’

color blue, ‘sele’

The axes of the diffusion tensor, the residue ‘AXS’, is dis-
played using the commands:

select resn AXS

hide (‘sele’)

show sticks, ‘sele’

color cyan, ‘sele’

17.2. THE LIST OF FUNCTIONS 563

label ‘sele’, name

The simulation axes, the residues ‘SIM’, are displayed us-
ing the commands:

select resn SIM

colour cyan, ‘sele’

17.2.138 pymol.vector dist

Synopsis

Display the PDB file representation of the XH vector
distribution.

Defaults

pymol.vector dist(file=‘XH dist.pdb’)

Keyword arguments

file: The name of the PDB file containing the vector
distribution.

Description

A PDB file of the macromolecule must have previously
been loaded as the vector distribution will be overlain
with the macromolecule within PyMOL. The PDB file
containing the vector distribution must be created us-
ing the complementary structure.create vector dist user
function.

The vector distribution PDB file is read in using the com-
mand:

load file

564 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.139 pymol.view

Synopsis

View the collection of molecules from the loaded PDB
file.

Defaults

pymol.view()

Description

This will simply launch Pymol.

Prompt examples

relax> pymol.view()

17.2.140 rdc.back calc

Synopsis

Back calculate the residual dipolar couplings.

Defaults

rdc.back calc(align id=None)

Keyword arguments

align id: The alignment ID string.

Description

This will back calculate the residual dipolar couplings
(RDCs) if an alignment tensor is present and inter-dipole
vectors have been loaded into the relax data store.

17.2. THE LIST OF FUNCTIONS 565

17.2.141 rdc.calc q factors

Synopsis

Calculate the RDC Q factor for the selected spins.

Defaults

rdc.calc q factors(spin id=None, verbosity=1)

Keyword arguments

spin id: The spin ID string for restricting to subset of
all selected spins.

verbosity: The amount of information to print out. Set
to zero to silence the user function, or one to see all
messages.

Description

For this to work, the back-calculated RDC data must first
be generated by the analysis specific code. Otherwise a
warning will be given.

Prompt examples

To calculate the RDC Q factor for only the spins ‘@H26’,
‘@H27’, and ‘@H28’, type one of:

relax> rdc.calc_q_factors('@H26 & @H27 &

@H28')

relax> rdc.calc_q_factors(spin_id='@H26 &

@H27 & @H28')

17.2.142 rdc.copy

Synopsis

Copy RDC data from one data pipe to another.

Defaults

rdc.copy(pipe from=None, pipe to=None, align id=None,
back calc=True)

Keyword arguments

pipe from: The name of the pipe to copy the RDC data
from.

pipe to: The name of the pipe to copy the RDC data
to.

align id: The alignment ID string.

back calc: A flag which if True will cause any back-
calculated RDCs present to also be copied with the real
values and errors.

Description

This function will copy RDC data from ‘pipe from’ to
‘pipe to’. If align id is not given then all RDC data will
be copied, otherwise only a specific data set will be.

Prompt examples

To copy all RDC data from pipe ‘m1’ to pipe ‘m9’, type
one of:

relax> rdc.copy('m1', 'm9')

relax> rdc.copy(pipe_from='m1', pipe_to='m9'

)

relax> rdc.copy('m1', 'm9', None)

relax> rdc.copy(pipe_from='m1', pipe_to='m9'

, align_id=None)

To copy only the ‘Th’ RDC data from ‘m3’ to ‘m6’, type
one of:

relax> rdc.copy('m3', 'm6', 'Th')

relax> rdc.copy(pipe_from='m3', pipe_to='m6'

, align_id='Th')

566 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.143 rdc.corr plot

Synopsis

Generate a correlation plot of the measured vs. the back-
calculated RDCs.

Defaults

rdc.corr plot(format=‘grace’, title=None, subtitle=None,
file=‘rdc corr plot.agr’, dir=None, force=False)

Keyword arguments

format: The format of the plot data.

title: The title for the plot, overriding the default.

subtitle: The subtitle for the plot, overriding the de-
fault.

file: The name of the Grace file to create.

dir: The directory name.

force: A flag which if True will cause the file to be
overwritten.

Description

Two formats are currently supported. If format is set
to ‘grace’, then a Grace plot file will be created. If the
format is not set then a plain text list of the measured
and back-calculated data will be created.

Prompt examples

To create a Grace plot of the data, type:

relax> rdc.corr_plot()

To create a plain text list of the measured and back-
calculated data, type one of:

relax> rdc.corr_plot(None)

relax> rdc.corr_plot(format=None)

17.2.144 rdc.delete

Synopsis

Delete the RDC data corresponding to the alignment ID.

Defaults

rdc.delete(align id=None)

Keyword arguments

align id: The alignment ID string of the data to delete.

Description

This will delete all RDC data associated with the align-
ment ID in the current data pipe.

Prompt examples

To delete the RDC data corresponding to
align id=‘PH gel’, type:

relax> rdc.delete('PH_gel')

17.2. THE LIST OF FUNCTIONS 567

17.2.145 rdc.display

Synopsis

Display the RDC data corresponding to the alignment
ID.

Defaults

rdc.display(align id=None, bc=False)

Keyword arguments

align id: The alignment ID string.

bc: A flag which if set will display the back-calculated
rather than measured RDCs.

Description

This will display all of the RDC data associated with the
alignment ID in the current data pipe.

Prompt examples

To display the ‘phage’ RDC data, type:

relax> rdc.display('phage')

17.2.146 rdc.read

Synopsis

Read the RDC data from file.

Defaults

rdc.read(align id=None, file=None, dir=None,
data type=‘D’, spin id1 col=1, spin id2 col=2, data col=
None, error col=None, sep=None, neg g corr=False,
absolute=False)

Keyword arguments

align id: The alignment ID string.

file: The name of the file containing the RDC data.

dir: The directory where the file is located.

data type: Specify if the RDC data is in the D or 2D
format, or the T = J + D format.

spin id1 col: The spin ID string column for the first
spin.

spin id2 col: The spin ID string column for the second
spin.

data col: The RDC data column.

error col: The experimental error column.

sep: The column separator (the default is white space).

neg g corr: A flag which is used to correct for the neg-
ative gyromagnetic ratio of 15N. If set to True, all RDC
values will be inverted prior to being stored in the relax
data store.

absolute: A flag which indicates that the loaded RDCs
are are signless.

Description

This will read RDC data from a file and associate it with
an alignment ID, either a new ID or a preexisting one
with no RDC data.

The data type is used to specify how the RDC is defined.
It can be set to a number of values:

‘D’ means that the splitting in the aligned sample
was taken as J + D.

568 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

‘2D’ means that the splitting in the aligned sample
was assumed to be J + 2D.

‘T’ means that the file contains T = J + D values.

Internally, relax uses the D notation. Therefore if set to
‘2D’, the values will be doubled when read in. If the ‘T’
data type is specified, then J couplings must be present
for this data to be of any use.

If the negative gyromagnetic ratio correction flag is set,
a sign inversion will be applied to all RDC values to be
loaded. This is sometimes needed for 15N if the data is
not compensated for the negative gyromagnetic ratio.

The absolute RDCs flag is used for RDCs in which the
sign is unknown. All absolute RDCs loaded will be con-
verted to positive values.

Prompt examples

The following commands will read the RDC data out of
the file ‘Tb.txt’ where the columns are separated by the
symbol ‘,’, and store the RDCs under the ID ‘Tb’:

relax> rdc.read('Tb', 'Tb.txt', sep=',')

If the individual spin RDC errors are located in the file
‘rdc err.txt’ in column number 5, then to read these
values into relax, assuming J + D was measured, type
one of:

relax> rdc.read('phage', 'rdc_err.txt',

data_type='D', error_col=5)

relax> rdc.read(align_id='phage', file='

rdc_err.txt', data_type='D', error_col

=5)

17.2.147 rdc.set errors

Synopsis

Set the errors for the RDCs.

Defaults

rdc.set errors(align id=None, spin id1=None, spin id2=
None, sd=1.0)

Keyword arguments

align id: The optional alignment ID string.

spin id1: The optional spin ID string of the first spin.

spin id2: The optional spin ID string of the second
spin.

sd: The RDC standard deviation value in Hertz.

Description

If the RDC errors have not already been read from a
RDC data file or if they need to be changed, then the
errors can be set via this user function.

17.2. THE LIST OF FUNCTIONS 569

17.2.148 rdc.weight

Synopsis

Set optimisation weights on the RDC data.

Defaults

rdc.weight(align id=None, spin id=None, weight=1.0)

Keyword arguments

align id: The alignment ID string.

spin id: The spin ID string.

weight: The weighting value.

Description

This can be used to force the RDC to contribute more or
less to the chi-squared optimisation statistic. The higher
the value, the more importance the RDC will have.

17.2.149 rdc.write

Synopsis

Write the RDC data to file.

Defaults

rdc.write(align id=None, file=None, dir=None, bc=False,
force=False)

Keyword arguments

align id: The alignment ID string.

file: The name of the file.

dir: The directory name.

bc: A flag which if set will write out the back-
calculated rather than measured RDCs.

force: A flag which if True will cause the file to be
overwritten.

Description

If no directory name is given, the file will be placed in the
current working directory. The alignment ID is required
for selecting which RDC data set will be written to file.

570 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.150 relax data.back calc

Synopsis

Back calculate the relaxation data at the given frequency.

Defaults

relax data.back calc(ri id=None, ri type=None, frq=
None)

Keyword arguments

ri id: The relaxation data ID string.

ri type: The relaxation data type, ie ‘R1’, ‘R2’, or ‘NOE’.

frq: The spectrometer frequency in Hz.

Description

This allows relaxation data of the given type and fre-
quency to be back calculated from the model parameter
values. If the relaxation data ID, type and frequency are
not given, then relaxation data matching that currently
loaded in the relax data store will be back-calculated.

17.2.151 relax data.copy

Synopsis

Copy relaxation data from one pipe to another.

Defaults

relax data.copy(pipe from=None, pipe to=None, ri id=
None)

Keyword arguments

pipe from: The name of the pipe to copy the relaxation
data from.

pipe to: The name of the pipe to copy the relaxation
data to.

ri id: The relaxation data ID string.

Description

This will copy relaxation data from one data pipe to an-
other. If the relaxation ID data string is not given then
all relaxation data will be copied, otherwise only a spe-
cific data set will be copied.

Prompt examples

To copy all relaxation data from pipe ‘m1’ to pipe ‘m9’,
type one of:

relax> relax_data.copy('m1', 'm9')

relax> relax_data.copy(pipe_from='m1',

pipe_to='m9')

relax> relax_data.copy('m1', 'm9', None)

relax> relax_data.copy(pipe_from='m1',

pipe_to='m9', ri_id=None)

To copy only the NOE relaxation data with the ID string
of ‘NOE 800’ from ‘m3’ to ‘m6’, type one of:

relax> relax_data.copy('m3', 'm6', 'NOE_800'

)

relax> relax_data.copy(pipe_from='m3',

pipe_to='m6', ri_id='NOE_800')

17.2. THE LIST OF FUNCTIONS 571

17.2.152 relax data.delete

Synopsis

Delete the data corresponding to the relaxation data ID
string.

Defaults

relax data.delete(ri id=None)

Keyword arguments

ri id: The relaxation data ID string.

Description

The relaxation data corresponding to the given relax-
ation data ID string will be removed from the current
data pipe.

Prompt examples

To delete the relaxation data corresponding to the ID
‘NOE 600’, type:

relax> relax_data.delete('NOE_600')

17.2.153 relax data.display

Synopsis

Display the data corresponding to the relaxation data ID
string.

Defaults

relax data.display(ri id=None)

Keyword arguments

ri id: The relaxation data ID string.

Description

This will display the relaxation data corresponding to the
given ID.

Prompt examples

To display the NOE relaxation data at 600 MHz with the
ID string ‘NOE 600’, type:

relax> relax_data.display('NOE_600')

572 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.154 relax data.peak-
intensity type

Synopsis

Specify if heights or volumes were used to measure the
peak intensities.

Defaults

relax data.peak intensity type(ri id=None, type=‘height’)

Keyword arguments

ri id: The relaxation data ID string.

type: The peak intensity type.

Description

This is essential for BMRB data deposition. It is used
to specify whether peak heights or peak volumes were
measured. The two currently allowed values for the peak
intensity type are ‘height’ and ‘volume’.

17.2.155 relax data.read

Synopsis

Read R1, R2, NOE, or R2eff relaxation data from a file.

Defaults

relax data.read(ri id=None, ri type=None, frq=None,
file=None, dir=None, spin id col=None, mol name col=
None, res num col=None, res name col=None,
spin num col=None, spin name col=None, data col=
None, error col=None, sep=None, spin id=None)

Keyword arguments

ri id: The relaxation data ID string. This must be a
unique identifier.

ri type: The relaxation data type, i.e. ‘R1’, ‘R2’, ‘NOE’,
or ‘R2eff’.

frq: The exact proton frequency of the spectrometer
in Hertz. See the ‘sfrq’ parameter in the Varian procpar
file or the ‘SFO1’ parameter in the Bruker acqus file.

file: The name of the file containing the relaxation
data.

dir: The directory where the file is located.

spin id col: The spin ID string column (an alternative
to the mol, res, and spin name and number columns).

mol name col: The molecule name column (alternative
to the spin id col).

res num col: The residue number column (alternative
to the spin id col).

res name col: The residue name column (alternative to
the spin id col).

spin num col: The spin number column (alternative to
the spin id col).

spin name col: The spin name column (alternative to
the spin id col).

data col: The relaxation data column.

error col: The experimental error column.

sep: The column separator (the default is white space).

spin id: The spin ID string to restrict the loading of
data to certain spin subsets.

17.2. THE LIST OF FUNCTIONS 573

Description

This will load the relaxation data into the relax data
store. The data is associated with the spectrometer fre-
quency in Hertz. For subsequent analysis, this frequency
must be set to the exact field strength. This value is
stored in the ‘sfrq’ parameter in the Varian procpar file
or the ‘SFO1’ parameter in the Bruker acqus file.

The spin system can be identified in the file using two
different formats. The first is the spin ID string column
which can include the molecule name, the residue name
and number, and the spin name and number. Alterna-
tively the molecule name, residue number, residue name,
spin number and/or spin name columns can be supplied
allowing this information to be in separate columns. Note
that the numbering of columns starts at one. The spin
ID string can be used to restrict the reading to certain
spin types, for example only 15N spins when only residue
information is in the file.

Prompt examples

The following commands will read the protein NOE re-
laxation data collected at 600 MHz out of a file called
‘noe.600.out’ where the residue numbers, residue names,
data, errors are in the first, second, third, and forth
columns respectively.

relax> relax_data.read('NOE_600', 'NOE', 599

.7 * 1e6, 'noe.600.out', res_num_col=1,

res_name_col=2, data_col=3, error_col

=4)

relax> relax_data.read(ri_id='NOE_600',

ri_type='NOE', frq=600.0 * 1e6, file='

noe.600.out', res_num_col=1,

res_name_col=2, data_col=3, error_col

=4)

The following commands will read the R2 data out of the
file ‘r2.out’ where the residue numbers, residue names,
data, errors are in the second, third, fifth, and sixth
columns respectively. The columns are separated by
commas.

relax> relax_data.read('R2_800', 'R2', 8.0 *

1e8, 'r2.out', res_num_col=2,

res_name_col=3, data_col=5, error_col

=6, sep=',')

relax> relax_data.read(ri_id='R2_800',

ri_type='R2', frq=8.0*1e8, file='r2.out

', res_num_col=2, res_name_col=3,

data_col=5, error_col=6, sep=',')

The following commands will read the R1 data out of
the file ‘r1.out’ where the columns are separated by the
symbol ‘%’

relax> relax_data.read('R1_300', 'R1', 300.1

* 1e6, 'r1.out', sep='%')

17.2.156 relax data.temp-
calibration

Synopsis

Specify the per-experiment temperature calibration
method used.

Defaults

relax data.temp calibration(ri id=None, method=None)

Keyword arguments

ri id: The relaxation data ID string.

method: The per-experiment temperature calibration
method.

Description

For the proper measurement of relaxation data, per-
experiment temperature calibration is essential. This
user function is not for inputting standard MeOH/ethy-
lene glycol/etc. calibration of a spectrometer - this tem-
perature setting is of no use when you are running exper-
iments which pump in large amounts of power into the
probe head.

The R1 experiment should be about the same temper-
ature as a HSQC and hence be close to the standard
MeOH/ethylene glycol spectrometer calibration. How-
ever the R2 CPMG or spin lock and, to a lesser extent,
the NOE pre-saturation pump a lot more power into the
probe head. The power differences can either cause the
temperature in the sample to be too high or too low.
This is unpredictable as the thermometer used by the
VT unit is next to the coils in the probe head and not
inside the NMR sample. So the VT unit tries to con-
trol the temperature inside the probe head rather than
in the NMR sample. However between the thermome-
ter and the sample is the water of the sample, the glass
of the NMR tube, the air gap where the VT unit con-
trols air flow and the outside components of the probe
head protecting the electronics. If the sample, the probe
head or the VT unit is changed, this will have a differ-
ent affect on the per-experiment temperature. The VT
unit responds differently under different conditions and
may sometimes over or under compensate by a couple
of degrees. Therefore each relaxation data set from each
spectrometer requires a per-experiment calibration.

Specifying the per-experiment calibration method is
needed for BMRB data deposition. The currently al-
lowed methods are:

574 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

‘methanol’,

‘monoethylene glycol’,

‘no calibration applied’.

Other methods will be accepted if supplied.

17.2.157 relax data.temp control

Synopsis

Specify the temperature control method used.

Defaults

relax data.temp control(ri id=None, method=None)

Keyword arguments

ri id: The relaxation data ID string.

method: The control method.

Description

For the proper measurement of relaxation data, explicit
temperature control techniques are essential. A number
of factors can cause significant temperature fluctuations
between individual relaxation experiments. This includes
the daily temperature cycle of the room housing the spec-
trometer, different amounts of power for the individual
experiments, etc.

The best methods for eliminating such problems are
single scan interleaving and temperature compensation
block. Single scan interleaving is the most powerful tech-
nique for averaging the temperature fluctuations not only
across different experiments, but also across the entire
measurement time. The application of off-resonance tem-
perature compensation blocks at the start of the experi-
ment is useful for the R2 and will normalise the tempera-
ture between the individual experiments, but single scan
or single fid interleaving is nevertheless required for nor-
malising the temperature across the entire measurement.

Specifying the temperature control method is needed for
BMRB data deposition. The currently allowed methods
are:

‘single scan interleaving’,

‘temperature compensation block’,

‘single scan interleaving and temperature

compensation block’,

‘single fid interleaving’,

‘single experiment interleaving’,

‘no temperature control applied’.

17.2. THE LIST OF FUNCTIONS 575

17.2.158 relax data.type

Synopsis

Set the type of relaxation data.

Defaults

relax data.type(ri id=None, ri type=None)

Keyword arguments

ri id: The relaxation data ID string of the data to set
the frequency of.

ri type: The relaxation data type, i.e. ‘R1’, ‘R2’, or
‘NOE’.

Description

This allows the type associated with the relaxation data
to be either set or reset. This type must be one of ‘R1’,
‘R2’, or ‘NOE’.

17.2.159 relax data.write

Synopsis

Write relaxation data to a file.

Defaults

relax data.write(ri id=None, file=None, dir=None, bc=
False, force=False)

Keyword arguments

ri id: The relaxation data ID string.

file: The name of the file.

dir: The directory name.

bc: A flag which if True will cause the back-calculated
data to be written to the file.

force: A flag which if True will cause the file to be
overwritten.

Description

If no directory name is given, the file will be placed in
the current working directory. The relaxation data ID
string is required for selecting which relaxation data to
write to file.

576 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.160 relax disp.catia execute

Synopsis

Perform a relaxation dispersion optimisation using Flem-
ming Hansen’s CATIA.

Defaults

relax disp.catia execute(dir=None, binary=‘catia’)

Keyword arguments

dir: The directory containing all of the CATIA input
files.

binary: The name of the executable CATIA program
file.

Description

CATIA will be executed as

$ catia < Fit.catia

If you would like to use a different CATIA executable
file, change the binary name to the appropriate file name.
If the file is not located within the environment’s path,
include the full path in front of the binary file name.

17.2.161 relax disp.catia input

Synopsis

Create the input files for Flemming Hansen’s CATIA pro-
gram.

Defaults

relax disp.catia input(dir=‘catia’, force=False)

Keyword arguments

dir: The directory to place the CATIA input files, out-
put directory, etc.

force: A flag which if set to True will cause the files to
be overwritten if they already exist.

Description

This will create all of the input file required for CATIA
as well as the CATIA results output directory.

17.2. THE LIST OF FUNCTIONS 577

17.2.162 relax disp.cluster

Synopsis

Define clusters of spins for joint optimisation.

Defaults

relax disp.cluster(cluster id=None, spin id=None)

Keyword arguments

cluster id: The cluster identification string.

spin id: The spin identifier string for the spin or group
of spins to add to the cluster.

Description

In a relaxation dispersion analysis, the parameters of the
model of dispersion can either be optimised for each spin
system separately or a number of spins can be grouped or
clustered and the dispersion model parameters optimised
for all spins in the cluster together. Clusters are identified
by unique ID strings. Any spins not within a cluster will
be optimised separately and individually.

If the cluster ID string already exists, the spins will be
added to that pre-existing cluster. If no spin ID is given,
then all spins will be added to the cluster.

The special cluster ID string ‘free spins’ is reserved for
the pool of non-clustered spins. This can be used to
remove a spin system from an already existing cluster by
specifying this cluster ID and the desired spin ID.

Prompt examples

To add the spins ‘:1@N’ and ‘:3@N’ to a new cluster called
‘cluster’, type one of:

relax> relax_disp.cluster('cluster', ':1,3@N

')

relax> relax_disp.cluster(cluster_id='

cluster', spin_id=':1,3@N')

17.2.163 relax disp.cpmg setup

Synopsis

Set the CPMG pulse sequence information associated
with a given spectrum.

Defaults

relax disp.cpmg setup(spectrum id=None, cpmg frq=
None, ncyc even=True)

Keyword arguments

spectrum id: The spectrum ID string to associate the
CPMG pulse sequence information to.

cpmg frq: The frequency, in Hz, of the CPMG pulse
train.

ncyc even: A flag which if True means that the number
of CPMG blocks must be even. This is pulse sequence
dependant.

Description

This allows all information about CPMG pulse sequence
required for a relaxation dispersion analysis to be speci-
fied. This includes:

‘cpmg frq’ allows the CPMG pulse train fre-
quency of a given spectrum to be set. If None
is given for frequency, then the spectrum will be
treated as a reference spectrum.

‘ncyc even’ specifies if an even number of CPMG
blocks are required for the pulse sequence.

Prompt examples

To identify the reference spectrum called
‘reference spectrum’, type:

relax> relax_disp.cpmg_setup(spectrum_id='

reference_spectrum', cpmg_frq=None)

To set a frequency of 200 Hz for the spectrum
‘200 Hz spectrum’, type:

relax> relax_disp.cpmg_setup(spectrum_id='

200_Hz_spectrum', cpmg_frq=200)

578 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.164 relax disp.cpmgfit-
execute

Synopsis

Optimisation of the CPMG data using Art Palmer’s CP-
MGFit program.

Defaults

relax disp.cpmgfit execute(dir=None, force=False,
binary=‘cpmgfit’)

Keyword arguments

dir: The directory containing all of the CPMGFit input
files. If not given, this defaults to the model name in
lower case.

force: A flag which if set to True will cause the results
files to be overwritten if they already exist.

binary: The name of the executable CPMGFit program
file.

Description

CPMGFit will be executed once per spin as:

$ cpmgfit -grid -xmgr -f dir/spin_x.in | tee

dir/spin_x.out

where x is replaced by each spin ID string. If you would
like to use a different CPMGFit executable file, change
the binary name to the appropriate file name. If the file
is not located within the environment’s path, be sure to
include the full path in front of the binary file name so
it can be found.

17.2.165 relax disp.cpmgfit input

Synopsis

Create the input files for Art Palmer’s CPMGFit pro-
gram.

Defaults

relax disp.cpmgfit input(dir=None, force=False, binary=
‘cpmgfit’, spin id=None)

Keyword arguments

dir: The directory to place the files. If not given, this
defaults to the model name in lower case.

force: A flag which if set to True will cause the files to
be overwritten if they already exist.

binary: The name of the executable CPMGFit program
file.

spin id: The spin identification string.

Description

The following files are created:

‘dir/spin x.in’,

‘dir/run.sh’.

One CPMGFit input file is created per spin and named
‘dir/spin x.in’, where x is the spin ID string. The file
‘dir/run.sh’ is a batch file for executing CPMGFit for all
of the spin input files. If you would like to use a different
CPMGFit executable file, change the binary name to the
appropriate file name. If the file is not located within the
environment’s path, be sure to include the full path in
front of the binary name so it can be found.

17.2. THE LIST OF FUNCTIONS 579

17.2.166 relax disp.exp type

Synopsis

Select the relaxation dispersion experiment type.

Defaults

relax disp.exp type(spectrum id=None, exp type=‘SQ
CPMG’)

Keyword arguments

spectrum id: The spectrum ID string to associate the
spin-lock field strength to.

exp type: The type of relaxation dispersion experiment
performed.

Description

For each peak intensity set loaded into relax, the type
of experiment it comes from needs to be specified. By
specifying this for each spectrum ID, multiple experiment
types can be analysed simultaneously. This is assuming
that an appropriate dispersion model exists for the ex-
periment combination.

The currently supported experiments include:

‘SQ CPMG’ – The single quantum (SQ) CPMG-type ex-
periments,

‘ZQ CPMG’ – The zero quantum (ZQ) CPMG-type exper-
iments,

‘DQ CPMG’ – The double quantum (DQ) CPMG-type ex-
periments,

‘MQ CPMG’ – The multiple quantum (MQ) CPMG-type
experiments,

‘1H SQ CPMG’ – The 1H single quantum (SQ) CPMG-
type experiments,

‘1H MQ CPMG’ – The 1H multiple quantum (MQ)
CPMG-type experiments,

‘R1rho’ – The R1rho-type experiments.

Prompt examples

To set the experiment type to ‘SQ CPMG’ for the spectrum
ID ‘nu 4500.0 800MHz’, type one of:

relax> relax_disp.exp_type('nu_4500.0_800MHz

', 'SQ CPMG')

relax> relax_disp.exp_type(spectrum_id='

nu_4500.0_800MHz', exp_type='SQ CPMG')

580 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.167 relax disp.insignificance

Synopsis

Deselect all spins with insignificant dispersion.

Defaults

relax disp.insignificance(level=2.0)

Keyword arguments

level: The R2eff/R1rho value in rad/s by which to
judge insignificance. If the maximum difference between
two points on all dispersion curves for a spin is less than
this value, that spin will be deselected.

Description

This can be used to deselect all spins which have insignif-
icant dispersion profiles. The insignificance value is the
R2eff/R1rho value in rad/s by which to judge the disper-
sion curves by. If the maximum difference between two
points on all dispersion curves for a spin is less than this
value, that spin will be deselected.

17.2.168 relax disp.nessy input

Synopsis

Create the input files for Michael Bieri’s NESSY pro-
gram.

Defaults

relax disp.nessy input(dir=None, force=False, spin id=
None)

Keyword arguments

dir: The directory to place the file and to use as the
NESSY project directory. If not given, this defaults to
the current directory.

force: A flag which if set to True will cause the files to
be overwritten if they already exist.

spin id: The spin identification string.

Description

This will create a single NESSY save file called
‘save.NESSY’. This will contain all of the dispersion data
currently loaded in the relax data store. If the directory
name is not supplied, this will default to the current di-
rectory.

17.2. THE LIST OF FUNCTIONS 581

17.2.169 relax disp.parameter-
copy

Synopsis

Copy dispersion specific parameters values from one data
pipe to another.

Defaults

relax disp.parameter copy(pipe from=None, pipe to=
None)

Keyword arguments

pipe from: The name of the pipe to copy from.

pipe to: The name of the pipe to copy to.

Description

This is a special function for copying relaxation disper-
sion parameters from one data pipe to another. It is
much more advanced than the value.copy user function,
in that clustering is taken into account. When the desti-
nation data pipe has spin clusters defined, then the new
parameter values, when required, will be taken as the
median value.

For the cluster specific parameters, i.e. the populations
of the states and the exchange parameters, a median
value will be used as the starting point. For all other
parameters, the R20 values for each spin and magnetic
field, as well as the parameters related to the chemical
shift difference dw, the optimised values of the previous
run will be directly copied.

Prompt examples

To copy the CSA values from the data pipe ‘m1’ to ‘m2’,
type:

relax> value.parameter_copy('m1', 'm2', 'csa

')

17.2.170 relax disp.plot disp-
curves

Synopsis

Create 2D Grace plots of the dispersion curves for each
spin system.

Defaults

relax disp.plot disp curves(dir=‘grace’, y axis=‘r2 eff’,
x axis=‘disp’, num points=1000, extend hz=500.0,
extend ppm=500.0, interpolate=‘disp’, force=False)

Keyword arguments

dir: The directory name to place all of the spin system
files into.

y axis: Option can be either ‘r2 eff’ which plot ‘r2eff’
for CPMG experiments or ‘r1rho’ for R1rho experiments
or option can be ‘r2 r1rho’, which for R1rho experiments
plot R2.

x axis: Option can be either ‘disp’ which plot
‘CPMG frequency (Hz)’ for CPMG experiments or
‘Spin-lock field strength (Hz)’ for R1rho experi-
ments or option can be either ‘w eff’ or ‘theta’
for R1rho experiments, which plot ‘Effective field

in rotating frame (rad/s)’ or ‘Rotating frame tilt

angle θ (rad)’

num points: The total number of points to generate
the interpolated dispersion curves with. This value has
no effect for the numeric CPMG-based models.

extend hz: How far to extend the interpolated disper-
sion curves beyond the last dispersion point, i.e. the
nu CPMG frequency or spin-lock field strength value, in
Hertz.

extend ppm: How far to extend the interpolated dis-
persion curves beyond the last dispersion point, i.e. the
spin-lock offset value, in ppm.

interpolate: Either by option ‘disp’ which interpolate
CPMG frequency or spin-lock field strength, or by option
‘offset’ which interpole over spin-lock offset.

force: A flag which, if set to True, will cause the files
to be overwritten.

582 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

Description

This is used to create 2D Grace plots of the dispersion
curves of the nu CPMG frequencies or spin-lock field
strength verses the R2eff/R1rho values. One file will
be created per spin system with the name ‘disp x.agr’,
where x is related to the spin ID string. For each file,
one Grace graph will be produced for each experiment.

Four sets of curves of R2eff/R1rho values will be pro-
duced per experiment and per magnetic field strength.
These are the experimental values, the fitted values, the
interpolated dispersion curves for the fitted solution, and
the residuals. Different dispersion models result in dif-
ferent interpolated dispersion curves. For the numeric
models which use CPMG-type data, the maximum in-
terpolation resolution is constrained by the frequency of
a single CPMG block for the entire relaxation period.
For all other models, the interpolation resolution is not
constrained and can be as fine as desired by setting the
total number of interpolation points. Interpolated curves
are not produced for the ‘R2eff’ model as they are not
necessary.

For R1rho models, graphs can be interpolated against
Spin-lock offset, but this feature is not available for
CPMG experiment types. It is also possible to se-
lect values on X-axis of ‘Effective field in rotating

frame w eff (rad/s)’ or ‘Rotating frame tilt angle

θ (rad)’.

For R1rho models, special Y-value R2 R1rho can for ex-
ample be plotted as function of w eff. R2 is calculated
as: R2=(R1rho - R1 cosˆ2(θ)) / sinˆ2(θ).

17.2.171 relax disp.plot exp-
curves

Synopsis

Create 2D Grace plots of the exponential curves.

Defaults

relax disp.plot exp curves(file=None, dir=‘grace’, force=
False, norm=False)

Keyword arguments

file: The name of the file.

dir: The directory name.

force: A flag which, if set to True, will cause the file to
be overwritten.

norm: A flag which, if set to True, will cause all graphs
to be normalised to a starting value of 1. This is for the
normalisation of series type data.

Description

This is used to create 2D Grace plots of the individual
exponential curves used to find the R2eff or R1rho values.
This supplements the grace.write user function which is
not capable of generating these curves in a reasonable
format.

17.2. THE LIST OF FUNCTIONS 583

17.2.172 relax disp.r1 fit

Synopsis

Switch between fixed or fitted R1 values for optimisation.

Defaults

relax disp.r1 fit(fit=True)

Keyword arguments

fit: The flag specifying if R1 values should be optimised
or if loaded R1 values should be fixed during optimisa-
tion.

Description

This user function allows the optimisation of R1 values
to be turned on an off for the relaxation dispersion dis-
persion models. If turned off, the current values of R1

will be fixed. Otherwise the R1 values will be added
to the model parameter set. For models which do not
support the R1 parameter for off-resonance effects, this
setting will have no effect. Only the models [‘No Rex’,
‘DPL94’, ‘TP02’, ‘TAP03’, ‘MP05’, ‘NS R1rho 2-site’] sup-
port R1 optimisation.

17.2.173 relax disp.r20 from min-
r2eff

Synopsis

Set the R20 parameter values to that of the minimum
R2eff value.

Defaults

relax disp.r20 from min r2eff(force=True)

Keyword arguments

force: A flag which if set to True will cause the R20
values to be overwritten if they already exist.

Description

Set the R20 parameter values to that of the minimum
R2eff value. This user function will look through all R2eff
values per magnetic field strength, find the minimum
value, and set the R20, R20A, R20B, and R1rho’ param-
eters of the model to this value. This can serve a number
of purposes including using the values for the chi-squared
space mapping via the δx.map user function, speeding up
optimisation by avoiding the grid search for these param-
eters, and as initial parameter values for other dispersion
software.

Instead of finding the initial values for the R20 parameter
using the grid search, the minimum for the R2eff points
can be used instead. This is often a good initial position
for minimisation. For example for a two field CPMG ex-
periment with model CR72, that would drop the number
of uniform grid search points from 5D to 3D, i.e. two
orders of magnitude faster. When using the standard 21
grid increments per dimension, it would allow the grid
search to be 441 times faster. Note that the relaxation
dispersion auto-analysis will take all pre-set parameter
values into account and will automatically exclude these
from the grid search.

Note that for optimisation, that this is an experimental
and unpublished feature of the dispersion analysis. If
R20 << min(R2eff), the grid search will be performed
in a region of the optimisation space quite distant from
the true minimum. If unsure, do not activate this option,
and let the grid search find a better starting value.

584 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.174 relax disp.r2eff err-
estimate

Synopsis

Estimate R2eff errors by the Jacobian matrix.

Defaults

relax disp.r2eff err estimate(spin id=None, epsrel=0.0,
verbosity=1)

Keyword arguments

spin id: The spin ID string to restrict value setting to.

epsrel: The parameter to remove linear-dependent
columns when J is rank deficient.

verbosity: The higher the value, the greater the ver-
bosity.

Description

This is a new experimental feature from version 3.3.

This will estimate R2eff errors by using the exponential
decay Jacobian matrix ‘J’ to compute the covariance ma-
trix of the best-fit parameters.

This can be an huge time saving step, when perform-
ing model fitting in R1rho. Errors of R2eff values, are
normally estimated by time-consuming Monte-Carlo sim-
ulations.

This method is inspired from the GNU Scientific Library
(GSL).

The covariance matrix is given by: covar = Qxx =
(JˆT.W.J)ˆ-1, where the weight matrix W is constructed
by the multiplication of an Identity matrix I and a weight
array w. The weight array is 1/errorsˆ2, which then gives
W = I.w = I x 1/errorsˆ2.

Qxx is computed by QR decomposition, JˆT.W.J=QR,
Qxx=Rˆ-1. QˆT. The columns of R which satisfy:
—R {kk}— ≤ epsrel —R {11}— are considered linearly-
dependent and are excluded from the covariance matrix
(the corresponding rows and columns of the covariance
matrix are set to zero).

The parameter ‘epsrel’ is used to remove linear-
dependent columns when J is rank deficient.

17.2.175 relax disp.r2eff read

Synopsis

Read R2eff/R1rho values and errors from a file.

Defaults

relax disp.r2eff read(id=None, file=None, dir=None,
disp frq=None, spin id col=None, mol name col=None,
res num col=None, res name col=None, spin num col=
None, spin name col=None, data col=None, error col=
None, sep=None)

Keyword arguments

id: The partial experiment ID string to identify this
data with. The full ID string will be constructed as this
ID followed by an underscore and then the dispersion
point value from the file.

file: The name of the file.

dir: The directory name.

disp frq: For CPMG-type data, the frequency of the
CPMG pulse train. For R1rho-type data, the spin-lock
field strength nu1. The units must be Hertz

spin id col: The spin ID string column used by the
generic file format (an alternative to the mol, res, and
spin name and number columns).

mol name col: The molecule name column used by the
generic file format (alternative to the spin ID column).

res num col: The residue number column used by the
generic file format (alternative to the spin ID column).

res name col: The residue name column used by the
generic file format (alternative to the spin ID column).

spin num col: The spin number column used by the
generic file format (alternative to the spin ID column).

spin name col: The spin name column used by the
generic file format (alternative to the spin ID column).

data col: The RDC data column.

error col: The experimental error column.

sep: The column separator used by the generic format
(the default is white space).

17.2. THE LIST OF FUNCTIONS 585

Description

This will read R2eff/R1rho data directly from a file. The
data will be associated with an experiment ID string. A
partial ID is to be supplied and then the full ID string will
be constructed as this ID followed by an underscore and
then the dispersion point value from the file (as ‘%s %s’
% (id, disp point)). The full IDs must already exist and
have been used to set the type of dispersion experiment
the data is from, spectrometer proton frequency of the
data, and if needed the time of the relaxation period.

The format of this text file must be that each row cor-
responds to a unique spin system and that there is
one file per dispersion point (i.e. per CPMG frequency
nu CPMG or per spin-lock field strength nu1). The file
must be in columnar format and information to identify
the spin must be in columns of the file.

17.2.176 relax disp.r2eff read-
spin

Synopsis

Read R2eff/R1rho values and errors for a single spin from
a file.

Defaults

relax disp.r2eff read spin(id=None, spin id=None, file=
None, dir=None, disp point col=None, offset col=None,
data col=2, error col=3, sep=None)

Keyword arguments

id: The experiment ID string to identify this data with.

spin id: The spin identification string.

file: The name of the file.

dir: The directory name.

disp point col: The column containing the CPMG fre-
quency or spin-lock field strength (Hz).

offset col: The column containing the offset informa-
tion for R1rho-type data.

data col: The column containing the R2eff or R1rho
data.

error col: The column containing the R2eff or R1rho
error.

sep: The column separator (the default is white space).

Description

This will read R2eff/R1rho data for a single spin directly
from a file. The data will be associated with an experi-
ment ID string. This ID can be used for setting the type
of dispersion experiment the data is from, spectrometer
proton frequency of the data, and the time of the relax-
ation period.

The format of this text file must be that each row corre-
sponds to a dispersion point (i.e. per CPMG frequency
nu CPMG or per spin-lock field strength nu1) and that
there is one file per unique spin system. The file must
be in columnar format. For R1rho data, the dispersion
point column can be substituted for the offset values in
Hertz.

586 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.177 relax disp.relax time

Synopsis

Set the relaxation delay time associated with each spec-
trum.

Defaults

relax disp.relax time(spectrum id=None, time=0.0)

Keyword arguments

spectrum id: The spectrum ID string.

time: The time, in seconds, of the relaxation period.

Description

Peak intensities should be loaded before calling this user
function via the spectrum.read intensities user function.
The intensity values will then be associated with a spec-
trum identifier. To associate each spectrum identifier
with a time point in the relaxation curve prior to opti-
misation, this user function should be called.

17.2.178 relax disp.select model

Synopsis

Select the relaxation dispersion model.

Defaults

relax disp.select model(model=‘R2eff’)

Keyword arguments

model: The type of relaxation dispersion model to fit.

Description

A number of different dispersion models are supported.
This includes both analytic models and numerical mod-
els. Models which are independent of the experimental
data type are:

‘R2eff’ – This is the model used to determine the
R2eff/R1rho values and errors required as the
base data for all other models,

The no chemical exchange models

‘No Rex’ – This is the model for no chemical exchange
being present.

The SQ CPMG-type experiments

The currently supported analytic models are:

‘LM63’ – The original Luz and Meiboom (1963) 2-site
fast exchange equation with parameters {R20, ...,
φ ex, kex},

‘LM63 3-site’ – The original Luz and Meiboom (1963)
3-site fast exchange equation with parameters
{R20, ..., φ ex, kex, φ ex2, kex2},

‘CR72’ – The reduced Carver and Richards (1972) 2-site
equation for most time scales whereby the simpli-
fication R20A = R20B is assumed. The parame-
ters are {R20, ..., pA, dw, kex},

‘CR72 full’ – The full Carver and Richards (1972) 2-
site equation for most time scales with parameters
{R20A, R20B, ..., pA, dw, kex},

17.2. THE LIST OF FUNCTIONS 587

‘IT99’ – The Ishima and Torchia (1999) 2-site model for
all time scales with pA >> pB and with param-
eters {R20, ..., pA, dw, kex},

‘TSMFK01’ – The Tollinger, Kay et al. (2001) 2-site
very-slow exchange model, range of microsec-
ond to second time scale. Applicable in the
limit of slow exchange, when —R20A-R20B—
<< k AB,kB << 1/tau CP. R20A is the trans-
verse relaxation rate of site A in the absence of ex-
change. 2*tau CP is is the time between succes-
sive 180 deg. pulses. The parameters are {R20A,
..., dw, k AB}.

‘B14’ – The Baldwin (2014) 2-site exact solution model
for all time scales, whereby the simplification
R20A = R20B is assumed. The parameters are
{R20, ..., pA, dw, kex},

‘B14 full’ – The Baldwin (2014) 2-site exact solution
model for all time scales with parameters {R20A,
R20B, ..., pA, dw, kex},

The currently supported numeric models are:

‘NS CPMG 2-site 3D’ – The reduced numerical solution
for the 2-site Bloch-McConnell equations using
3D magnetisation vectors whereby the simplifica-
tion R20A = R20B is assumed. Its parameters
are {R20, ..., pA, dw, kex},

‘NS CPMG 2-site 3D full’ – The full numerical solu-
tion for the 2-site Bloch-McConnell equations us-
ing 3D magnetisation vectors. Its parameters are
{R20A, R20B, ..., pA, dw, kex},

‘NS CPMG 2-site star’ – The reduced numerical solu-
tion for the 2-site Bloch-McConnell equations us-
ing complex conjugate matrices whereby the sim-
plification R20A = R20B is assumed. It has the
parameters {R20, ..., pA, dw, kex},

‘NS CPMG 2-site star full’ – The full numerical solu-
tion for the 2-site Bloch-McConnell equations us-
ing complex conjugate matrices with parameters
{R20A, R20B, ..., pA, dw, kex},

‘NS CPMG 2-site expanded’ – The numerical solution
for the 2-site Bloch-McConnell equations ex-
panded using Maple by Nikolai Skrynnikov. It
has the parameters {R20, ..., pA, dw, kex}.

The MMQ CPMG-type experiments

The currently supported models are:

‘MMQ CR72’ – The the Carver and Richards (1972) 2-site
model for most time scales expanded for MMQ
CPMG data by Korzhnev et al., 2004, whereby
the simplification R20A = R20B is assumed. Its
parameters are {R20, ..., pA, dw, dwH, kex}.

‘NS MMQ 2-site’ – The numerical solution for the 2-site
Bloch-McConnell equations for combined proton-
heteronuclear SQ, ZQ, DQ, and MQ CPMG data
whereby the simplification R20A = R20B is as-
sumed. Its parameters are {R20, ..., pA, dw,
dwH, kex}.

‘NS MMQ 3-site linear’ – The numerical solution for
the 3-site Bloch-McConnell equations linearised
with kAC = kCA = 0 for combined proton-
heteronuclear SQ, ZQ, DQ, and MQ CPMG
data whereby the simplification R20A = R20B
= R20C is assumed. Its parameters are {R20, ...,
pA, dw(AB), dwH(AB), kex(AB), pB, dw(BC),
dwH(BC), kex(BC)}.

‘NS MMQ 3-site’ – The numerical solution for the 3-site
Bloch-McConnell equations for combined proton-
heteronuclear SQ, ZQ, DQ, and MQ CPMG
data whereby the simplification R20A = R20B
= R20C is assumed. Its parameters are {R20, ...,
pA, dw(AB), dwH(AB), kex(AB), pB, dw(BC),
dwH(BC), kex(BC), kex(AC)}.

The R1rho-type experiments

The currently supported analytic models are:

On-resonance models are:

‘M61’ – The Meiboom (1961) 2-site fast exchange equa-
tion with parameters {R1rho’, ..., φ ex, kex},

‘M61 skew’ – The Meiboom (1961) 2-site equation for all
time scales with pA >> pB and with parameters
{R1rho’, ..., pA, dw, kex},

Off-resonance models are:

‘DPL94’ – The Davis, Perlman and London (1994) 2-site
fast exchange equation with parameters {R1rho’,
..., φ ex, kex},

‘TP02’ – The Trott and Palmer (2002) 2-site equation
for all time scales with parameters {R1rho’, ...,
pA, dw, kex}.

‘TAP03’ – The Trott, Abergel and Palmer (2003) off-
resonance 2-site equation for all time scales with
parameters {R1rho’, ..., pA, dw, kex}.

‘MP05’ – The Miloushev and Palmer (2005) 2-site off-
resonance equation for all time scales with pa-
rameters {R1rho’, ..., pA, dw, kex}.

The currently supported numeric models are:

‘NS R1rho 2-site’ – The numerical solution for the 2-
site Bloch-McConnell equations using 3D mag-
netisation vectors whereby the simplification
R20A = R20B. Its parameters are {R1rho’, ...,
pA, dw, kex}.

‘NS R1rho 3-site linear’ – The numerical solution for
the 3-site Bloch-McConnell equations using 3D
magnetisation vectors whereby the simplification
R20A = R20B = R20C is assumed and lin-
earised with kAC = kCA = 0. Its parameters are
{R1rho’, ..., pA, dw(AB), kex(AB), pB, dw(BC),
kex(BC)}.

588 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

‘NS R1rho 3-site’ – The numerical solution for the 3-
site Bloch-McConnell equations using 3D mag-
netisation vectors. Its parameters are {R1rho’,
..., pA, dw(AB), kex(AB), pB, dw(BC), kex(BC),
kex(AC)}.

Prompt examples

To pick the 2-site fast exchange model for all selected
spins, type one of:

relax> relax_disp.select_model('LM63')

relax> relax_disp.select_model(model='LM63')

17.2.179 relax disp.sherekhan-
input

Synopsis

Create the input files for Adam Mazur’s ShereKhan pro-
gram.

Defaults

relax disp.sherekhan input(force=False, spin id=None,
dir=None)

Keyword arguments

force: A flag which if set to True will cause the files to
be overwritten if they already exist.

spin id: The spin identification string.

dir: The directory name to place ShereKhan cluster
folders into.

Description

This creates the files required for the ShereKhan server
located at http://sherekhan.bionmr.org/. One file per
spin cluster per field strength will be created. These
will be placed in the directory ‘clusterx’ and named
‘sherekhan frqy.in’, where x is the cluster index start-
ing from 1 and y is the magnetic field strength index
starting from 1.

17.2. THE LIST OF FUNCTIONS 589

17.2.180 relax disp.spin lock field

Synopsis

Set the relaxation dispersion spin-lock field strength
(nu1).

Defaults

relax disp.spin lock field(spectrum id=None, field=None)

Keyword arguments

spectrum id: The spectrum ID string to associate the
spin-lock field strength to.

field: The spin-lock field strength, nu1, in Hz.

Description

This sets the spin-lock field strength, nu1, for the speci-
fied R1rho spectrum in Hertz.

Prompt examples

To set a spin-lock field strength of 2.1 kHz for the spec-
trum ‘nu1 2.1kHz relaxT 0.010’, type one of:

relax> relax_disp.spin_lock_field(2100, '

nu1_2.1kHz_relaxT_0.010')

relax> relax_disp.spin_lock_field(field

=2100, spectrum_id='

nu1_2.1kHz_relaxT_0.010')

17.2.181 relax disp.spin lock-
offset

Synopsis

Set the relaxation dispersion spin-lock offset (omega rf).

Defaults

relax disp.spin lock offset(spectrum id=None, offset=
None)

Keyword arguments

spectrum id: The spectrum ID string to associate the
spin-lock offset to.

offset: The spin-lock offset, omega rf, in ppm.

Description

This sets the spin-lock offset, omega rf, for the specified
R1rho spectrum in ppm.

Prompt examples

To set a spin-lock offset of 110.0 ppm for the spectrum
‘nu1 2.1kHz relaxT 0.010’, type one of:

relax> relax_disp.spin_lock_offset('

nu1_2.1kHz_relaxT_0.010', 110.0)

relax> relax_disp.spin_lock_offset(

spectrum_id='nu1_2.1kHz_relaxT_0.010',

offset=110.0)

590 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.182 relax disp.write disp-
curves

Synopsis

Create text files of the dispersion curves for each spin
system.

Defaults

relax disp.write disp curves(dir=None, force=False)

Keyword arguments

dir: The directory name to place all of the spin system
files into.

force: A flag which, if set to True, will cause the files
to be overwritten.

Description

This is used to created text files of the dispersion curves
of R2eff/R1rho values, both measured and back calcu-
lated from the optimised dispersion model. The columns
of the text file will be the experiment name, the magnetic
field strength (as the proton frequency in MHz), disper-
sion point (nu CPMG or the spin-lock field strength),
the experimental R2eff value, the back-calculated R2eff
value, and the experimental R2eff error. One file will
be created per spin system with the name ‘disp x.out’,
where x is the spin ID string.

17.2.183 relax fit.relax time

Synopsis

Set the relaxation delay time associated with each spec-
trum.

Defaults

relax fit.relax time(time=0.0, spectrum id=None)

Keyword arguments

time: The time, in seconds, of the relaxation period.

spectrum id: The spectrum identification string.

Description

Peak intensities should be loaded before calling this user
function via the spectrum.read intensities user function.
The intensity values will then be associated with a spec-
trum identifier. To associate each spectrum identifier
with a time point in the relaxation curve prior to opti-
misation, this user function should be called.

17.2. THE LIST OF FUNCTIONS 591

17.2.184 relax fit.select model

Synopsis

Select the relaxation curve type.

Defaults

relax fit.select model(model=‘exp’)

Keyword arguments

model: The type of relaxation curve to fit.

Description

A number of relaxation experiments are supported and
include:

The ‘exp’ model. This is the default two parameter ex-
ponential fit. The magnetisation starts at I0 and decays
to zero. The parameters are [Rx, I0] and the equation is
I(t) = I0*exp(-Rx*t).

The ‘inv’ model. This is the inversion recovery experi-
ment (IR). The magnetisation starts at a negative value
at -I0 and relaxes to a positive Iinf value. The param-
eters are [Rx, I0, Iinf] and the equation is I(t) = Iinf -
I0*exp(-Rx*t).

The ‘sat’ model. This is the saturation recovery experi-
ment (SR). The magnetisation starts at zero and relaxes
to a positive Iinf value. The parameters are [Rx, Iinf]
and the equation is I(t) = Iinf*(1 - exp(-Rx*t)).

17.2.185 reset

Synopsis

Reinitialise the relax data storage object.

Defaults

reset()

Description

All of the data of the relax data storage object will be
erased and hence relax will return to its initial state.

592 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.186 residue.copy

Synopsis

Copy all data associated with a residue.

Defaults

residue.copy(pipe from=None, res from=None, pipe to=
None, res to=None)

Keyword arguments

pipe from: The data pipe containing the residue from
which the data will be copied. This defaults to the cur-
rent data pipe.

res from: The residue ID string of the residue to copy
the data from.

pipe to: The data pipe to copy the data to. This de-
faults to the current data pipe.

res to: The residue ID string of the residue to copy the
data to. If left blank, the new residue will have the same
name as the old.

Description

This will copy all the data associated with the identified
residue to the new, non-existent residue. The new residue
cannot currently exist.

Prompt examples

To copy the residue data from residue 1 to the new
residue 2, type:

relax> residue.copy(res_from=':1', res_to='

:2')

To copy residue 1 of the molecule ‘Old mol’ to residue 5
of the molecule ‘New mol’, type:

relax> residue.copy(res_from='#Old mol:1',

res_to='#New mol:5')

To copy the residue data of residue 1 from the data pipe
‘m1’ to ‘m2’, assuming the current data pipe is ‘m1’, type:

relax> residue.copy(res_from=':1', pipe_to='

m2')

relax> residue.copy(pipe_from='m1', res_from

=':1', pipe_to='m2', res_to=':1')

17.2.187 residue.create

Synopsis

Create a new residue.

Defaults

residue.create(res num=None, res name=None,
mol name=None)

Keyword arguments

res num: The residue number.

res name: The name of the residue.

mol name: The name of the molecule to add the
residue to.

Description

Using this, a new sequence can be generated without us-
ing the sequence user functions. However if the sequence
already exists, the new residue will be added to the end
of the residue list (the residue numbers of this list need
not be sequential). The same residue number cannot be
used more than once. A corresponding single spin system
will be created for this residue. The spin system number
and name or additional spin systems can be added later
if desired.

Prompt examples

The following sequence of commands will generate the
sequence 1 ALA, 2 GLY, 3 LYS:

relax> residue.create(1, 'ALA')

relax> residue.create(2, 'GLY')

relax> residue.create(3, 'LYS')

17.2. THE LIST OF FUNCTIONS 593

17.2.188 residue.delete

Synopsis

Delete residues from the current data pipe.

Defaults

residue.delete(res id=None)

Keyword arguments

res id: The residue ID string.

Description

This can be used to delete a single or sets of residues.
See the ID string documentation for more information.
If spin system/atom ids are included a RelaxError will
be raised.

Spin ID string documentation

The identification string is composed of three com-
ponents: the molecule ID token beginning with the
‘#’ character, the residue ID token beginning with
the ‘:’ character, and the atom or spin system ID
token beginning with the ‘@’ character. Each token
can be composed of multiple elements - one per spin
- separated by the ‘,’ character and each individual
element can either be a number (which must be an
integer, in string format), a name, or a range of
numbers separated by the ‘-’ character. Negative
numbers are supported. The full ID string specification
is ‘#<mol name> :<res id>[, <res id>[, <res id>,

...]] @<atom id>[, <atom id>[, <atom id>, ...]]’,
where the token elements are ‘<mol name>’, the name of
the molecule, ‘<res id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match the
string. If only the molecule ID component is specified,
then all spins of the molecule will match.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

17.2.189 residue.display

Synopsis

Display information about the residue(s).

Defaults

residue.display(res id=None)

Keyword arguments

res id: The residue ID string.

Description

This will display the residue data loaded into the current
data pipe.

Spin ID string documentation

The identification string is composed of three com-
ponents: the molecule ID token beginning with the
‘#’ character, the residue ID token beginning with
the ‘:’ character, and the atom or spin system ID
token beginning with the ‘@’ character. Each token
can be composed of multiple elements - one per spin
- separated by the ‘,’ character and each individual
element can either be a number (which must be an
integer, in string format), a name, or a range of
numbers separated by the ‘-’ character. Negative
numbers are supported. The full ID string specification
is ‘#<mol name> :<res id>[, <res id>[, <res id>,

...]] @<atom id>[, <atom id>[, <atom id>, ...]]’,
where the token elements are ‘<mol name>’, the name of
the molecule, ‘<res id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match the
string. If only the molecule ID component is specified,
then all spins of the molecule will match.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

594 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.190 residue.name

Synopsis

Name the residues.

Defaults

residue.name(res id=None, name=None, force=False)

Keyword arguments

res id: The residue ID string corresponding to one or
more residues.

name: The new name.

force: A flag which if True will cause the residue to be
renamed.

Description

This simply allows residues to be named (or renamed).

Spin ID string documentation

The identification string is composed of three com-
ponents: the molecule ID token beginning with the
‘#’ character, the residue ID token beginning with
the ‘:’ character, and the atom or spin system ID
token beginning with the ‘@’ character. Each token
can be composed of multiple elements - one per spin
- separated by the ‘,’ character and each individual
element can either be a number (which must be an
integer, in string format), a name, or a range of
numbers separated by the ‘-’ character. Negative
numbers are supported. The full ID string specification
is ‘#<mol name> :<res id>[, <res id>[, <res id>,

...]] @<atom id>[, <atom id>[, <atom id>, ...]]’,
where the token elements are ‘<mol name>’, the name of
the molecule, ‘<res id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match the
string. If only the molecule ID component is specified,
then all spins of the molecule will match.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

Prompt examples

The following sequence of commands will rename the se-
quence {1 ALA, 2 GLY, 3 LYS} to {1 XXX, 2 XXX, 3
XXX}:

relax> residue.name(':1', 'XXX', force=True)

relax> residue.name(':2', 'XXX', force=True)

relax> residue.name(':3', 'XXX', force=True)

Alternatively:

relax> residue.name(':1,2,3', 'XXX', force=

True)

17.2. THE LIST OF FUNCTIONS 595

17.2.191 residue.number

Synopsis

Number the residues.

Defaults

residue.number(res id=None, number=None, force=
False)

Keyword arguments

res id: The residue ID string corresponding to a single
residue.

number: The new residue number.

force: A flag which if True will cause the residue to be
renumbered.

Description

This simply allows residues to be numbered. The new
number cannot correspond to an existing residue.

Spin ID string documentation

The identification string is composed of three com-
ponents: the molecule ID token beginning with the
‘#’ character, the residue ID token beginning with
the ‘:’ character, and the atom or spin system ID
token beginning with the ‘@’ character. Each token
can be composed of multiple elements - one per spin
- separated by the ‘,’ character and each individual
element can either be a number (which must be an
integer, in string format), a name, or a range of
numbers separated by the ‘-’ character. Negative
numbers are supported. The full ID string specification
is ‘#<mol name> :<res id>[, <res id>[, <res id>,

...]] @<atom id>[, <atom id>[, <atom id>, ...]]’,
where the token elements are ‘<mol name>’, the name of
the molecule, ‘<res id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match the
string. If only the molecule ID component is specified,
then all spins of the molecule will match.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

Prompt examples

The following sequence of commands will renumber the
sequence {1 ALA, 2 GLY, 3 LYS} to {101 ALA, 102
GLY, 103 LYS}:

relax> residue.number(':1', 101, force=True)

relax> residue.number(':2', 102, force=True)

relax> residue.number(':3', 103, force=True)

596 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.192 results.display

Synopsis

Display the results.

Defaults

results.display()

Description

This will print to screen (STDOUT) the results contained
within the current data pipe.

17.2.193 results.read

Synopsis

Read the contents of a relax results file into the relax
data store.

Defaults

results.read(file=‘results’, dir=None)

Keyword arguments

file: The name of the file to read results from.

dir: The directory where the file is located.

Description

This is able to handle uncompressed, bzip2 compressed
files, or gzip compressed files automatically. The full file
name including extension can be supplied, however, if
the file cannot be found the file with ‘.bz2’ appended
followed by the file name with ‘.gz’ appended will be
searched for.

17.2. THE LIST OF FUNCTIONS 597

17.2.194 results.write

Synopsis

Write the results to a file.

Defaults

results.write(file=‘results’, dir=‘pipe name’,
compress type=1, force=False)

Keyword arguments

file: The name of the file to output results to. The
default is ‘results’. Optionally this can be a file object,
or any object with a write() method.

dir: The directory name.

compress type: The type of compression to use when
creating the file.

force: A flag which if True will cause the results file to
be overwritten.

Description

This will write the entire contents of the current data
pipe into an XML formatted file. This results file can
then be read back into relax at a later point in time, or
transfered to another machine. This is in contrast to the
state.save user function whereby the entire data store,
including all data pipes, are saved into a similarly XML
formatted file.

To place the results file in the current working direc-
tory in the prompt and scripting modes, leave the direc-
tory unset. If the directory is set to the special name
‘pipe name’, then the results file will be placed into a
directory with the same name as the current data pipe.

The default behaviour of this function is to compress
the file using bzip2 compression. If the extension ‘.bz2’
is not included in the file name, it will be added. The
compression can, however, be changed to either no com-
pression or gzip compression. This is controlled by the
compression type which can be set to

0 – No compression (no file extension),

1 – bzip2 compression (‘.bz2’ file extension),

2 – gzip compression (‘.gz’ file extension).

The complementary read function will automatically
handle the compressed files.

17.2.195 script

Synopsis

Execute a relax script.

Defaults

script(file=None, dir=None)

Keyword arguments

file: The name of the file containing the relaxation
data.

dir: The directory where the file is located.

Description

This will execute a relax or any ordinary Python script.

598 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.196 select.all

Synopsis

Select all spins in the current data pipe.

Defaults

select.all()

Description

This will select all spins, irregardless of their current
state.

Prompt examples

To select all spins, simply type:

relax> select.all()

17.2.197 select.display

Synopsis

Display the current spin selection status.

Defaults

select.display()

Description

This simply prints out the current spin selections.

Prompt examples

To show the current selections, type:

relax> select.display()

17.2. THE LIST OF FUNCTIONS 599

17.2.198 select.domain

Synopsis

Select all spins and interatomic data containers of a do-
main.

Defaults

select.domain(domain id=None, boolean=‘AND’,
change all=True)

Keyword arguments

domain id: The domain ID string of the domain to
select.

boolean: The boolean operator specifying how inter-
atomic data containers should be selected.

change all: A flag specifying if all non-matching spin
and interatomic data containers should be deselected.

Description

This will select all spins and interatomic data containers
of a given domain. This is defined by the domain ID
string as specified by the previously executed domain-
related user functions.

Boolean operators

The boolean operator can be used to change how spin
systems or interatomic data containers are selected. The
allowed values are: ‘OR’, ‘NOR’, ‘AND’, ‘NAND’, ‘XOR’, ‘XNOR’.
The following table details how the selections will occur
for the different boolean operators.

Please see Table 17.1 on page 463.

Prompt examples

To select all spins of the domain ‘N-dom’, simply type one
of:

relax> select.domain('N-dom', change_all=

True)

relax> select.domain(domain_id='N-dom',

change_all=True)

To select all spins of the domain ‘N-dom’, preserving the
current selections, simply type one of:

relax> select.domain('N-dom', 'AND', True)

relax> select.domain(domain_id='N-dom',

boolean='AND', change_all=True)

600 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.199 select.interatom

Synopsis

Select specific interatomic data containers.

Defaults

select.interatom(spin id1=None, spin id2=None,
boolean=‘OR’, change all=False)

Keyword arguments

spin id1: The spin ID string of the first spin of the
interatomic data container.

spin id2: The spin ID string of the second spin of the
interatomic data container.

boolean: The boolean operator specifying how inter-
atomic data containers should be selected.

change all: A flag specifying if all other interatomic
data containers should be changed.

Description

This is used to select specific interatomic data containers
which store information about spin pairs such as RDCs,
NOEs, dipole-dipole pairs involved in relaxation, etc.
The ‘change all’ flag default is False meaning that all
interatomic data containers currently either selected or
deselected will remain that way. Setting this to True will
cause all interatomic data containers not specified by the
spin ID strings to be selected.

Boolean operators

The boolean operator can be used to change how spin
systems or interatomic data containers are selected. The
allowed values are: ‘OR’, ‘NOR’, ‘AND’, ‘NAND’, ‘XOR’, ‘XNOR’.
The following table details how the selections will occur
for the different boolean operators.

Please see Table 17.1 on page 463.

Prompt examples

To select all N-H backbone bond vectors of a protein,
assuming these interatomic data containers have been
already set up, type one of:

relax> select.interatom('@N', '@H')

relax> select.interatom(spin_id1='@N',

spin_id2='@H')

To select all H-H interatomic vectors of a small organic
molecule, type one of:

relax> select.interatom('@H*', '@H*')

relax> select.interatom(spin_id1='@H*',

spin_id2='@H*')

17.2. THE LIST OF FUNCTIONS 601

17.2.200 select.read

Synopsis

Select the spins contained in a file.

Defaults

select.read(file=None, dir=None, spin id col=None,
mol name col=None, res num col=None, res name col=
None, spin num col=None, spin name col=None, sep=
None, spin id=None, boolean=‘OR’, change all=False)

Keyword arguments

file: The name of the file containing the list of spins to
select.

dir: The directory where the file is located.

spin id col: The spin ID string column (an alternative
to the mol, res, and spin name and number columns).

mol name col: The molecule name column (alternative
to the spin id col).

res num col: The residue number column (alternative
to the spin id col).

res name col: The residue name column (alternative to
the spin id col).

spin num col: The spin number column (alternative to
the spin id col).

spin name col: The spin name column (alternative to
the spin id col).

sep: The column separator (the default is white space).

spin id: The spin ID string to restrict the loading of
data to certain spin subsets.

boolean: The boolean operator specifying how spins
should be selected.

change all: A flag specifying if all other spins should
be changed.

Description

The spin system can be identified in the file using two
different formats. The first is the spin ID string column
which can include the molecule name, the residue name
and number, and the spin name and number. Alterna-
tively the molecule name, residue number, residue name,

spin number and/or spin name columns can be supplied
allowing this information to be in separate columns. Note
that the numbering of columns starts at one. The spin
ID string can be used to restrict the reading to certain
spin types, for example only 15N spins when only residue
information is in the file.

Empty lines and lines beginning with a hash are ignored.

The ‘change all’ flag default is False meaning that all
spins currently either selected or deselected will remain
that way. Setting this to True will cause all spins not
specified in the file to be deselected.

Boolean operators

The boolean operator can be used to change how spin
systems or interatomic data containers are selected. The
allowed values are: ‘OR’, ‘NOR’, ‘AND’, ‘NAND’, ‘XOR’, ‘XNOR’.
The following table details how the selections will occur
for the different boolean operators.

Please see Table 17.1 on page 463.

Prompt examples

To select all residues listed with residue numbers in the
first column of the file ‘isolated peaks’, type one of:

relax> select.read('isolated_peaks',

res_num_col=1)

relax> select.read(file='isolated_peaks',

res_num_col=1)

To select the spins in the second column of the relaxation
data file ‘r1.600’ while deselecting all other spins, for
example type:

relax> select.read('r1.600', spin_num_col=2,

change_all=True)

relax> select.read(file='r1.600',

spin_num_col=2, change_all=True)

602 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.201 select.reverse

Synopsis

Reversal of the spin selection for the given spins.

Defaults

select.reverse(spin id=None)

Keyword arguments

spin id: The spin ID string.

Description

By supplying the spin ID string, a subset of spins can
have their selection status reversed.

Prompt examples

To select all currently deselected spins and deselect those
which are selected type:

relax> select.reverse()

17.2.202 select.sn ratio

Synopsis

Select spins with signal to noise ratio higher or lower than
the given ratio.

Defaults

select.sn ratio(ratio=10.0, operation=‘¿’, all sn=True)

Keyword arguments

ratio: The signal to noise ratio to compare to.

operation: The comparison operation by which to se-
lect the spins.

all sn: A flag specifying if all the signal to noise ratios
per spin should match the comparison operator, of if just
a single comparison match is enough.

Description

The comparison operation is the method which to select
spins according to: operation(sn ratio, ratio).

The possible operations are: ‘<’:strictly less than,
‘<=’:less than or equal, ‘>’:strictly greater than,
‘>=’:greater than or equal, ‘==’:equal, ‘!=’:not equal.

The ‘all sn’ flag default is True, meaning that if all of
the spin’s signal to noise levels evaluates to True in the
comparison, the spin is selected.

Prompt examples

To select all spins with a signal to noise ratio higher than
10.0:

relax> select.sn_ratio(ratio=10.0, operation

='>')

relax> select.sn_ratio(ratio=10.0, operation

='>', all_sn=False)

17.2. THE LIST OF FUNCTIONS 603

17.2.203 select.spin

Synopsis

Select specific spins.

Defaults

select.spin(spin id=None, boolean=‘OR’, change all=
False)

Keyword arguments

spin id: The spin ID string.

boolean: The boolean operator specifying how spins
should be selected.

change all: A flag specifying if all other spins should
be changed.

Description

The ‘change all’ flag default is False meaning that all
spins currently either selected or deselected will remain
that way. Setting this to True will cause all spins not
specified by the spin ID string to be selected.

Boolean operators

The boolean operator can be used to change how spin
systems or interatomic data containers are selected. The
allowed values are: ‘OR’, ‘NOR’, ‘AND’, ‘NAND’, ‘XOR’, ‘XNOR’.
The following table details how the selections will occur
for the different boolean operators.

Please see Table 17.1 on page 463.

Prompt examples

To select only glycines and alanines, assuming they have
been loaded with the names GLY and ALA, type one of:

relax> select.spin(spin_id=':GLY|:ALA')

To select residue 5 CYS in addition to the currently se-
lected residues, type one of:

relax> select.spin(':5')

relax> select.spin(':5&:CYS')

relax> select.spin(spin_id=':5&:CYS')

17.2.204 sequence.attach protons

Synopsis

Attach protons to all heteronuclei.

Defaults

sequence.attach protons()

Description

This can be used to attach protons to all the heteronu-
clei in the current data pipe. For each proton, a spin
container will be created. This should be used when the
sequence information is not being extracted from a 3D
structure. Note that the proton spin containers will not
possess any positional information, so for analyses which
require this position or vectors from one atom to this
proton, it should not be used.

Prompt examples

To attach protons, simply type:

relax> sequence.attach_protons()

604 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.205 sequence.copy

Synopsis

Copy the molecule, residue, and spin sequence data from
one data pipe to another.

Defaults

sequence.copy(pipe from=None, pipe to=None, empty=
True)

Keyword arguments

pipe from: The name of the data pipe to copy the se-
quence data from.

pipe to: The name of the data pipe to copy the se-
quence data to.

empty: A flag which if True will create a molecule,
residue, and spin sequence in the target pipe lacking all
of the spin data of the source pipe. If False, then the
spin data will also be copied.

Description

This will copy the sequence data between data pipes.
The destination data pipe must not contain any sequence
data. If the source and destination pipes are not spec-
ified, then both will default to the current data pipe
(hence providing one is essential).

Prompt examples

To copy the sequence from the data pipe ‘m1’ to the cur-
rent data pipe, type:

relax> sequence.copy('m1')

relax> sequence.copy(pipe_from='m1')

To copy the sequence from the current data pipe to the
data pipe ‘m9’, type:

relax> sequence.copy(pipe_to='m9')

To copy the sequence from the data pipe ‘m1’ to ‘m2’,
type:

relax> sequence.copy('m1', 'm2')

relax> sequence.copy(pipe_from='m1', pipe_to

='m2')

17.2.206 sequence.display

Synopsis

Display sequences of molecules, residues, and/or spins.

Defaults

sequence.display(sep=None, mol name flag=True,
res num flag=True, res name flag=True, spin num flag=
True, spin name flag=True)

Keyword arguments

sep: The column separator (the default of None corre-
sponds to white space).

mol name flag: A flag which if True will cause the mol-
ecule name column to be shown.

res num flag: A flag which if True will cause the residue
number column to be shown.

res name flag: A flag which if True will cause the
residue name column to be shown.

spin num flag: A flag which if True will cause the spin
number column to be shown.

spin name flag: A flag which if True will cause the spin
name column to be shown.

Description

This will print out the sequence information of all loaded
spins in the current data pipe.

17.2. THE LIST OF FUNCTIONS 605

17.2.207 sequence.read

Synopsis

Read the molecule, residue, and spin sequence from a file.

Defaults

sequence.read(file=None, dir=None, spin id col=None,
mol name col=None, res num col=None, res name col=
None, spin num col=None, spin name col=None, sep=
None, spin id=None)

Keyword arguments

file: The name of the file containing the sequence data.

dir: The directory where the file is located.

spin id col: The spin ID string column (an alternative
to the mol, res, and spin name and number columns).

mol name col: The molecule name column (alternative
to the spin id col).

res num col: The residue number column (alternative
to the spin id col).

res name col: The residue name column (alternative to
the spin id col).

spin num col: The spin number column (alternative to
the spin id col).

spin name col: The spin name column (alternative to
the spin id col).

sep: The column separator (the default is white space).

spin id: The spin ID string to restrict the loading of
data to certain spin subsets.

Description

The spin system can be identified in the file using two
different formats. The first is the spin ID string column
which can include the molecule name, the residue name
and number, and the spin name and number. Alterna-
tively the molecule name, residue number, residue name,
spin number and/or spin name columns can be supplied
allowing this information to be in separate columns. Note
that the numbering of columns starts at one. The spin
ID string can be used to restrict the reading to certain
spin types, for example only 15N spins when only residue
information is in the file.

Prompt examples

The following commands will read protein backbone 15N
sequence data out of a file called ‘seq’ where the residue
numbers and names are in the first and second columns
respectively:

relax> sequence.read('seq')

relax> sequence.read('seq', res_num_col=1,

res_name_col=2)

relax> sequence.read(file='seq', res_num_col

=1, res_name_col=2, sep=None)

The following commands will read the residue sequence
out of the file ‘noe.out’ which also contains the NOE
values:

relax> sequence.read('noe.out')

relax> sequence.read('noe.out', res_num_col

=1, res_name_col=2)

relax> sequence.read(file='noe.out',

res_num_col=1, res_name_col=2)

The following commands will read the sequence out of
the file ‘noe.600.out’ where the residue numbers are in
the second column, the names are in the sixth column
and the columns are separated by commas:

relax> sequence.read('noe.600.out',

res_num_col=2, res_name_col=6, sep=',')

relax> sequence.read(file='noe.600.out',

res_num_col=2, res_name_col=6, sep=',')

The following commands will read the RNA residues and
atoms (including C2, C5, C6, C8, N1, and N3) from the
file ‘500.NOE’, where the residue number, residue name,
spin number, and spin name are in the first to fourth
columns respectively:

relax> sequence.read('500.NOE', res_num_col

=1, res_name_col=2, spin_num_col=3,

spin_name_col=4)

relax> sequence.read(file='500.NOE',

res_num_col=1, res_name_col=2,

spin_num_col=3, spin_name_col=4)

606 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.208 sequence.write

Synopsis

Write the molecule, residue, and spin sequence to a file.

Defaults

sequence.write(file=None, dir=None, sep=None,
mol name flag=True, res num flag=True, res name flag=
True, spin num flag=True, spin name flag=True, force=
False)

Keyword arguments

file: The name of the file.

dir: The directory name.

sep: The column separator (the default of None corre-
sponds to white space).

mol name flag: A flag which if True will cause the mol-
ecule name column to be shown.

res num flag: A flag which if True will cause the residue
number column to be shown.

res name flag: A flag which if True will cause the
residue name column to be shown.

spin num flag: A flag which if True will cause the spin
number column to be shown.

spin name flag: A flag which if True will cause the spin
name column to be shown.

force: A flag which if True will cause the file to be
overwritten.

Description

Write the sequence data to file. If no directory name
is given, the file will be placed in the current working
directory.

17.2.209 spectrometer.frequency

Synopsis

Set the spectrometer proton frequency of the experiment.

Defaults

spectrometer.frequency(id=None, frq=None, units=‘Hz’)

Keyword arguments

id: The experiment identification string to set the fre-
quency of.

frq: The spectrometer frequency. See the ‘sfrq’ pa-
rameter in the Varian procpar file or the ‘SFO1’ parameter
in the Bruker acqus file.

units: The units of frequency.

Description

This allows the spectrometer frequency of a given experi-
ment to be set. The expected units are that of the proton
resonance frequency in Hertz. See the ‘sfrq’ parameter
in the Varian procpar file or the ‘SFO1’ parameter in the
Bruker acqus file for the exact value.

17.2. THE LIST OF FUNCTIONS 607

17.2.210 spectrometer-
.temperature

Synopsis

Specify the temperature of an experiment.

Defaults

spectrometer.temperature(id=None, temp=None)

Keyword arguments

id: The experiment identification string.

temp: The temperature of the experiment in Kalvin.

Description

This allows the temperature of an experiment to be set.
This value should be in Kalvin. In certain analyses,
for example those which use pseudocontact shift data,
knowledge of the temperature is essential. For the pseu-
docontact shift, the experiment ID string should match
one of the alignment IDs.

17.2.211 spectrum.baseplane-
rmsd

Synopsis

Set the baseplane RMSD of a given spin in a spectrum
for error analysis.

Defaults

spectrum.baseplane rmsd(error=0.0, spectrum id=None,
spin id=None)

Keyword arguments

error: The baseplane RMSD error value.

spectrum id: The spectrum ID string.

spin id: The spin ID string.

Description

The spectrum ID identifies the spectrum associated with
the error and must correspond to a previously loaded set
of intensities. If the spin ID is unset, then the error value
for all spins will be set to the supplied value.

608 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.212 spectrum.delete

Synopsis

Delete the spectral data corresponding to the spectrum
ID string.

Defaults

spectrum.delete(spectrum id=None)

Keyword arguments

spectrum id: The unique spectrum ID string.

Description

The spectral data corresponding to the given spectrum
ID string will be removed from the current data pipe.

Prompt examples

To delete the peak height data corresponding to the ID
‘R1 ncyc5’, type:

relax> spectrum.delete('R1 ncyc5')

17.2.213 spectrum.error analysis

Synopsis

Perform an error analysis for peak intensities.

Defaults

spectrum.error analysis(subset=None)

Keyword arguments

subset: The list of spectrum ID strings to restrict the
error analysis to.

Description

This user function must only be called after all peak in-
tensities have been loaded and all other necessary spec-
tral information set. This includes the baseplane RMSD
and the number of points used in volume integration,
both of which are only used if spectra have not been
replicated.

The error analysis can be restricted to a subset of the
loaded spectral data. This is useful, for example, if half
the spectra have been collected on one spectrometer and
the other half on a different spectrometer.

Six different types of error analysis are supported de-
pending on whether peak heights or volumes are sup-
plied, whether noise is determined from replicated spec-
tra or the RMSD of the baseplane noise, and whether
all spectra or only a subset have been duplicated. These
are:

Please see Table 17.25 on page 609.

Peak heights with baseplane noise
RMSD

When none of the spectra have been replicated, then
the peak height errors are calculated using the RMSD
of the baseplane noise, the value of which is set by the
spectrum.baseplane rmsd user function. This results in
a different error per peak per spectrum. The standard
deviation error measure for the peak height, sigma I, is
set to the RMSD value.

17.2. THE LIST OF FUNCTIONS 609

Table 17.25: The six peak intensity error analysis types.

Int type Noise source Error scope

Heights RMSD baseplane One sigma per peak per spectrum
Heights Partial duplicate + variance averaging One sigma for all peaks, all spectra
Heights All replicated + variance averaging One sigma per replicated spectra set
Volumes RMSD baseplane One sigma per peak per spectrum
Volumes Partial duplicate + variance averaging One sigma for all peaks, all spectra
Volumes All replicated + variance averaging One sigma per replicated spectra set

Peak heights with partially replicated
spectra

When spectra are replicated, the variance for a single
spin at a single replicated spectra set is calculated by
the formula

sigmaˆ2 = sum({Ii - Iav}ˆ2) / (n - 1),

where sigmaˆ2 is the variance, sigma is the standard de-
viation, n is the size of the replicated spectra set with
i being the corresponding index, Ii is the peak intensity
for spectrum i, and Iav is the mean over all spectra i.e.
the sum of all peak intensities divided by n.

As the value of n in the above equation is always very low
since normally only a couple of spectra are collected per
replicated spectra set, the variance of all spins is averaged
for a single replicated spectra set. Although this results
in all spins having the same error, the accuracy of the
error estimate is significantly improved.

If there are in addition to the replicated spectra loaded
peak intensities which only consist of a single spectrum,
i.e. not all spectra are replicated, then the variances of
replicated replicated spectra sets will be averaged. This
will be used for the entire experiment so that there will be
only a single error value for all spins and for all spectra.

Peak heights with all spectra repli-
cated

If all spectra are collected in duplicate (triplicate or
higher number of spectra are supported), the each repli-
cated spectra set will have its own error estimate. The
error for a single peak is calculated as when partially
replicated spectra are collected, and these are again av-
eraged to give a single error per replicated spectra set.
However as all replicated spectra sets will have their own
error estimate, variance averaging across all spectra sets
will not be performed.

Peak volumes with baseplane noise
RMSD

The method of error analysis when no spectra have been
replicated and peak volumes are used is highly dependent

on the integration method. Many methods simply sum
the number of points within a fixed region, either a box
or oval object. The number of points used, N, must be
specified by another user function in this class. Then the
error is simply given by the sum of variances:

sigma volˆ2 = sigma iˆ2 * N,

where sigma vol is the standard deviation of the volume,
sigma i is the standard deviation of a single point as-
sumed to be equal to the RMSD of the baseplane noise,
and N is the total number of points used in the summa-
tion integration method. For a box integration method,
this converts to the Nicholson, Kay, Baldisseri, Arango,
Young, Bax, and Torchia (1992) Biochemistry, 31: 5253-
5263 equation:

sigma vol = sigma i * sqrt(n*m),

where n and m are the dimensions of the box.
Note that a number of programs, for example peakint
(http://hugin.ethz.ch/wuthrich/software/xeasy/xeasy m15.html)
does not use all points within the box. And if the
number N can not be determined, this category of error
analysis is not possible.

Also note that non-point summation methods,
for example when line shape fitting is used to
determine peak volumes, the equations above can-
not be used. Hence again this category of error
analysis cannot be used. This is the case for
one of the three integration methods used by Sparky
(http://www.cgl.ucsf.edu/home/sparky/manual/peaks.html#Integration).
And if fancy techniques are used, for example
as Cara does to deconvolute overlapping peaks
(http://www.cara.ethz.ch/Wiki/Integration), this again
makes this error analysis impossible.

Peak volumes with partially replicated
spectra

When peak volumes are measured by any integra-
tion method and a few of the spectra are repli-
cated, then the intensity errors are calculated identi-
cally as described in the ‘Peak heights with partially

replicated spectra’ section above.

610 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

Peak volumes with all spectra repli-
cated

With all spectra replicated and again using any integra-
tion methodology, the intensity errors can be calculated
as described in the ‘Peak heights with all spectra

replicated’ section above.

17.2.214 spectrum.error analysis-
per field

Synopsis

Use spectrum IDs per each field strength for an error
analysis for peak intensities.

Defaults

spectrum.error analysis per field()

Description

Please see the spectrum.error analysis user function doc-
umentation.

This user function will collect all spectrum IDs for
each field strength separately, and call the spec-
trum.error analysis with these.

This function is meant as a short-cut for the spec-
trum.error analysis function.

Prompt examples

To collect all spectrum IDs per field strength, and per-
form peak intensity error analysis:

relax> spectrum.error_analysis_per_field()

17.2. THE LIST OF FUNCTIONS 611

17.2.215 spectrum.integration-
points

Synopsis

Set the number of summed points used in volume inte-
gration of a given spin in a spectrum.

Defaults

spectrum.integration points(N=None, spectrum id=
None, spin id=None)

Keyword arguments

N: The number of points used by the summation vol-
ume integration method.

spectrum id: The spectrum ID string.

spin id: Restrict setting the number to certain spins.

Description

For a complete description of which integration methods
and how many points N are used for different integration
techniques, please see the spectrum.error analysis user
function documentation.

The spectrum ID identifies the spectrum associated with
the value of N and must correspond to a previously
loaded set of intensities. If the spin ID is unset, then
the number of summed points for all spins will be set to
the supplied value.

17.2.216 spectrum.read-
intensities

Synopsis

Read peak intensities from a file.

Defaults

spectrum.read intensities(file=None, dir=None,
spectrum id=None, dim=1, int method=‘height’, int col=
None, spin id col=None, mol name col=None,
res num col=None, res name col=None, spin num col=
None, spin name col=None, sep=None, spin id=None,
ncproc=None)

Keyword arguments

file: The name of the file or the list of files containing
the intensity data.

dir: The directory where the file is located.

spectrum id: The unique spectrum ID string or list of
strings to associate with the peak intensity values. If
multiple files are given, then each file should have a cor-
responding spectrum ID string. If ‘auto’ is provided for
a NMRPipe seriesTab formatted file, the IDs are auto
generated in form of Z A{i}.

dim: Associate the data with the spins of any dimen-
sion in the peak list. This defaults to w1, the heteronu-
cleus in HSQC type experiments.

int method: The method by which peaks were inte-
grated.

int col: The optional column containing the peak in-
tensity data (used by the generic intensity file format, or
if the intensities are in a non-standard column).

spin id col: The spin ID string column used by the
generic intensity file format (an alternative to the mol,
res, and spin name and number columns).

mol name col: The molecule name column used by the
generic intensity file format (alternative to the spin ID
column).

res num col: The residue number column used by the
generic intensity file format (alternative to the spin ID
column).

res name col: The residue name column used by the
generic intensity file format (alternative to the spin ID
column).

612 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

spin num col: The spin number column used by the
generic intensity file format (alternative to the spin ID
column).

spin name col: The spin name column used by the
generic intensity file format (alternative to the spin ID
column).

sep: The column separator used by the generic inten-
sity format (the default is white space).

spin id: The spin ID string used to restrict the loading
of data to certain spin subsets.

ncproc: The Bruker specific FID intensity scaling fac-
tor.

Description

The peak intensity can either be from peak heights or
peak volumes.

The spectrum ID is a label which is subsequently utilised
by other user functions. If this identifier matches that of
a previously loaded set of intensities, then this indicates
a replicated spectrum.

The spectral dimension is used to specify if the intensity
data should be loaded into the spins identified by the
first dimension w1, second dimension w2, etc.

The integration method is required for the subsequent
error analysis. When peak heights are measured, this
should be set to ‘height’. Volume integration methods
are a bit varied and hence two values are accepted. If the
volume integration involves pure point summation, with
no deconvolution algorithms or other methods affecting
peak heights, then the value should be set to ‘point sum’.
All other volume integration methods, e.g. line shape
fitting, the value should be set to ‘other’.

If a series of intensities extracted from Bruker FID files
processed in Topspin or XWinNMR are to be compared,
the ncproc parameter may need to be supplied. This is
because this FID is stored using integer representation
and is scaled using ncproc to avoid numerical truncation
artifacts. If two spectra have significantly different max-
imal intensities, then ncproc will be different for both.
The intensity scaling is binary, i.e. 2**ncproc. There-
fore if spectrum A has an ncproc of 6 and and spectrum
B a value of 7, then a reference intensity in B will be
double that of A. Internally, relax stores the intensities
scaled by 2**ncproc.

File formats

The peak list or intensity file will be automatically de-
termined.

Sparky peak list: The file should be a Sparky peak list
saved after typing the command ‘lt’. The default is to
assume that columns 0, 1, 2, and 3 (1st, 2nd, 3rd, and
4th) contain the Sparky assignment, w1, w2, and peak
intensity data respectively. The frequency data w1 and
w2 are ignored while the peak intensity data can either
be the peak height or volume displayed by changing the

window options. If the peak intensity data is not within
column 3, set the integration column to the appropriate
number (column numbering starts from 0 rather than 1).

XEasy peak list: The file should be the saved XEasy
text window output of the list peak entries command,
‘tw’ followed by ‘le’. As the columns are fixed, the peak
intensity column is hardwired to number 10 (the 11th

column) which contains either the peak height or peak
volume data. Because the columns are fixed, the integra-
tion column number will be ignored.

NMRView: The file should be a NMRView peak list.
The default is to use column 16 (which contains peak
heights) for peak intensities. To use use peak volumes
(or evolumes), int col must be set to 15.

NMRPipe seriesTab: The file should be a NMRPipe-
format Spectral Series list. If the spectrum id=‘auto’,
the IDs are auto generated in form of Z A{i}.

Generic intensity file: This is a generic format which
can be created by scripting to support non-supported
peak lists. It should contain in the first few columns
enough information to identify the spin. This can in-
clude columns for the molecule name, residue number,
residue name, spin number, and spin name. Alterna-
tively a spin ID string column can be used. The peak
intensities can be placed in another column specified by
the integration column number. Intensities from mul-
tiple spectra can be placed into different columns, and
these can then be specified simultaneously by setting the
integration column value to a list of columns. This list
must be matched by setting the spectrum ID to a list of
the same length. If columns are delimited by a charac-
ter other than whitespace, this can be specified with the
column separator. The spin ID can be used to restrict
the loading to specific spin subsets.

Multiple files

The data frommultiple files can be loaded simultaneously
if a list of files is supplied. In this case, a list of spectrum
ID strings of equal length must be supplied.

Prompt examples

To read the reference and saturated spectra peak
heights from the Sparky formatted files ‘ref.list’ and
‘sat.list’, type:

relax> spectrum.read_intensities(file='

ref.list', spectrum_id='ref')

relax> spectrum.read_intensities(file='

sat.list', spectrum_id='sat')

To read the reference and saturated spectra peak
heights from the XEasy formatted files ‘ref.text’ and
‘sat.text’, type:

relax> spectrum.read_intensities(file='

ref.text', spectrum_id='ref')

relax> spectrum.read_intensities(file='

sat.text', spectrum_id='sat')

17.2. THE LIST OF FUNCTIONS 613

17.2.217 spectrum.read spins

Synopsis

Read peak assignments from a file and create spins.

Defaults

spectrum.read spins(file=None, dir=None, dim=1,
spin id col=None, mol name col=None, res num col=
None, res name col=None, spin num col=None,
spin name col=None, sep=None, spin id=None)

Keyword arguments

file: The name of the file containing the intensity data.

dir: The directory where the file is located.

dim: Associate the data with the spins of any dimen-
sion in the peak list. This defaults to w1, the heteronu-
cleus in HSQC type experiments.

spin id col: The spin ID string column used by the
generic intensity file format (an alternative to the mol,
res, and spin name and number columns).

mol name col: The molecule name column used by the
generic intensity file format (alternative to the spin ID
column).

res num col: The residue number column used by the
generic intensity file format (alternative to the spin ID
column).

res name col: The residue name column used by the
generic intensity file format (alternative to the spin ID
column).

spin num col: The spin number column used by the
generic intensity file format (alternative to the spin ID
column).

spin name col: The spin name column used by the
generic intensity file format (alternative to the spin ID
column).

sep: The column separator used by the generic inten-
sity format (the default is white space).

spin id: The spin ID string used to restrict the loading
of data to certain spin subsets.

Description

The spectral dimension is used to specify if the intensity
data should be loaded into the spins identified by the
first dimension w1, second dimension w2, etc.

File formats

The peak list or intensity file will be automatically de-
termined.

Sparky peak list: The file should be a Sparky peak list
saved after typing the command ‘lt’. The default is to
assume that columns 0, 1, 2, and 3 (1st, 2nd, 3rd, and
4th) contain the Sparky assignment, w1, w2, and peak
intensity data respectively. The frequency data w1 and
w2 are ignored while the peak intensity data can either
be the peak height or volume displayed by changing the
window options. If the peak intensity data is not within
column 3, set the integration column to the appropriate
number (column numbering starts from 0 rather than 1).

XEasy peak list: The file should be the saved XEasy
text window output of the list peak entries command,
‘tw’ followed by ‘le’. As the columns are fixed, the peak
intensity column is hardwired to number 10 (the 11th

column) which contains either the peak height or peak
volume data. Because the columns are fixed, the integra-
tion column number will be ignored.

NMRView: The file should be a NMRView peak list.
The default is to use column 16 (which contains peak
heights) for peak intensities. To use use peak volumes
(or evolumes), int col must be set to 15.

NMRPipe seriesTab: The file should be a NMRPipe-
format Spectral Series list. If the spectrum id=‘auto’,
the IDs are auto generated in form of Z A{i}.

Generic intensity file: This is a generic format which
can be created by scripting to support non-supported
peak lists. It should contain in the first few columns
enough information to identify the spin. This can in-
clude columns for the molecule name, residue number,
residue name, spin number, and spin name. Alterna-
tively a spin ID string column can be used. The peak
intensities can be placed in another column specified by
the integration column number. Intensities from mul-
tiple spectra can be placed into different columns, and
these can then be specified simultaneously by setting the
integration column value to a list of columns. This list
must be matched by setting the spectrum ID to a list of
the same length. If columns are delimited by a charac-
ter other than whitespace, this can be specified with the
column separator. The spin ID can be used to restrict
the loading to specific spin subsets.

Prompt examples

To read the spin assignments from the Sparky formatted
files ‘ref.list’ and ‘sat.list’, type:

relax> spectrum.read_spins(file='ref.list')

relax> spectrum.read_spins(file='sat.list')

To read the spin assignments from the XEasy formatted
files ‘ref.text’ and ‘sat.text’, type:

relax> spectrum.read_spins(file='ref.text')

relax> spectrum.read_spins(file='sat.text')

614 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.218 spectrum.replicated

Synopsis

Specify which spectra are replicates of each other.

Defaults

spectrum.replicated(spectrum ids=None)

Keyword arguments

spectrum ids: The list of replicated spectra ID strings.

Description

This is used to identify which of the loaded spectra are
replicates of each other. Specifying the replicates is es-
sential for error analysis if the baseplane RMSD has not
been supplied.

Prompt examples

To specify that the NOE spectra labelled ‘ref1’, ‘ref2’,
and ‘ref3’ are the same spectrum replicated, type one
of:

relax> spectrum.replicated(['ref1', 'ref2',

'ref3'])

relax> spectrum.replicated(spectrum_ids=['

ref1', 'ref2', 'ref3'])

To specify that the two R2 spectra ‘ncyc2’ and ‘ncyc2b’
are the same time point, type:

relax> spectrum.replicated(['ncyc2', 'ncyc2b

'])

17.2.219 spectrum.sn ratio

Synopsis

Calculate the signal to noise ratio for all selected spins.

Defaults

spectrum.sn ratio()

Description

This user function will per spin calculate the signal to
noise ratio: S/N.

Prompt examples

To calculate the Signal to Noise ratio per spin.

relax> spectrum.sn_ratio()

17.2. THE LIST OF FUNCTIONS 615

17.2.220 spin.copy

Synopsis

Copy all data associated with a spin.

Defaults

spin.copy(pipe from=None, spin from=None, pipe to=
None, spin to=None)

Keyword arguments

pipe from: The data pipe containing the spin from
which the data will be copied. This defaults to the cur-
rent data pipe.

spin from: The spin identifier string of the spin to copy
the data from.

pipe to: The data pipe to copy the data to. This de-
faults to the current data pipe.

spin to: The spin identifier string of the spin to copy
the data to. If left blank, the new spin will have the same
name as the old.

Description

This will copy all the data associated with the identified
spin to the new, non-existent spin. The new spin must
not already exist.

Prompt examples

To copy the spin data from spin 1 to the new spin 2,
type:

relax> spin.copy(spin_from='@1', spin_to='@2

')

To copy spin 1 of the molecule ‘Old mol’ to spin 5 of the
molecule ‘New mol’, type:

relax> spin.copy(spin_from='#Old mol@1',

spin_to='#New mol@5')

To copy the spin data of spin 1 from the data pipe ‘m1’
to ‘m2’, assuming the current data pipe is ‘m1’, type:

relax> spin.copy(spin_from='@1', pipe_to='m2

')

relax> spin.copy(pipe_from='m1', spin_from='

@1', pipe_to='m2', spin_to='@1')

17.2.221 spin.create

Synopsis

Create a new spin.

Defaults

spin.create(spin name=None, spin num=None,
res name=None, res num=None, mol name=None)

Keyword arguments

spin name: The name of the spin.

spin num: The spin number.

res name: The name of the residue to add the spin to.

res num: The number of the residue to add the spin
to.

mol name: The name of the molecule to add the spin
to.

Description

This will add a new spin data container to the relax data
storage object. The same spin number cannot be used
more than once.

Prompt examples

The following sequence of commands will add the spins
1 C4, 2 C9, 3 C15 to residue number 10:

relax> spin.create('C4', 1, res_num=10)

relax> spin.create('C9', 2, res_num=10)

relax> spin.create('C15', 3, res_num=10)

616 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.222 spin.create pseudo

Synopsis

Create a spin system representing a pseudo-atom.

Defaults

spin.create pseudo(spin name=None, spin num=None,
res id=None, members=None, averaging=‘linear’)

Keyword arguments

spin name: The name of the pseudo-atom spin.

spin num: The spin number.

res id: The molecule and residue ID string identifying
the position to add the pseudo-spin to.

members: A list of the atoms (as spin ID strings) that
the pseudo-atom is composed of.

averaging: The positional averaging technique.

Description

This will create a spin data container representing a num-
ber of pre-existing spin containers as a pseudo-atom. The
optional spin number must not already exist.

Spin ID string documentation

The identification string is composed of three com-
ponents: the molecule ID token beginning with the
‘#’ character, the residue ID token beginning with
the ‘:’ character, and the atom or spin system ID
token beginning with the ‘@’ character. Each token
can be composed of multiple elements - one per spin
- separated by the ‘,’ character and each individual
element can either be a number (which must be an
integer, in string format), a name, or a range of
numbers separated by the ‘-’ character. Negative
numbers are supported. The full ID string specification
is ‘#<mol name> :<res id>[, <res id>[, <res id>,

...]] @<atom id>[, <atom id>[, <atom id>, ...]]’,
where the token elements are ‘<mol name>’, the name of
the molecule, ‘<res id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not

contain the ‘#’ character then all molecules will match the
string. If only the molecule ID component is specified,
then all spins of the molecule will match.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

Prompt examples

The following will create the pseudo-atom named ‘Q9’
consisting of the protons ‘@H16’, ‘@H17’, ‘@H18’:

relax> spin.create_pseudo('Q9', members=['

@H16', '@H17', '@H18'])

17.2. THE LIST OF FUNCTIONS 617

17.2.223 spin.delete

Synopsis

Delete spins.

Defaults

spin.delete(spin id=None)

Keyword arguments

spin id: The spin identifier string.

Description

This can be used to delete a single or sets of spins. See
the identification string documentation below for more
information.

Spin ID string documentation

The identification string is composed of three com-
ponents: the molecule ID token beginning with the
‘#’ character, the residue ID token beginning with
the ‘:’ character, and the atom or spin system ID
token beginning with the ‘@’ character. Each token
can be composed of multiple elements - one per spin
- separated by the ‘,’ character and each individual
element can either be a number (which must be an
integer, in string format), a name, or a range of
numbers separated by the ‘-’ character. Negative
numbers are supported. The full ID string specification
is ‘#<mol name> :<res id>[, <res id>[, <res id>,

...]] @<atom id>[, <atom id>[, <atom id>, ...]]’,
where the token elements are ‘<mol name>’, the name of
the molecule, ‘<res id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match the
string. If only the molecule ID component is specified,
then all spins of the molecule will match.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

17.2.224 spin.display

Synopsis

Display information about the spin(s).

Defaults

spin.display(spin id=None)

Keyword arguments

spin id: The spin identification string.

Description

This will display the spin data loaded into the current
data pipe.

Spin ID string documentation

The identification string is composed of three com-
ponents: the molecule ID token beginning with the
‘#’ character, the residue ID token beginning with
the ‘:’ character, and the atom or spin system ID
token beginning with the ‘@’ character. Each token
can be composed of multiple elements - one per spin
- separated by the ‘,’ character and each individual
element can either be a number (which must be an
integer, in string format), a name, or a range of
numbers separated by the ‘-’ character. Negative
numbers are supported. The full ID string specification
is ‘#<mol name> :<res id>[, <res id>[, <res id>,

...]] @<atom id>[, <atom id>[, <atom id>, ...]]’,
where the token elements are ‘<mol name>’, the name of
the molecule, ‘<res id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match the
string. If only the molecule ID component is specified,
then all spins of the molecule will match.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

618 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.225 spin.element

Synopsis

Set the element type of the spin.

Defaults

spin.element(element=None, spin id=None, force=False)

Keyword arguments

element: The IUPAC element name.

spin id: The spin identification string corresponding to
one or more spins.

force: A flag which if True will cause the element to be
changed.

Description

This allows the element type of the spins to be set.

Spin ID string documentation

The identification string is composed of three com-
ponents: the molecule ID token beginning with the
‘#’ character, the residue ID token beginning with
the ‘:’ character, and the atom or spin system ID
token beginning with the ‘@’ character. Each token
can be composed of multiple elements - one per spin
- separated by the ‘,’ character and each individual
element can either be a number (which must be an
integer, in string format), a name, or a range of
numbers separated by the ‘-’ character. Negative
numbers are supported. The full ID string specification
is ‘#<mol name> :<res id>[, <res id>[, <res id>,

...]] @<atom id>[, <atom id>[, <atom id>, ...]]’,
where the token elements are ‘<mol name>’, the name of
the molecule, ‘<res id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match the
string. If only the molecule ID component is specified,
then all spins of the molecule will match.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

Prompt examples

The set all spins of residue 1 to be carbons, type one of:

relax> spin.element('@1', 'C', force=True)

relax> spin.element(spin_id='@1', element='C

', force=True)

17.2. THE LIST OF FUNCTIONS 619

17.2.226 spin.isotope

Synopsis

Set the spins’ nuclear isotope type.

Defaults

spin.isotope(isotope=None, spin id=None, force=False)

Keyword arguments

isotope: The nuclear isotope name in the AE notation -
the atomic mass number followed by the element symbol.

spin id: The spin identification string corresponding to
one or more spins.

force: A flag which if True will cause the nuclear iso-
tope to be changed.

Description

This allows the nuclear isotope type of the spins to be
set.

Spin ID string documentation

The identification string is composed of three com-
ponents: the molecule ID token beginning with the
‘#’ character, the residue ID token beginning with
the ‘:’ character, and the atom or spin system ID
token beginning with the ‘@’ character. Each token
can be composed of multiple elements - one per spin
- separated by the ‘,’ character and each individual
element can either be a number (which must be an
integer, in string format), a name, or a range of
numbers separated by the ‘-’ character. Negative
numbers are supported. The full ID string specification
is ‘#<mol name> :<res id>[, <res id>[, <res id>,

...]] @<atom id>[, <atom id>[, <atom id>, ...]]’,
where the token elements are ‘<mol name>’, the name of
the molecule, ‘<res id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match the
string. If only the molecule ID component is specified,
then all spins of the molecule will match.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

Prompt examples

The set all spins of residue 1 to the ‘13C’ nuclear isotope,
type one of:

relax> spin.isotope('@1', '13C', force=True)

relax> spin.isotope(spin_id='@1', isotope='

13C', force=True)

620 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.227 spin.name

Synopsis

Name the spins.

Defaults

spin.name(name=None, spin id=None, force=False)

Keyword arguments

name: The new name.

spin id: The spin identification string corresponding to
one or more spins.

force: A flag which if True will cause the spin to be
renamed.

Description

This simply allows spins to be named (or renamed).
Spin naming often essential. For example when reading
Sparky peak list files, then the spin name must match
that in the file.

Spin ID string documentation

The identification string is composed of three com-
ponents: the molecule ID token beginning with the
‘#’ character, the residue ID token beginning with
the ‘:’ character, and the atom or spin system ID
token beginning with the ‘@’ character. Each token
can be composed of multiple elements - one per spin
- separated by the ‘,’ character and each individual
element can either be a number (which must be an
integer, in string format), a name, or a range of
numbers separated by the ‘-’ character. Negative
numbers are supported. The full ID string specification
is ‘#<mol name> :<res id>[, <res id>[, <res id>,

...]] @<atom id>[, <atom id>[, <atom id>, ...]]’,
where the token elements are ‘<mol name>’, the name of
the molecule, ‘<res id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match the
string. If only the molecule ID component is specified,
then all spins of the molecule will match.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

Prompt examples

The following sequence of commands will rename the se-
quence {1 C1, 2 C2, 3 C3} to {1 C11, 2 C12, 3 C13}:

relax> spin.name('@1', 'C11', force=True)

relax> spin.name('@2', 'C12', force=True)

relax> spin.name('@3', 'C13', force=True)

17.2. THE LIST OF FUNCTIONS 621

17.2.228 spin.number

Synopsis

Number the spins.

Defaults

spin.number(spin id=None, number=None, force=False)

Keyword arguments

spin id: The spin identification string corresponding to
a single spin.

number: The new spin number.

force: A flag which if True will cause the spin to be
renumbered.

Description

This simply allows spins to be numbered. The new num-
ber cannot correspond to an existing spin number.

Spin ID string documentation

The identification string is composed of three com-
ponents: the molecule ID token beginning with the
‘#’ character, the residue ID token beginning with
the ‘:’ character, and the atom or spin system ID
token beginning with the ‘@’ character. Each token
can be composed of multiple elements - one per spin
- separated by the ‘,’ character and each individual
element can either be a number (which must be an
integer, in string format), a name, or a range of
numbers separated by the ‘-’ character. Negative
numbers are supported. The full ID string specification
is ‘#<mol name> :<res id>[, <res id>[, <res id>,

...]] @<atom id>[, <atom id>[, <atom id>, ...]]’,
where the token elements are ‘<mol name>’, the name of
the molecule, ‘<res id>’, the residue identifier which can
be a number, name, or range of numbers, ‘<atom id>’,
the atom or spin system identifier which can be a
number, name, or range of numbers.

If one of the tokens is left out then all elements will be
assumed to match. For example if the string does not
contain the ‘#’ character then all molecules will match the
string. If only the molecule ID component is specified,
then all spins of the molecule will match.

Regular expression can be used to select spins. For ex-
ample the string ‘@H*’ will select the protons ‘H’, ‘H2’,
‘H98’.

Prompt examples

The following sequence of commands will renumber the
sequence {1 C1, 2 C2, 3 C3} to {-1 C1, -2 C2, -3 C3}:

relax> spin.number('@1', -1, force=True)

relax> spin.number('@2', -2, force=True)

relax> spin.number('@3', -3, force=True)

622 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.229 state.load

Synopsis

Load a saved program state.

Defaults

state.load(state=‘state.bz2’, dir=None, force=False)

Keyword arguments

state: The file name, which can be a string or a file
descriptor object, of a saved program state.

dir: The name of the directory in which the file is
found.

force: A boolean flag which if True will cause the cur-
rent program state to be overwritten.

Description

This is able to handle uncompressed, bzip2 compressed
files, or gzip compressed files automatically. The full file
name including extension can be supplied, however, if
the file cannot be found, this function will search for the
file name with ‘.bz2’ appended followed by the file name
with ‘.gz’ appended.

For more advanced users, file descriptor objects are sup-
ported. If the force flag is set to True, then the relax
data store will be reset prior to the loading of the saved
state.

Prompt examples

The following commands will load the state saved in the
file ‘save’.

relax> state.load('save')

relax> state.load(state='save')

Use one of the following commands to load the state
saved in the bzip2 compressed file ‘save.bz2’:

relax> state.load('save')

relax> state.load(state='save')

relax> state.load('save.bz2')

relax> state.load(state='save.bz2', force=

True)

17.2.230 state.save

Synopsis

Save the program state.

Defaults

state.save(state=‘state.bz2’, dir=None, compress type=1,
force=False)

Keyword arguments

state: The file name, which can be a string or a file
descriptor object, to save the current program state in.

dir: The name of the directory in which to place the
file.

compress type: The type of compression to use when
creating the file.

force: A boolean flag which if set to True will cause
the file to be overwritten.

Description

This will place the program state - the relax data store
- into a file for later reloading or reference. The default
format is an XML formatted file.

The default behaviour of this function is to compress
the file using bzip2 compression. If the extension ‘.bz2’
is not included in the file name, it will be added. The
compression can, however, be changed to either no com-
pression or gzip compression. This is controlled by the
compression type which can be set to

0 – No compression (no file extension).

1 – bzip2 compression (‘.bz2’ file extension).

2 – gzip compression (‘.gz’ file extension).

Prompt examples

The following commands will save the current program
state, uncompressed, into the file ‘save’:

relax> state.save('save', compress_type=0)

relax> state.save(state='save',

compress_type=0)

17.2. THE LIST OF FUNCTIONS 623

The following commands will save the current program
state into the bzip2 compressed file ‘save.bz2’:

relax> state.save('save')

relax> state.save(state='save')

relax> state.save('save.bz2')

relax> state.save(state='save.bz2')

If the file ‘save’ already exists, the following commands
will save the current program state by overwriting the
file.

relax> state.save('save', force=True)

relax> state.save(state='save', force=True)

17.2.231 statistics.aic

Synopsis

Calculate and store Akaike’s Information Criterion (AIC)
for each model.

Defaults

statistics.aic()

Description

This will perform a calculation to obtain the chi-squared
statistic for the current parameter values for each model,
count the number of parameters per model and calculate
Akaike’s Information Criterion (AIC) using the formula
AIC = chi2 + 2k. The AIC values, chi-squared values,
and number of parameters will be stored in the appro-
priate location for the model in the relax data store.

624 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.232 statistics.model

Synopsis

Calculate and store the model statistics.

Defaults

statistics.model()

Description

This will perform a back-calculation to obtain the chi-
squared statistic for the current parameter values, count
the number of parameters and data points per model,
and place all the values in the relax data store.

17.2.233 structure.add atom

Synopsis

Add an atom.

Defaults

structure.add atom(mol name=None, atom name=None,
res name=None, res num=None, pos=None, element=
None, atom num=None, chain id=None, segment id=
None, pdb record=None)

Keyword arguments

mol name: The name of molecule container to create
or add the atom to.

atom name: The atom name.

res name: The residue name.

res num: The residue number.

pos: The atomic coordinates. For specifying different
coordinates for each model of the ensemble, a list of lists
can be supplied.

element: The element name.

atom num: The optional atom number.

chain id: The optional chain ID string.

segment id: The optional segment ID string.

pdb record: The optional PDB record name, e.g. ‘ATOM’
or ‘HETATM’.

Description

This allows atoms to be added to the internal struc-
tural object. To use the same atomic coordinates for all
models, the atomic position can be an array of 3 values.
Alternatively different coordinates can be used for each
model if the atomic position is a rank-2 array where the
first dimension matches the number of models currently
present.

17.2. THE LIST OF FUNCTIONS 625

17.2.234 structure.add helix

Synopsis

Define an α helix.

Defaults

structure.add helix(start=None, end=None, mol name=
None)

Keyword arguments

start: The residue number for the start of the helix.

end: The residue number for the end of the helix.

mol name: Define the secondary structure for a specific
molecule.

Description

This allows α helical secondary structure to be defined
for the internal structural object.

17.2.235 structure.add model

Synopsis

Add a new model.

Defaults

structure.add model(model num=None)

Keyword arguments

model num: The number of the new model.

Description

This allows new models to be added to the internal struc-
tural object. Note that no structural information is al-
lowed to be present.

626 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.236 structure.add sheet

Synopsis

Define a β sheet.

Defaults

structure.add sheet(strand=None, sheet id=‘A’,
strand count=2, strand sense=0, start=None, end=None,
mol name=None, current atom=None, prev atom=None)

Keyword arguments

strand: Strand number which starts at 1 for each
strand within a sheet and increases by one.

sheet id: The sheet identifier. To match the PDB stan-
dard, sheet IDs should range from ‘A’ to ‘Z’.

strand count: The number of strands in the sheet.

strand sense: Sense of strand with respect to previous
strand in the sheet. 0 if first strand, 1 if parallel, -1 if
anti-parallel.

start: The residue number for the start of the sheet.

end: The residue number for the end of the sheet.

mol name: Define the secondary structure for a specific
molecule.

current atom: The name of the first atom in the current
strand, to link the current back to the previous strand.

prev atom: The name of the last atom in the previous
strand, to link the current back to the previous strand.

Description

This allows β sheet secondary structure to be defined for
the internal structural object.

17.2.237 structure.atomic-
fluctuations

Synopsis

Create an interatomic distance fluctuation correlation
matrix.

Defaults

structure.atomic fluctuations(pipes=None, models=
None, molecules=None, atom id=None, measure=
‘distance’, file=None, format=‘text’, dir=None, force=
False)

Keyword arguments

pipes: The data pipes to generate the interatomic dis-
tance fluctuation correlation matrix for.

models: The list of models for each data pipe to gener-
ate the interatomic distance fluctuation correlation ma-
trix for. The number of elements must match the pipes
argument. If no models are given, then all will be used.

molecules: The list of molecules for each data pipe to
generate the interatomic distance fluctuation correlation
matrix for. This allows differently named molecules in
the same or different data pipes to be superimposed. The
number of elements must match the pipes argument. If
no molecules are given, then all will be used.

atom id: The atom identification string of the coordi-
nates of interest. This can be used to restrict the corre-
lation matrix to one atom per residue, for example.

measure: The type of fluctuation to investigate. This
allows for both interatomic distance and vector angle
fluctuations to be calculated.

file: The name of the text file to create.

format: The output format. For all formats other than
the text file, a second file will be created with the same
name as the text file but with the appropriate file exten-
sion added.

dir: The directory to save the file to.

force: A flag which if set to True will cause any pre-
existing files to be overwritten.

17.2. THE LIST OF FUNCTIONS 627

Description

This is used to visualise the interatomic fluctuations be-
tween different structures. By setting the measure argu-
ment, different categories of fluctuations can seen:

‘distance’ – The interatomic distance fluctuations is
the default option. The corrected sample stan-
dard deviation (SD) is calculated for the distances
between all atom pairs, resulting in a pairwise
matrix of SD values. This is frame independent
and hence is superimposition independent.

‘angle’ – The interatomic vector angle fluctuations.
The corrected sample standard deviation (SD) is
calculated for the angles between the inter atom
vectors all atom pairs to an average vector. This
also produces a pairwise matrix of SD values.

‘parallax shift’ – The interatomic parallax shift fluc-
tuations. The corrected sample standard devia-
tion (SD) is calculated for the parallax shift be-
tween the inter atom vectors all atom pairs to
an average vector. This also produces a pairwise
matrix of SD values. The parallax shift is calcu-
lated as the dot product of the interatomic vec-
tor and the unit average vector, times the unit
average vector. It is a frame and superimposition
dependent measure close to orthogonal to the in-
teratomic distance fluctuations. It is similar to
the angle measure however, importantly, it is in-
dependent of the distance between the two atoms.

For the output file, the currently supported formats are:

‘text’ – This is the default value and will result in a
single text file being created.

‘gnuplot’ – This will create a both a text file with the
data and a script for visualising the correlation
matrix using gnuplot. The script will have the
same name as the text file, however the file ex-
tension will be changed to *.gnu.

Support for multiple structures is provided by the data
pipes, model numbers and molecule names arguments.
Each data pipe, model and molecule combination will be
treated as a separate structure. As only atomic coordi-
nates with the same residue name and number and atom
name will be assembled, structures with slightly different
atomic structures can be compared. If the list of models
is not supplied, then all models of all data pipes will be
used. If the optional molecules list is supplied, each mol-
ecule in the list will be considered as a separate structure
for comparison between each other.

The atom ID string, which uses the same notation as the
spin ID, can be used to restrict the coordinates compared
to a subset of molecules, residues, or atoms. For example
to only use backbone heavy atoms in a protein, set the
atom ID to ‘@N,C,CA,O’, assuming those are the names
of the atoms in the 3D structural file.

Prompt examples

To create the interatomic distance fluctuation correlation
matrix for the models 1, 3, and 5, type:

relax> structure.atomic_fluctuations(models

=[[1, 3, 5]], file='

atomic_fluctuation_matrix')

To create the interatomic distance fluctuation correlation
matrix for the molecules ‘A’, ‘B’, ‘C’, and ‘D’, type:

relax> structure.atomic_fluctuations(

molecules=[['A', 'B', 'C', 'D']], file=

'atomic_fluctuation_matrix')

628 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.238 structure.com

Synopsis

Calculate the centre of mass (CoM) for all structures.

Defaults

structure.com(model=None, atom id=None)

Keyword arguments

model: The optional structural model number to re-
strict the calculation of the centre of mass to.

atom id: The atom identification string to restrict the
CoM calculation to.

Description

This user function will calculate the centre of mass
(CoM) for all loaded structures, printing out the posi-
tion and storing it in the current data pipe.

Prompt examples

To determine the centre of mass of all structure, simply
type:

relax> structure.com()

17.2.239 structure.connect atom

Synopsis

Connect two atoms.

Defaults

structure.connect atom(index1=None, index2=None)

Keyword arguments

index1: The global index of the first atom.

index2: The global index of the second atom.

Description

This allows atoms to be connected in the internal struc-
tural object. The global index is normally equal to the
PDB atom number minus 1.

17.2. THE LIST OF FUNCTIONS 629

17.2.240 structure.create diff-
tensor pdb

Synopsis

Create a PDB file to represent the diffusion tensor.

Defaults

structure.create diff tensor pdb(scale=1.8e-06, file=
‘tensor.pdb’, dir=None, force=False)

Keyword arguments

scale: Value for scaling the diffusion rates.

file: The name of the PDB file.

dir: The directory to place the file into.

force: A flag which, if set to True, will overwrite the
any pre-existing file.

Description

This creates a PDB file containing an artificial geometric
structure to represent the diffusion tensor. A structure
must have previously been read into relax. The diffu-
sion tensor is represented by an ellipsoidal, spheroidal,
or spherical geometric object with its origin located at
the centre of mass (of the selected residues). This dif-
fusion tensor PDB file can subsequently read into any
molecular viewer.

There are four different types of residue within the PDB.
The centre of mass of the selected residues is represented
as a single carbon atom of the residue ‘COM’. The ellip-
soidal geometric shape consists of numerous H atoms of
the residue ‘TNS’. The axes of the tensor, when defined,
are presented as the residue ‘AXS’ and consist of carbon
atoms: one at the centre of mass and one at the end
of each eigenvector. Finally, if Monte Carlo simulations
were run and the diffusion tensor parameters were al-
lowed to vary then there will be multiple ‘SIM’ residues,
one for each simulation. These are essentially the same as
the ‘AXS’ residue, representing the axes of the simulated
tensors, and they will appear as a distribution.

As the Brownian rotational diffusion tensor is a measure
of the rate of rotation about different axes - the larger the
geometric object, the faster the diffusion of a molecule.
For example the diffusion tensor of a water molecule is
much larger than that of a macromolecule.

The effective global correlation time experienced by an
XH bond vector, not to be confused with the Lipari and

Szabo parameter τ e, will be approximately proportional
to the component of the diffusion tensor parallel to it.
The approximation is not exact due to the multiexpo-
nential form of the correlation function of Brownian ro-
tational diffusion. If an XH bond vector is parallel to the
longest axis of the tensor, it will be unaffected by rota-
tions about that axis, which are the fastest rotations of
the molecule, and therefore its effective global correlation
time will be maximal.

To set the size of the diffusion tensor within the PDB
frame the unit vectors used to generate the geometric ob-
ject are first multiplied by the diffusion tensor (which has
the units of inverse seconds) then by the scaling factor
(which has the units of second Åand has the default value
of 1.8e-6 s.Angstrom). Therefore the rotational diffusion
rate per Åis equal the inverse of the scale value (which
defaults to 5.56e5 sˆ-1.Angstromˆ-1). Using the default
scaling value for spherical diffusion, the correspondence
between global correlation time, Diso diffusion rate, and
the radius of the sphere for a number of discrete cases
will be:

Please see Table 17.26 on page 630.

The scaling value has been fixed to facilitate comparisons
within or between publications, but can be changed to
vary the size of the tensor geometric object if necessary.
Reporting the rotational diffusion rate per Åwithin figure
legends would be useful.

To create the tensor PDB representation, a number of
algorithms are utilised. Firstly the centre of mass is cal-
culated for the selected residues and is represented in the
PDB by a C atom. Then the axes of the diffusion are cal-
culated, as unit vectors scaled to the appropriate length
(multiplied by the eigenvalue Dx, Dy , Dz , D‖, D⊥, or
Diso as well as the scale value), and a C atom placed at
the position of this vector plus the centre of mass. Finally
a uniform distribution of vectors on a sphere is generated
using spherical coordinates. By incrementing the polar
angle using an arccos distribution, a radial array of vec-
tors representing latitude are created while incrementing
the azimuthal angle evenly creates the longitudinal vec-
tors. These unit vectors, which are distributed within the
PDB frame and are of 1 Åin length, are first rotated into
the diffusion frame using a rotation matrix (the spherical
diffusion tensor is not rotated). Then they are multiplied
by the diffusion tensor matrix to extend the vector out
to the correct length, and finally multiplied by the scale
value so that the vectors reasonably superimpose onto
the macromolecular structure. The last set of algorithms
place all this information into a PDB file. The distribu-
tion of vectors are represented by H atoms and are all
connected using PDB CONECT records. Each H atom
is connected to its two neighbours on the both the longi-
tude and latitude. This creates a geometric PDB object
with longitudinal and latitudinal lines.

630 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 17.26: Diffusion tensor PDB representation sizes using the default scaling for differ-
ent diffusion tensors

τm (ns) Diso (sˆ-1) Radius (Å)

1 1.67e8 300
3 5.56e7 100
10 1.67e7 30
30 5.56e6 10

17.2.241 structure.create rotor-
pdb

Synopsis

Create a PDB file representation of a rotor.

Defaults

structure.create rotor pdb(file=‘rotor.pdb’, dir=None,
rotor angle=0.0, axis=None, axis pt=None, centre=None,
span=2e-09, blade length=5e-10, force=False, staggered=
False)

Keyword arguments

file: The name of the PDB file.

dir: The directory to place the file into.

rotor angle: The angle of the rotor motion in degrees.

axis: The vector defining the rotor axis.

axis pt: A point lying anywhere on the rotor axis. This
is used to define the position of the axis in 3D space.

centre: The central point of the representation. If this
point is not on the rotor axis, then the closest point on
the axis will be used for the centre.

span: The distance from the central point to the rotor
blades (meters).

blade length: The length of the representative rotor
blades.

force: A flag which if True will overwrite the file if it
already exists.

staggered: A flag which if True will cause the rotor
blades to be staggered. This is used to avoid blade over-
lap.

Description

This creates a PDB file representation of a rotor motional
model. The model axis is defined by a vector and a single
point on the axis. The centre of the representation will
be taken as the point on the rotor axis closest to the given
centre position. The size of the representation is defined
by the span, which is the distance from the central point
to the rotors, and the length of the blades.

Prompt examples

The following is a synthetic example:

relax> structure.create_rotor_pdb(file='

rotor.pdb', rotor_angle=20.0, axis=[0.,

0., 1.], axis_pt=[1., 1., 0.], centre

=[0., 0., 2.], span=2e-9, blade_length

=1e-9)

17.2. THE LIST OF FUNCTIONS 631

17.2.242 structure.create vector-
dist

Synopsis

Create a PDB file representation of the distribution of
XH bond vectors.

Defaults

structure.create vector dist(length=2e-09, file=‘XH dist.
pdb’, dir=None, symmetry=True, force=False)

Keyword arguments

length: The length of the vectors in the PDB represen-
tation (meters).

file: The name of the PDB file.

dir: The directory to place the file into.

symmetry: A flag which if True will create a second
chain with reversed XH bond orientations.

force: A flag which if True will overwrite the file if it
already exists.

Description

This creates a PDB file containing an artificial vectors,
the length of which default to 20 Å. A structure must
have previously been read into relax. The origin of the
vector distribution is located at the centre of mass (of
the selected residues). This vector distribution PDB file
can subsequently be read into any molecular viewer.

Because of the symmetry of the diffusion tensor revers-
ing the orientation of the XH bond vector has no effect.
Therefore by setting the symmetry flag two chains ‘A’
and ‘B’ will be added to the PDB file whereby chain ‘B’
is chain ‘A’ with the XH bonds reversed.

17.2.243 structure.delete

Synopsis

Delete structural information.

Defaults

structure.delete(atom id=None, model=None, verbosity=
1, spin info=True)

Keyword arguments

atom id: The atom identification string.

model: Individual structural models from a loaded en-
semble can be deleted by specifying the model number.

verbosity: The amount of information to print out. Set
to zero to silence the user function, or one to see all
messages.

spin info: A flag which if True will cause all structural
information in the spin containers and interatomic data
containers to be deleted as well. If False, then only the
3D structural data will be deleted.

Description

This will delete structural information from the current
data pipe. All spin and sequence information loaded from
these structures will be preserved - this only affects the
structural data. The atom ID argument can be used to
restrict deletion to parts of the loaded molecules, or the
model argument can be used to delete individual struc-
tural models from an ensemble.

Prompt examples

To delete everything, simply type:

relax> structure.delete()

To delete residues 50 to 100 of the molecule called
‘Ap4Aase’, type one of:

relax> structure.delete(':50-100')

relax> structure.delete(atom_id=':50-100')

632 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.244 structure.delete ss

Synopsis

Delete secondary structure information.

Defaults

structure.delete ss()

Description

This will delete all secondary structure information from
the current data pipe.

Prompt examples

To delete all secondary structure, simply type:

relax> structure.delete_ss()

17.2.245 structure.displacement

Synopsis

Determine the rotational and translational displacement
between a set of models or molecules.

Defaults

structure.displacement(pipes=None, models=None,
molecules=None, atom id=None, centroid=None)

Keyword arguments

pipes: The data pipes to determine the displacements
for.

models: The list of models for each data pipe to de-
termine the displacements for. The number of elements
must match the pipes argument. If no models are given,
then all will be used.

molecules: The list of molecules for each data pipe to
determine the displacements for. This allows differently
named molecules in the same or different data pipes to
be superimposed. The number of elements must match
the pipes argument. If no molecules are given, then all
will be used.

atom id: The atom identification string of the coordi-
nates of interest.

centroid: The alternative position of the centroid.

Description

This user function allows the rotational and translational
displacement between different models or molecules to
be calculated. The information will be printed out in
various formats and held in the relax data store. This
is directional, so there is a starting and ending position
for each displacement. Therefore the displacements in
all directions between all models and molecules will be
calculated.

Support for multiple structures is provided by the data
pipes, model numbers and molecule names arguments.
Each data pipe, model and molecule combination will be
treated as a separate structure. As only atomic coordi-
nates with the same residue name and number and atom
name will be assembled, structures with slightly different
atomic structures can be compared. If the list of models
is not supplied, then all models of all data pipes will be
used. If the optional molecules list is supplied, each mol-
ecule in the list will be considered as a separate structure
for comparison between each other.

17.2. THE LIST OF FUNCTIONS 633

The atom ID string, which uses the same notation as the
spin ID, can be used to restrict the coordinates compared
to a subset of molecules, residues, or atoms. For example
to only use backbone heavy atoms in a protein, set the
atom ID to ‘@N,C,CA,O’, assuming those are the names
of the atoms in the 3D structural file.

By supplying the position of the centroid, an alternative
position than the standard rigid body centre is used as
the focal point of the motion. The allows, for example, a
pivot of a rotational domain motion to be specified. This
is not a formally correct algorithm, all translations will
be zero, but does give an indication to the amplitude of
the pivoting angle.

Prompt examples

To determine the rotational and translational displace-
ments between all sets of models, type:

relax> structure.displacement()

17.2.246 structure.find pivot

Synopsis

Find the pivot point of the motion of a set of structures.

Defaults

structure.find pivot(pipes=None, models=None,
molecules=None, atom id=None, init pos=None,
func tol=1e-05, box limit=200)

Keyword arguments

pipes: The data pipes to use in the motional pivot
algorithm.

models: The list of models for each data pipe to use in
the motional pivot algorithm. The number of elements
must match the pipes argument. If no models are given,
then all will be used.

molecules: The list of molecules for each data pipe to
use in the motional pivot algorithm. This allows dif-
ferently named molecules in the same or different data
pipes to be used. The number of elements must match
the pipes argument. If no molecules are given, then all
will be used.

atom id: The atom identification string of the coordi-
nates of interest.

init pos: The initial position of the pivot.

func tol: The function tolerance. This is used to ter-
minate minimisation once the function value between it-
erations is less than the tolerance. The default value is
1e-5.

box limit: The pivot point is constrained withing a box
of +/- x Åthe using the logarithmic barrier function to-
gether with simplex optimisation. This argument is the
value of x.

Description

This is used to find pivot point of motion between a set
of structural models. If the list of models is not supplied,
then all models will be used.

Support for multiple structures is provided by the data
pipes, model numbers and molecule names arguments.
Each data pipe, model and molecule combination will be
treated as a separate structure. As only atomic coordi-
nates with the same residue name and number and atom
name will be assembled, structures with slightly different

634 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

atomic structures can be compared. If the list of models
is not supplied, then all models of all data pipes will be
used. If the optional molecules list is supplied, each mol-
ecule in the list will be considered as a separate structure
for comparison between each other.

The atom ID string, which uses the same notation as the
spin ID, can be used to restrict the coordinates compared
to a subset of molecules, residues, or atoms. For example
to only use backbone heavy atoms in a protein, set the
atom ID to ‘@N,C,CA,O’, assuming those are the names
of the atoms in the 3D structural file.

By supplying the position of the centroid, an alternative
position than the standard rigid body centre is used as
the focal point of the superimposition. The allows, for
example, the superimposition about a pivot point.

17.2.247 structure.get pos

Synopsis

Extract the atomic positions from the loaded structures
for the given spins.

Defaults

structure.get pos(spin id=None, ave pos=True)

Keyword arguments

spin id: The spin identification string.

ave pos: A flag specifying if the position of the atom
is to be averaged across models.

Description

This allows the atomic positions of the spins to be ex-
tracted from the loaded structures. This is automatically
performed by the structure.load spins user function, but
if the sequence information is generated in other ways,
this user function allows the structural information to be
obtained.

If averaging the atomic positions, then average position
of all models will be loaded into the spin container. Oth-
erwise the positions from all models will be loaded sepa-
rately.

Prompt examples

For a model-free backbone amide nitrogen analysis
whereby the N spins have already been created, to obtain
the backbone N positions from the file ‘1F3Y.pdb’ (which
is a single protein), type the following two user functions:

relax> structure.read_pdb('1F3Y.pdb')

relax> structure.get_pos(spin_id='@N')

17.2. THE LIST OF FUNCTIONS 635

17.2.248 structure.load spins

Synopsis

Load spins from the structure into the relax data store.

Defaults

structure.load spins(spin id=None, from mols=None,
mol name target=None, ave pos=True, spin num=True)

Keyword arguments

spin id: The spin identification string for the selective
loading of certain spins into the relax data store.

from mols: The list of similar, but not necessarily iden-
tical molecules to load spin information from.

mol name target: The name of target molecule con-
tainer, overriding the name of the loaded structures.

ave pos: A flag specifying if the position of the atom
is to be averaged across models.

spin num: A flag specifying if the spin number should
be loaded.

Description

This allows a sequence to be generated within the re-
lax data store using the atomic information from the
structure already associated with this data pipe. The
spin ID string is used to select which molecules, which
residues, and which atoms will be recognised as spin sys-
tems within relax. If the spin ID is left unspecified, then
all molecules, residues, and atoms will be placed within
the data store (and all atoms will be treated as spins).

As an alternative to using structural models, by specify-
ing the list of molecules to load spins from similar though
not necessarily identical molecules will be combined. In
this case, the target molecule name must be supplied to
create a single combined molecule. And only a single
model can be loaded in the current data pipe. The spin
numbering will be dropped to allow for sequential atom
numbering in the PDB and other formats. Therefore
only the residue number and name and atom name will
be preserved for creating the spin containers. If the spin
is only present in a subset of the structures, then the po-
sitional information will only be taken from that subset
and hence the number of positions might be different for
different spins.

If averaging the atomic positions, then average position
of all models or molecules will be loaded into the spin
container. Otherwise the positions from all models or
molecules will be loaded separately.

Prompt examples

For a model-free backbone amide nitrogen analysis,
to load just the backbone N sequence from the file
‘1F3Y.pdb’ (which is a single protein), type the follow-
ing two user functions:

relax> structure.read_pdb('1F3Y.pdb')

relax> structure.load_spins(spin_id='@N')

For an RNA analysis of adenine C8 and C2, guanine C8
and N1, cytidine C5 and C6, and uracil N3, C5, and C6,
type the following series of commands (assuming that the
PDB file with this atom naming has already been read):

relax> structure.load_spins(spin_id=":A@C8")

relax> structure.load_spins(spin_id=":A@C2")

relax> structure.load_spins(spin_id=":G@C8")

relax> structure.load_spins(spin_id=":G@N1")

relax> structure.load_spins(spin_id=":C@C5")

relax> structure.load_spins(spin_id=":C@C6")

relax> structure.load_spins(spin_id=":U@N3")

relax> structure.load_spins(spin_id=":U@C5")

relax> structure.load_spins(spin_id=":U@C6")

Alternatively using some Python programming:

relax> for id in [":A@C8", ":A@C2", ":G@C8",

":G@N1", ":C@C5", ":C@C6", ":U@N3", ":

U@C5", ":U@C6"]:

relax> structure.load_spins(spin_id=id)

636 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.249 structure.mean

Synopsis

Calculate the mean structure from all loaded models.

Defaults

structure.mean(pipes=None, models=None, molecules=
None, atom id=None, set mol name=None,
set model num=None)

Keyword arguments

pipes: The data pipes containing structures to average.

models: The list of models for each data pipe contain-
ing structures to average. The number of elements must
match the pipes argument. If no models are given, then
all will be used.

molecules: The list of molecules for each data pipe to
average. This allows differently named molecules in the
same or different data pipes to be averaged. The num-
ber of elements must match the pipes argument. If no
molecules are given, then all will be used.

atom id: The atom identification string of the coordi-
nates of interest. This can be used to restrict the aver-
aged structure to one atom per residue, for example.

set mol name: Set the optional name of the averaged
molecule.

set model num: Set the optional model number of the
averaged molecule.

Description

This will calculate and store the mean structure from a
collection of related molecules. If a new molecule name
or model number is not supplied, the mean structure will
replace all the models in the internal structural object.
This is provided as a structural aid, specifically for su-
perimposition purposes.

17.2.250 structure.pca

Synopsis

Principle component analysis (PCA) of the motions in
an ensemble of structures.

Defaults

structure.pca(pipes=None, models=None, molecules=
None, obs pipes=None, obs models=None,
obs molecules=None, atom id=None, algorithm=‘eigen’,
num modes=4, format=‘grace’, dir=None)

Keyword arguments

pipes: The data pipes to perform the PC analysis on.

models: The list of models for each data pipe to per-
form the PC analysis on. The number of elements must
match the pipes argument. If no models are given, then
all will be used.

molecules: The list of molecules for each data pipe to
perform the PC analysis on. The PCA will only be calcu-
lated for atoms with identical residue name and number
and atom name. The number of elements must match
the pipes argument. If no molecules are given, then all
will be used.

obs pipes: The data pipes in the PC analysis which will
have zero weight. These structures are for comparison.

obs models: The list of models for each data pipe in the
PC analysis which will have zero weight. These struc-
tures are for comparison. The number of elements must
match the pipes argument. If no models are given, then
all will be used.

obs molecules: The list of molecules for each data pipe
in the PC analysis which will have zero weight. These
structures are for comparison. The PCA will only be cal-
culated for atoms with identical residue name and num-
ber and atom name. The number of elements must match
the pipes argument. If no molecules are given, then all
will be used.

atom id: The atom identification string of the coordi-
nates of interest.

algorithm: The PCA algorithm used to find the prin-
ciple components of. This can be either ‘eigen’ for an
eigenvalue/eigenvector decomposition, or ‘svd’ for a sin-
gular value decomposition.

num modes: The number of PCA modes to calculate.

format: The format of the plot data.

dir: The directory to save the graphs into.

17.2. THE LIST OF FUNCTIONS 637

Description

Perform a principle component analysis (PCA) for all the
chosen structures. 2D graphs of the PC projections will
be generated and placed in the specified directory.

Support for multiple structures is provided by the data
pipes, model numbers and molecule names arguments.
Each data pipe, model and molecule combination will be
treated as a separate structure. As only atomic coordi-
nates with the same residue name and number and atom
name will be assembled, structures with slightly different
atomic structures can be compared. If the list of models
is not supplied, then all models of all data pipes will be
used. If the optional molecules list is supplied, each mol-
ecule in the list will be considered as a separate structure
for comparison between each other.

A subset of the structures can be set as ‘observing’.
This means that they will have a weight of zero when
constructing the covariance matrix and determining its
eigenvectors. Therefore the structures will not contribute
to the principle components, but will be present and com-
pared to structures used in the analysis.

The atom ID string, which uses the same notation as the
spin ID, can be used to restrict the coordinates compared
to a subset of molecules, residues, or atoms. For example
to only use backbone heavy atoms in a protein, set the
atom ID to ‘@N,C,CA,O’, assuming those are the names
of the atoms in the 3D structural file.

Prompt examples

To determine the PCA modes of all models in the current
data pipe, simply type:

relax> structure.pca()

17.2.251 structure.read gaussian

Synopsis

Reading structures from Gaussian log files.

Defaults

structure.read gaussian(file=None, dir=None,
set mol name=None, set model num=None, verbosity=1)

Keyword arguments

file: The name of the Gaussian log file.

dir: The directory where the file is located.

set mol name: Set the names of the read molecules. If
unset, then the molecules will be automatically labelled
based on the file name or other information. This can
either be a single name or a list of names.

set model num: Set the model numbers of the loaded
molecules. This can be a single number or list of num-
bers.

verbosity: The amount of information to print out. Set
to zero to silence the user function, or one to see all
messages.

Description

The atomic positions from a Gaussian log file can be read
into relax. If optimisation has been preformed, the last
set of atomic coordinates from the log will be read to
obtain the final structure. The log file can be Gzip or
Bzip2 compressed.

The setting of molecule names is used to name the
molecules within the Gaussian file. If not set, then the
molecules will be named after the file name, with the
molecule number appended if more than one exists. By
setting the molecule name or setting the model number,
the loaded structure can be stored as a specific model or
as a different molecule.

Prompt examples

To load all structures from the Gaussian file ‘taxol.log’
in the directory ‘~/logs’, including all models and all
molecules, type one of:

relax> structure.read_gaussian('taxol.log',

'~/logs')

638 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

relax> structure.read_gaussian(file='

taxol.log', dir=logs')

17.2.252 structure.read pdb

Synopsis

Reading structures from PDB files.

Defaults

structure.read pdb(file=None, dir=None, read mol=
None, set mol name=None, read model=None,
set model num=None, alt loc=None, verbosity=1,
merge=False)

Keyword arguments

file: The name of the PDB file.

dir: The directory where the file is located.

read mol: If set, only the given molecule(s) will be read.
The molecules are numbered consecutively from 1. If
unset, then all molecules will be loaded. By providing a
list of numbers such as [1, 2], multiple molecules will be
read.

set mol name: Set the names of the read molecules. If
unset, then the molecules will be automatically labelled
based on the file name or other information. This can
either be a single name or a list of names.

read model: If set, only the given model number(s)
from the PDB file will be read. Otherwise all models will
be read. This can be a single number or list of numbers.

set model num: Set the model numbers of the loaded
molecules. If unset, then the PDB model numbers will
be preserved if they exist. This can be a single number
or list of numbers.

alt loc: The PDB ATOM record ‘Alternate location

indicator’ field value.

verbosity: The amount of information to print out. Set
to zero to silence the user function, or one to see all
messages.

merge: A flag which if set to True will try to merge
the PDB structure into the currently loaded structures.

Description

The reading of PDB files into relax is quite a flexible pro-
cedure allowing for both models, defined as an ensemble
of the same molecule but with different atomic positions,
and different molecules within the same model. One of
more molecules can exist in one or more models. The

17.2. THE LIST OF FUNCTIONS 639

flexibility allows PDB models to be converted into differ-
ent molecules and different PDB files loaded as the same
molecule but as different models.

In a PDB file, the models are specified by the MODEL
PDB record. All the supported PDB readers in relax
recognise this. The internal reader defines molecules us-
ing the TER PDB record. In both cases, the molecules
will be numbered consecutively from 1.

Setting the molecule name allows the molecule within
the PDB (within one model) to have a custom name. If
not set, then the molecules will be named after the file
name, with the molecule number appended if more than
one exists.

Note that relax will complain if it cannot work out what
to do.

This is able to handle uncompressed, bzip2 compressed
files, or gzip compressed files automatically. The full file
name including extension can be supplied, however, if
the file cannot be found, this function will search for the
file name with ‘.bz2’ appended followed by the file name
with ‘.gz’ appended.

If a PDB file contains alternative atomic locations, then
the alternate location indicator must be specified to allow
one of the multiple coordinate sets to be selected.

Prompt examples

To load all structures from the PDB file ‘test.pdb’ in the
directory ‘~/pdb’, including all models and all molecules,
type one of:

relax> structure.read_pdb('test.pdb', '~/pdb

')

relax> structure.read_pdb(file='test.pdb',

dir='pdb')

To load the 10th model from the file ‘test.pdb’ and nam-
ing it ‘CaM’, use one of:

relax> structure.read_pdb('test.pdb',

read_model=10, set_mol_name='CaM')

relax> structure.read_pdb(file='test.pdb',

read_model=10, set_mol_name='CaM')

To load models 1 and 5 from the file ‘test.pdb’ as two
different structures of the same model, type one of:

relax> structure.read_pdb('test.pdb',

read_model=[1, 5], set_model_num=[1,

1])

relax> structure.read_pdb('test.pdb',

set_mol_name=['CaM_1', 'CaM_2'],

read_model=[1, 5], set_model_num=[1,

1])

To load the files ‘lactose MCMM4 S1 1.pdb’,
‘lactose MCMM4 S1 2.pdb’, ‘lactose MCMM4 S1 3.pdb’
and ‘lactose MCMM4 S1 4.pdb’ as models, type the
following sequence of commands:

relax> structure.read_pdb('

lactose_MCMM4_S1_1.pdb', set_mol_name='

lactose_MCMM4_S1', set_model_num=1)

relax> structure.read_pdb('

lactose_MCMM4_S1_2.pdb', set_mol_name='

lactose_MCMM4_S1', set_model_num=2)

relax> structure.read_pdb('

lactose_MCMM4_S1_3.pdb', set_mol_name='

lactose_MCMM4_S1', set_model_num=3)

relax> structure.read_pdb('

lactose_MCMM4_S1_4.pdb', set_mol_name='

lactose_MCMM4_S1', set_model_num=4)

640 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.253 structure.read xyz

Synopsis

Reading structures from XYZ files.

Defaults

structure.read xyz(file=None, dir=None, read mol=None,
set mol name=None, read model=None, set model num=
None, verbosity=1)

Keyword arguments

file: The name of the XYZ file.

dir: The directory where the file is located.

read mol: If set, only the given molecule(s) will be read.
The molecules are numbered consecutively from 1. If
unset, then all molecules will be loaded. By providing a
list of numbers such as [1, 2], multiple molecules will be
read.

set mol name: Set the names of the read molecules. If
unset, then the molecules will be automatically labelled
based on the file name or other information. This can
either be a single name or a list of names.

read model: If set, only the given model number(s)
from the PDB file will be read. Otherwise all models will
be read. This can be a single number or list of numbers.

set model num: Set the model numbers of the loaded
molecules. If unset, then the PDB model numbers will
be preserved if they exist. This can be a single number
or list of numbers.

verbosity: The amount of information to print out. Set
to zero to silence the user function, or one to see all
messages.

Description

The XYZ files with different models, which defined as an
ensemble of the same molecule but with different atomic
positions, can be read into relax. If there are several
molecules in one xyz file, please separate them into dif-
ferent files and then load them individually. Loading
different models and different molecules is controlled by
specifying the molecule number read, setting the molec-
ule names, specifying which model to read, and setting
the model numbers.

The setting of molecule names is used to name the
molecules within the XYZ (within one model). If not set,

then the molecules will be named after the file name, with
the molecule number appended if more than one exists.

Note that relax will complain if it cannot work out what
to do.

Prompt examples

To load all structures from the XYZ file ‘test.xyz’ in the
directory ‘~/xyz’, including all models and all molecules,
type one of:

relax> structure.read_xyz('test.xyz', '~/xyz

')

relax> structure.read_xyz(file='test.xyz',

dir='xyz')

To load the 10th model from the file ‘test.xyz’ and nam-
ing it ‘CaM’, use one of:

relax> structure.read_xyz('test.xyz',

read_model=10, set_mol_name='CaM')

relax> structure.read_xyz(file='test.xyz',

read_model=10, set_mol_name='CaM')

To load models 1 and 5 from the file ‘test.xyz’ as two
different structures of the same model, type one of:

relax> structure.read_xyz('test.xyz',

read_model=[1, 5], set_model_num=[1,

1])

relax> structure.read_xyz('test.xyz',

set_mol_name=['CaM_1', 'CaM_2'],

read_model=[1, 5], set_model_num=[1,

1])

To load the files ‘test 1.xyz’, ‘test 2.xyz’, ‘test 3.xyz’
and ‘test 4.xyz’ as models, type the following sequence
of commands:

relax> structure.read_xyz('test_1.xyz',

set_mol_name='test_1', set_model_num=1)

relax> structure.read_xyz('test_2.xyz',

set_mol_name='test_2', set_model_num=2)

relax> structure.read_xyz('test_3.xyz',

set_mol_name='test_3', set_model_num=3)

relax> structure.read_xyz('test_4.xyz',

set_mol_name='test_4', set_model_num=4)

17.2. THE LIST OF FUNCTIONS 641

17.2.254 structure.rmsd

Synopsis

Determine the RMSD between structures.

Defaults

structure.rmsd(pipes=None, models=None, molecules=
None, atom id=None, atomic=False)

Keyword arguments

pipes: The data pipes to determine the RMSD for.

models: The list of models for each data pipe to de-
termine the RMSD for. The number of elements must
match the pipes argument. If no models are given, then
all will be used.

molecules: The list of molecules for each data pipe to
determine the RMSD for. The RMSD will only be calcu-
lated for atoms with identical residue name and number
and atom name. The number of elements must match
the pipes argument. If no molecules are given, then all
will be used.

atom id: The atom identification string of the coordi-
nates of interest.

atomic: A flag which if True will allow for per-atom
RMSDs to be additionally calculated.

Description

This allows the root mean squared deviation (RMSD)
between all structures to be calculated. The RMSDs
for individual structures to the mean structure will be
calculated and reported. These values averaged to pro-
duce a global RMSD stored in the structural object of
the current data pipe. If the ‘atomic’ argument is set,
per-atom RMSDs will additionally be calculated stored
in spin containers.

Support for multiple structures is provided by the data
pipes, model numbers and molecule names arguments.
Each data pipe, model and molecule combination will be
treated as a separate structure. As only atomic coordi-
nates with the same residue name and number and atom
name will be assembled, structures with slightly different
atomic structures can be compared. If the list of models
is not supplied, then all models of all data pipes will be
used. If the optional molecules list is supplied, each mol-
ecule in the list will be considered as a separate structure
for comparison between each other.

The atom ID string, which uses the same notation as the
spin ID, can be used to restrict the coordinates compared
to a subset of molecules, residues, or atoms. For example
to only use backbone heavy atoms in a protein, set the
atom ID to ‘@N,C,CA,O’, assuming those are the names
of the atoms in the 3D structural file.

Prompt examples

To determine the RMSD of all models in the current data
pipe, simply type:

relax> structure.rmsd()

For the backbone heavy atom RMSD of all models in the
current data pipe, simply type:

relax> structure.rmsd(atom_id='@N,C,CA,O')

To calculate the C-alpha backbone RMSDs of all models
in the current data pipe, type:

relax> structure.rmsd(atom_id='CA', atomic=

True)

642 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.255 structure.rotate

Synopsis

Rotate the internal structural object about the given ori-
gin by the rotation matrix.

Defaults

structure.rotate(R=array([[1., 0., 0.], [0., 1., 0.], [0., 0.,
1.]]), origin=None, model=None, atom id=None)

Keyword arguments

R: The rotation matrix in forwards rotation notation.

origin: The origin or pivot of the rotation.

model: The model to rotate (which if not set will cause
all models to be rotated).

atom id: The atom identification string.

Description

This is used to rotate the internal structural data by
the given rotation matrix. If the origin is supplied, then
this will act as the pivot of the rotation. Otherwise, all
structural data will be rotated about the point [0, 0, 0].
The rotation can be restricted to one specific model.

17.2.256 structure.sequence-
alignment

Synopsis

Multiple sequence alignment (MSA) of structural data.

Defaults

structure.sequence alignment(pipes=None, models=
None, molecules=None, msa algorithm=‘Central Star’,
pairwise algorithm=None, matrix=None,
gap open penalty=10.0, gap extend penalty=1.0,
end gap open penalty=0.0, end gap extend penalty=0.0)

Keyword arguments

pipes: The data pipes to use in the sequence alignment.

models: The list of models for each data pipe to use in
the sequence alignment. The number of elements must
match the pipes argument. If no models are given, then
all will be used.

molecules: The list of molecules for each data pipe to
use in the sequence alignment. This allows differently
named molecules in the same or different data pipes to
be superimposed. The number of elements must match
the pipes argument. If no molecules are given, then all
will be used.

msa algorithm: The multiple sequence alignment
(MSA) algorithm used to align all the primary sequence
of all structures of interest.

pairwise algorithm: The pairwise alignment algorithm
to align each pair of sequences.

matrix: The substitution matrix to use in the pairwise
sequence alignment algorithm.

gap open penalty: The penalty for introducing gaps, as
a positive number.

gap extend penalty: The penalty for extending a gap,
as a positive number.

end gap open penalty: The optional penalty for open-
ing a gap at the end of a sequence.

end gap extend penalty: The optional penalty for ex-
tending a gap at the end of a sequence.

17.2. THE LIST OF FUNCTIONS 643

Description

To find the atoms in common between different
molecules, a MSA of the primary sequence of the
molecules is required. This sequence alignment will then
subsequently be used by any other user function which
operates on multiple molecules. The following MSA al-
gorithms can be selected:

‘Central Star’ – This is a heuristic, progressive align-
ment method using pairwise alignments to con-
struct a MSA. It consists of four major steps -
pairwise alignment between all sequence pairs,
finding the central sequence, iteratively aligning
the sequences to the gapped central sequence, and
introducing gaps in previous alignments during
the iterative alignment.

‘residue number’ – This will simply align the molecules
based on residue number.

For the MSA algorithms which require pairwise align-
ments, the following subalgorithms can be used:

‘NW70’ – The Needleman-Wunsch alignment algorithm.
This has been modified to use the logic of the
EMBOSS software for handling gap opening and
extension penalties, as well as end penalties.

For the MSAs or pairwise alignments which require a
substitution matrix, one of the following can be used:

‘BLOSUM62’ – The BLOcks SUbstitution Matrix for pro-
teins with a cluster percentage ≥ 62%.

‘PAM250’ – The point accepted mutation matrix for pro-
teins with n = 250 evolutionary distance.

‘NUC 4.4’ – The nucleotide 4.4 matrix for DNA/RNA.

Support for multiple structures is provided by the data
pipes, model numbers and molecule names arguments.
Each data pipe, model and molecule combination will be
treated as a separate structure. As only atomic coordi-
nates with the same residue name and number and atom
name will be assembled, structures with slightly different
atomic structures can be compared. If the list of models
is not supplied, then all models of all data pipes will be
used. If the optional molecules list is supplied, each mol-
ecule in the list will be considered as a separate structure
for comparison between each other.

Prompt examples

To superimpose the structures in the ‘A’ data pipe onto
the structures of the ‘B’ data pipe using backbone heavy
atoms, type:

relax> structure.sequence_alignment(pipes=['

B', 'A'], atom_id='@N,C,CA,O')

17.2.257 structure.superimpose

Synopsis

Superimpose a set of structures.

Defaults

structure.superimpose(pipes=None, models=None,
molecules=None, atom id=None, displace id=None,
method=‘fit to mean’, centre type=‘centroid’, centroid=
None)

Keyword arguments

pipes: The data pipes to use in the superimposition.

models: The list of lists of models for each data pipe
to use in the superimposition. The number of elements
in the first dimension must match the pipes argument.
If no models are given, then all will be used.

molecules: The list of molecules for each data pipe to
use in the superimposition. This allows differently named
molecules in the same or different data pipes to be su-
perimposed. The number of elements must match the
pipes argument. If no molecules are given, then all will
be used.

atom id: The atom identification string of the coor-
dinates of interest. This allows a subset of all residues
or atoms to be used in the superimposition. For exam-
ple for protein backbone heavy atoms, this can be set to
‘@N,C,CA,O’.

displace id: The atom identification string for restrict-
ing the displacement to a subset of all atoms. If not set,
then all atoms will be translated and rotated. If supplied
as a list of IDs, then the number of items must match
the number of structures.

method: The superimposition method.

centre type: The type of centre to user for the super-
imposition, i.e. either the standard centroid superim-
position or a superimposition using the centre of mass
(CoM).

centroid: The alternative position of the centroid.

Description

This allows a set of related structures to be superim-
posed to each other. If a multiple sequence alignment
(MSA) of the molecules has already been performed with
the structure.sequence alignment user function, this will

644 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

allow residues with different numbering to be superim-
posed. Otherwise only residues with the same numbering
will be used in the superimposition. Two superimposi-
tion methods are currently supported:

‘fit to mean’ – All models are fit to the mean struc-
ture. This is the default and most accurate
method for an ensemble description. It is an iter-
ative method which first calculates a mean struc-
ture and then fits each model to the mean struc-
ture using the Kabsch algorithm. This is repeated
until convergence.

‘fit to first’ – This is quicker but is not as accurate
for an ensemble description. The Kabsch algo-
rithm is used to rotate and translate each model
to be superimposed onto the first model of the
first data pipe.

Support for multiple structures is provided by the data
pipes, model numbers and molecule names arguments.
Each data pipe, model and molecule combination will be
treated as a separate structure. As only atomic coordi-
nates with the same residue name and number and atom
name will be assembled, structures with slightly different
atomic structures can be compared. If the list of models
is not supplied, then all models of all data pipes will be
used. If the optional molecules list is supplied, each mol-
ecule in the list will be considered as a separate structure
for comparison between each other.

The atom ID string, which uses the same notation as the
spin ID, can be used to restrict the coordinates compared
to a subset of molecules, residues, or atoms. For example
to only use backbone heavy atoms in a protein, set the
atom ID to ‘@N,C,CA,O’, assuming those are the names
of the atoms in the 3D structural file.

The displacement ID string, which is similar to the atom
ID, gives finer control over which atoms are translated
and rotated by the algorithm. When not set this allows,
for example, to align structures based on a set of back-
bone heavy atoms and the backbone protons and side-
chains are displaced by default. Or if set to the same as
the atom ID, if a single domain is aligned, then just that
domain will be displaced.

By supplying the position of the centroid, an alternative
position than the standard rigid body centre is used as
the focal point of the superimposition. The allows, for
example, the superimposition about a pivot point.

Prompt examples

To superimpose all sets of models, type one of:

relax> structure.superimpose()

relax> structure.superimpose(method='fit to

mean')

To superimpose the models 1, 2, 3, 5 onto model 4, type:

relax> structure.superimpose(models=[[4, 1,

2, 3, 5]], method='fit to first')

To superimpose an ensemble of protein structures using
only the backbone heavy atoms, type one of:

relax> structure.superimpose(atom_id='@N,C,

CA,O')

relax> structure.superimpose(method='fit to

mean', atom_id='@N,C,CA,O')

To superimpose the structures in the ‘A’ data pipe onto
the structures of the ‘B’ data pipe using backbone heavy
atoms, type one of:

relax> structure.superimpose(['B', 'A'],

None, 'fit to first', '@N,C,CA,O')

relax> structure.superimpose(pipes=['B', 'A'

], method='fit to first', atom_id='@N,C

,CA,O')

17.2. THE LIST OF FUNCTIONS 645

17.2.258 structure.translate

Synopsis

Laterally displace the internal structural object by the
translation vector.

Defaults

structure.translate(T=None, model=None, atom id=
None)

Keyword arguments

T: The translation vector.

model: The model to translate (which if not set will
cause all models to be translate).

atom id: The atom identification string.

Description

This is used to translate the internal structural data by
the given translation vector. The translation can be re-
stricted to one specific model.

17.2.259 structure.web of motion

Synopsis

Create a PDB representation of motion between struc-
tures using a web of interconnecting lines.

Defaults

structure.web of motion(pipes=None, models=None,
molecules=None, atom id=None, file=None, dir=None,
force=False)

Keyword arguments

pipes: The data pipes to generate the web between.

models: The list of models for each data pipe to gen-
erate the web between. The number of elements must
match the pipes argument. If no models are given, then
all will be used.

molecules: The list of molecules for each data pipe to
generate the web between. This allows differently named
molecules in the same or different data pipes to be su-
perimposed. The number of elements must match the
pipes argument. If no molecules are given, then all will
be used.

atom id: The atom identification string of the coordi-
nates of interest.

file: The name of the PDB file.

dir: The directory to save the file to.

force: A flag which if set to True will cause any pre-
existing files to be overwritten.

Description

This will create a PDB representation of the motion be-
tween the atoms of a given set of structures. Identical
atoms of the structures are concatenated into one model,
within a temporary internal structural object, linked to-
gether using PDB CONECT records, and then written
to the PDB file.

Support for multiple structures is provided by the data
pipes, model numbers and molecule names arguments.
Each data pipe, model and molecule combination will be
treated as a separate structure. As only atomic coordi-
nates with the same residue name and number and atom
name will be assembled, structures with slightly different
atomic structures can be compared. If the list of models
is not supplied, then all models of all data pipes will be

646 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

used. If the optional molecules list is supplied, each mol-
ecule in the list will be considered as a separate structure
for comparison between each other.

The atom ID string, which uses the same notation as the
spin ID, can be used to restrict the coordinates compared
to a subset of molecules, residues, or atoms. For example
to only use backbone heavy atoms in a protein, set the
atom ID to ‘@N,C,CA,O’, assuming those are the names
of the atoms in the 3D structural file.

Prompt examples

To create a web of motion for the models 1, 3, and 5,
type:

relax> structure.web_of_motion(models=[[1,

3, 5]], file='web.pdb')

To create a web of motion for the molecules ‘A’, ‘B’, ‘C’,
and ‘D’, type:

relax> structure.web_of_motion(molecules=[['

A', 'B', 'C', 'D']], file='web.pdb')

17.2.260 structure.write pdb

Synopsis

Writing structures to a PDB file.

Defaults

structure.write pdb(file=None, dir=None, model num=
None, compress type=0, force=False)

Keyword arguments

file: The name of the PDB file.

dir: The directory where the file is located.

model num: Restrict the writing of structural data to
a single model in the PDB file.

compress type: The type of compression to use when
creating the file.

force: A flag which if set to True will cause any pre-
existing files to be overwritten.

Description

This will write all of the structural data loaded in the
current data pipe to be converted to the PDB format
and written to file. Specifying the model number allows
single models to be output.

The default behaviour of this function is to not compress
the file. The compression can, however, be changed to
either bzip2 or gzip compression. If the ‘.bz2’ or ‘.gz’
extension is not included in the file name, it will be
added. This behaviour is controlled by the compression
type which can be set to

0 – No compression (no file extension).

1 – bzip2 compression (‘.bz2’ file extension).

2 – gzip compression (‘.gz’ file extension).

17.2. THE LIST OF FUNCTIONS 647

Prompt examples

To write all models and molecules to the PDB file
‘ensemble.pdb’ within the directory ‘~/pdb’, type one of:

relax> structure.write_pdb('ensemble.pdb', '

~/pdb')

relax> structure.write_pdb(file='

ensemble.pdb', dir='pdb')

To write model number 3 into the new file ‘test.pdb’,
use one of:

relax> structure.write_pdb('test.pdb',

model_num=3)

relax> structure.write_pdb(file='test.pdb',

model_num=3)

17.2.261 system.cd

Synopsis

Change the current working directory to the specified
path.

Defaults

system.cd(path=None)

Keyword arguments

path: The path to the new current working directory.

Description

The equivalent of python module os.chdir(path). Change
the current working directory to the specified path.

To change the current working directory, type:

relax> system.cd("/path/to/dir")

648 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.262 system.pwd

Synopsis

Display the current working directory.

Defaults

system.pwd()

Description

This will display the current working directory.

The directory can be changed with the system.cd(path)
user function.

relax> system.pwd()

relax> system.cd("/path/to/dir")

17.2.263 system.sys info

Synopsis

Display all system information relating to this version of
relax.

Defaults

system.sys info()

Description

This will display all of the relax, Python, python package
and hardware information currently being used by relax.
This is useful for seeing if all packages are up to date and
if the correct software versions are being used. It is also
very useful information for reporting relax bugs.

17.2. THE LIST OF FUNCTIONS 649

17.2.264 system.time

Synopsis

Display the current time.

Defaults

system.time()

Description

This user function will display the current time which
can be useful for timing long calculations by having time
information in any saved log files.

17.2.265 value.copy

Synopsis

Copy parameters from one data pipe to another.

Defaults

value.copy(pipe from=None, pipe to=None, param=
None, force=False)

Keyword arguments

pipe from: The name of the pipe to copy from.

pipe to: The name of the pipe to copy to.

param: The parameter to copy. Only one parameter
may be selected.

force: A flag which, if set to True, will cause the des-
tination parameter to be overwritten.

Description

If this is used to change values of previously minimised
parameters, then the minimisation statistics (chi-squared
value, iteration count, function count, gradient count,
and Hessian count) will be reset.

Relaxation curve fitting parameters

Please see Table 17.27 on page 650.

Model-free parameters

Please see Table 17.28 on page 650.

Setting a parameter value may have no effect depend-
ing on which model-free model is chosen. For example if
S2
f
values and S2

s values are set but the data pipe corre-

sponds to the model-free model ‘m4’ then because these
data values are not parameters of the model they will
have no effect.

Note that the Rex values are scaled quadratically with
field strength and should be supplied as a field strength
independent value. Use the following formula to obtain
the correct value:

650 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 17.27: Relaxation curve fitting parameters.

Name Description

rx Either the R1 or R2 relaxation rate
i0 The initial intensity
iinf The intensity at infinity

Table 17.28: Model-free parameters.

Name Description

s2 S2, the model-free generalised order parameter (S2 = S2
f
.S2s)

s2f S2
f
, the faster motion model-free generalised order parameter

s2s S2
s , the slower motion model-free generalised order parameter

local tm The spin specific global correlation time (seconds)
te Single motion effective internal correlation time (seconds)
tf Faster motion effective internal correlation time (seconds)
ts Slower motion effective internal correlation time (seconds)
rex Chemical exchange relaxation (sigma ex = Rex / omega**2)
csa Chemical shift anisotropy (unitless)

value = rex / (2.0 * pi * frequency) ** 2

where:

rex is the chemical exchange value for the current
frequency.

frequency is the proton frequency corresponding
to the data.

Reduced spectral density mapping pa-
rameters

Please see Table 17.29 on page 651.

In reduced spectral density mapping, the CSA value must
be set prior to the calculation of spectral density values.

Consistency testing parameters

Please see Table 17.30 on page 651.

In consistency testing, the CSA value, angle Theta
(‘orientation’) and global correlation time must be set
prior to the calculation of consistency functions.

N-state model parameters

Please see Table 17.31 on page 651.

Setting parameters for the N-state model is a little differ-
ent from the other type of analyses as each state has a set
of parameters with the same names as the other states.
To set the parameters for a specific state c (ranging from
0 for the first to N-1 for the last, the number c should be
given as the index argument. So the Euler angle γ of the
third state is specified using the parameter name ‘gamma’
and index of 2.

Relaxation dispersion parameters

Please see Table 17.32 on page 652.

Any of the relaxation dispersion parameters which are of
the ‘float’ type can be set. Note that setting values for
parameters which are not part of the model will have no
effect.

Frame order parameters

Please see Table 17.6 on page 474.

Prompt examples

To copy the CSA values from the data pipe ‘m1’ to ‘m2’,
type:

relax> value.copy('m1', 'm2', 'csa')

17.2. THE LIST OF FUNCTIONS 651

Table 17.29: Reduced spectral density mapping parameters.

Name Description

j0 Spectral density value at 0 MHz - J(0)
jwx Spectral density value at the frequency of the heteronucleus - J(ωX)
jwh Spectral density value at the frequency of the proton - J(ωH)
csa Chemical shift anisotropy (unitless)

Table 17.30: Consistency testing parameters.

Name Description

j0 Spectral density value at 0 MHz (from Farrow et al. (1995) JBNMR, 6: 153-162)
f eta Eta-test (from Fushman et al. (1998) JACS, 120: 10947-10952)
f r2 R2-test (from Fushman et al. (1998) JACS, 120: 10947-10952)
csa Chemical shift anisotropy (unitless)
orientation Angle between the 15N-1H vector and the principal axis of the 15N chemical shift tensor
tc The single global correlation time estimate/approximation

Table 17.31: N-state model parameters.

Name Description Type

Axx The Axx component of the alignment tensor float
Ayy The Ayy component of the alignment tensor float
Axy The Axy component of the alignment tensor float
Axz The Axz component of the alignment tensor float
Ayz The Ayz component of the alignment tensor float
probs The probabilities of each state list
alpha The α Euler angles (for the rotation of each state) list
beta The β Euler angles (for the rotation of each state) list
gamma The γ Euler angles (for the rotation of each state) list
paramagnetic centre The paramagnetic centre list

652 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 17.32: Relaxation dispersion parameters.

Name Description Type

r2eff The effective transversal relaxation rate dict
i0 The initial intensity dict
r1 The longitudinal relaxation rate dict
r2 The transversal relaxation rate dict
r2a The transversal relaxation rate for state A in the absence of exchange dict
r2b The transversal relaxation rate for state B in the absence of exchange dict
pA The population for state A float
pB The population for state B float
pC The population for state C float
phi ex The φ ex = pA.pB.dw**2 value (ppmˆ2) float
phi ex B The fast exchange factor between sites A and B (ppmˆ2) float
phi ex C The fast exchange factor between sites A and C (ppmˆ2) float
padw2 The pA.dw**2 value (ppmˆ2) float
dw The chemical shift difference between states A and B (in ppm) float
dw AB The chemical shift difference between states A and B for 3-site exchange (in ppm) float
dw AC The chemical shift difference between states A and C for 3-site exchange (in ppm) float
dw BC The chemical shift difference between states B and C for 3-site exchange (in ppm) float
dwH The proton chemical shift difference between states A and B (in ppm) float
dwH AB The proton chemical shift difference between states A and B for 3-site exchange (in ppm) float
dwH AC The proton chemical shift difference between states A and C for 3-site exchange (in ppm) float
dwH BC The proton chemical shift difference between states B and C for 3-site exchange (in ppm) float
kex The exchange rate float
kex AB The exchange rate between sites A and B for 3-site exchange with kex AB = k AB + k BA (rad.sˆ-1) float
kex AC The exchange rate between sites A and C for 3-site exchange with kex AC = k AC + k CA (rad.sˆ-1) float
kex BC The exchange rate between sites B and C for 3-site exchange with kex BC = k BC + k CB (rad.sˆ-1) float
kB Approximate chemical exchange rate constant between sites A and B (rad.sˆ-1) float
kC Approximate chemical exchange rate constant between sites A and C (rad.sˆ-1) float
tex The time of exchange (tex = 1/kex) float
k AB The exchange rate from state A to state B float
k BA The exchange rate from state B to state A float

17.2. THE LIST OF FUNCTIONS 653

17.2.266 value.display

Synopsis

Display spin specific parameter values.

Defaults

value.display(param=None, scaling=1.0)

Keyword arguments

param: The parameter to display. Only one parameter
may be selected.

scaling: The factor to scale parameters by.

Description

The values corresponding to the given parameter will be
displayed. The scaling argument can be used to scale
the parameter values. This can be useful for example in
the case of the model-free Rex parameter to obtain the
spectrometer dependent value from the omega ex field
strength independent internal value. Or to scale correla-
tion times from seconds down to nanosecond or picosec-
ond timescales.

Relaxation curve fitting parameters

Please see Table 17.33 on page 654.

Steady-state NOE parameters

Please see Table 17.9 on page 487.

Model-free parameters

Please see Table 17.34 on page 654.

For model-free theory it is assumed that Rex values are
scaled quadratically with field strength. The values will
be very small as they will be written out as a field
strength independent value. Hence use the following for-
mula to convert the value to that expected for a given
magnetic field strength:

Rex = value * (2.0 * pi * frequency) ** 2

The frequency is that of the proton in Hertz.

Reduced spectral density mapping pa-
rameters

Please see Table 17.11 on page 487.

Consistency testing parameters

Please see Table 17.12 on page 488.

Relaxation dispersion parameters

Please see Table 17.5 on page 474.

Prompt examples

To show all CSA values, type:

relax> value.display('csa')

To display the model-free Rex values scaled to 600 MHz,
type one of:

relax> value.display('rex', scaling=(2.0*pi

*600e6)**2)

relax> value.display(param='rex', scaling=(2

.0*pi*600e6)**2)

654 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 17.33: Relaxation curve fitting parameters.

Name Description

rx Either the R1 or R2 relaxation rate
i0 The initial intensity
iinf The intensity at infinity

Table 17.34: Model-free parameters.

Name Description

s2 S2, the model-free generalised order parameter (S2 = S2
f
.S2s)

s2f S2
f
, the faster motion model-free generalised order parameter

s2s S2
s , the slower motion model-free generalised order parameter

local tm The spin specific global correlation time (seconds)
te Single motion effective internal correlation time (seconds)
tf Faster motion effective internal correlation time (seconds)
ts Slower motion effective internal correlation time (seconds)
rex Chemical exchange relaxation (sigma ex = Rex / omega**2)
csa Chemical shift anisotropy (unitless)

17.2.267 value.read

Synopsis

Read spin specific parameter values from a file.

Defaults

value.read(param=None, scaling=1.0, file=None, dir=
None, spin id col=None, mol name col=None,
res num col=None, res name col=None, spin num col=
None, spin name col=None, data col=None, error col=
None, sep=None, spin id=None)

Keyword arguments

param: The parameter. Only one parameter may be
selected.

scaling: The factor to scale parameters by.

file: The name of the file containing the values.

dir: The directory where the file is located.

spin id col: The spin ID string column (an alternative
to the mol, res, and spin name and number columns).

mol name col: The molecule name column (alternative
to the spin id col).

res num col: The residue number column (alternative
to the spin id col).

res name col: The residue name column (alternative to
the spin id col).

spin num col: The spin number column (alternative to
the spin id col).

spin name col: The spin name column (alternative to
the spin id col).

data col: The RDC data column.

error col: The experimental error column.

sep: The column separator (the default is white space).

spin id: The spin ID string to restrict the loading of
data to certain spin subsets.

Description

The spin system can be identified in the file using two
different formats. The first is the spin ID string column
which can include the molecule name, the residue name
and number, and the spin name and number. Alterna-
tively the molecule name, residue number, residue name,
spin number and/or spin name columns can be supplied
allowing this information to be in separate columns. Note
that the numbering of columns starts at one. The spin
ID string can be used to restrict the reading to certain
spin types, for example only 15N spins when only residue
information is in the file.

17.2. THE LIST OF FUNCTIONS 655

If this is used to change values of previously minimised
parameters, then the minimisation statistics (chi-squared
value, iteration count, function count, gradient count,
and Hessian count) will be reset.

Relaxation curve fitting parameters

Please see Table 17.27 on page 650.

Model-free parameters

Please see Table 17.28 on page 650.

Setting a parameter value may have no effect depend-
ing on which model-free model is chosen. For example if
S2
f
values and S2

s values are set but the data pipe corre-

sponds to the model-free model ‘m4’ then because these
data values are not parameters of the model they will
have no effect.

Note that the Rex values are scaled quadratically with
field strength and should be supplied as a field strength
independent value. Use the following formula to obtain
the correct value:

value = rex / (2.0 * pi * frequency) ** 2

where:

rex is the chemical exchange value for the current
frequency.

frequency is the proton frequency corresponding
to the data.

Reduced spectral density mapping pa-
rameters

Please see Table 17.29 on page 651.

In reduced spectral density mapping, the CSA value must
be set prior to the calculation of spectral density values.

Consistency testing parameters

Please see Table 17.30 on page 651.

In consistency testing, the CSA value, angle Theta
(‘orientation’) and global correlation time must be set
prior to the calculation of consistency functions.

Relaxation dispersion parameters

Please see Table 17.32 on page 652.

Any of the relaxation dispersion parameters which are of
the ‘float’ type can be set. Note that setting values for
parameters which are not part of the model will have no
effect.

Prompt examples

To load 15N CSA values from the file ‘csa values’ in
the directory ‘data’, where spins are only identified by
residue name and number, type one of the following:

relax> value.read('csa', 'data/csa_value',

spin_id='@N')

relax> value.read('csa', 'csa_value', dir='

data', spin_id='@N')

relax> value.read(param='csa', file='

csa_value', dir='data', res_num_col=1,

res_name_col=2, data_col=3, error_col

=4, spin_id='@N')

656 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

17.2.268 value.set

Synopsis

Set parameter values.

Defaults

value.set(val=None, param=None, index=0, spin id=
None, error=False, force=True)

Keyword arguments

val: The value(s).

param: The parameter(s).

index: The list index for when the parameter is a list
of values. This is ignored in all other cases.

spin id: The spin ID string to restrict value setting to.

error: A flag which if True will cause the error rather
than parameter to be set.

force: A flag which, if set to True, will cause the des-
tination parameter to be overwritten.

Description

If this function is used to change values of previously
minimised results, then the minimisation statistics (chi-
squared value, iteration count, function count, gradient
count, and Hessian count) will be reset.

The value can be None, a single value, or an array of val-
ues while the parameter can be None, a string, or array
of strings. The choice of which combination determines
the behaviour of this function. The following table de-
scribes what occurs in each instance. In these columns,
‘None’ corresponds to None, ‘1’ corresponds to either a
single value or single string, and ‘n’ corresponds to either
an array of values or an array of strings.

Please see Table 17.35 on page 657.

Spin ID string

For spin-specific parameters, the spin ID string can be
used to restrict the value setting to a specific spin system
or group of spins. It has no effect for global parameters
such as in the N-state model and frame order analyses.

Relaxation curve fitting parameters

Please see Table 17.36 on page 657.

Model-free parameters

Please see Table 17.37 on page 657.

Setting a parameter value may have no effect depend-
ing on which model-free model is chosen. For example if
S2
f
values and S2

s values are set but the data pipe corre-

sponds to the model-free model ‘m4’ then because these
data values are not parameters of the model they will
have no effect.

Note that the Rex values are scaled quadratically with
field strength and should be supplied as a field strength
independent value. Use the following formula to obtain
the correct value:

value = rex / (2.0 * pi * frequency) ** 2

where:

rex is the chemical exchange value for the current
frequency.

frequency is the proton frequency corresponding
to the data.

Reduced spectral density mapping pa-
rameters

Please see Table 17.38 on page 657.

In reduced spectral density mapping, the CSA value must
be set prior to the calculation of spectral density values.

Consistency testing parameters

Please see Table 17.39 on page 658.

In consistency testing, the CSA value, angle Theta
(‘orientation’) and global correlation time must be set
prior to the calculation of consistency functions.

N-state model parameters

Please see Table 17.40 on page 658.

Setting parameters for the N-state model is a little differ-
ent from the other type of analyses as each state has a set
of parameters with the same names as the other states.
To set the parameters for a specific state c (ranging from
0 for the first to N-1 for the last, the number c should be
given as the index argument. So the Euler angle γ of the
third state is specified using the parameter name ‘gamma’
and index of 2.

17.2. THE LIST OF FUNCTIONS 657

Table 17.35: The value and parameter combination options for the value.set user function.

Value Param Description

None None This case is used to set the model parameters prior to minimisation or calculation. The model
parameters are set to the default values.

1 None Invalid combination.
n None This case is used to set the model parameters prior to minimisation or calculation. The length

of the val array must be equal to the number of model parameters. The parameters will be
set to the corresponding number.

None 1 The parameter matching the string will be set to the default value.
1 1 The parameter matching the string will be set to the supplied number.
n 1 Invalid combination.
None n Each parameter matching the strings will be set to the default values.
1 n Each parameter matching the strings will be set to the supplied number.
n n Each parameter matching the strings will be set to the corresponding number. Both arrays

must be of equal length.

Table 17.36: Relaxation curve fitting parameter value setting.

Name Description Default

rx Either the R1 or R2 relaxation rate 8.0
i0 The initial intensity 10000.0
iinf The intensity at infinity 0.0

Table 17.37: Model-free parameter value setting.

Name Description Default

s2 S2, the model-free generalised order parameter (S2 = S2
f
.S2s) 0.8

s2f S2
f
, the faster motion model-free generalised order parameter 0.8

s2s S2
s , the slower motion model-free generalised order parameter 0.8

local tm The spin specific global correlation time (seconds) 1e-08
te Single motion effective internal correlation time (seconds) 1e-10
tf Faster motion effective internal correlation time (seconds) 1e-11
ts Slower motion effective internal correlation time (seconds) 1e-09
rex Chemical exchange relaxation (sigma ex = Rex / omega**2) 0.0
csa Chemical shift anisotropy (unitless) -0.00017199999999999998

Table 17.38: Reduced spectral density mapping parameter value setting.

Name Description Default

j0 Spectral density value at 0 MHz - J(0) None
jwx Spectral density value at the frequency of the heteronucleus - J(ωX) None
jwh Spectral density value at the frequency of the proton - J(ωH) None
csa Chemical shift anisotropy (unitless) -0.00017199999999999998

658 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

Table 17.39: Consistency testing parameter value setting.

Name Description Default

j0 Spectral density value at 0 MHz (from Farrow et al. (1995) JBNMR, 6: 153-162) None
f eta Eta-test (from Fushman et al. (1998) JACS, 120: 10947-10952) None
f r2 R2-test (from Fushman et al. (1998) JACS, 120: 10947-10952) None
csa Chemical shift anisotropy (unitless) -0.00017199999999999998
orientation Angle between the 15N-1H vector and the principal axis of the 15N chemical shift tensor 15.7
tc The single global correlation time estimate/approximation 1.3e-08

Table 17.40: N-state model parameter value setting.

Name Description Default Type

Axx The Axx component of the alignment tensor None float
Ayy The Ayy component of the alignment tensor None float
Axy The Axy component of the alignment tensor None float
Axz The Axz component of the alignment tensor None float
Ayz The Ayz component of the alignment tensor None float
probs The probabilities of each state 0.0 list
alpha The α Euler angles (for the rotation of each state) 0.0 list
beta The β Euler angles (for the rotation of each state) 0.0 list
gamma The γ Euler angles (for the rotation of each state) 0.0 list
paramagnetic centre The paramagnetic centre None list

Relaxation dispersion parameters

Please see Table 17.41 on page 659.

Any of the relaxation dispersion parameters which are of
the ‘float’ type can be set. Note that setting values for
parameters which are not part of the model will have no
effect.

Frame order parameters

Please see Table 17.6 on page 474.

Prompt examples

To set the parameter values for the current data pipe to
the default values, for all spins, type:

relax> value.set()

To set the parameter values of residue 10, which is in the
current model-free data pipe ‘m4’ and has the parameters
{S2, τe, Rex}, the following can be used. Rex term is
the value for the first given field strength.

relax> value.set([0.97, 2.048*1e-9, 0.149],

spin_id=':10')

relax> value.set(val=[0.97, 2.048*1e-9, 0

.149], spin_id=':10')

To set the CSA value of all spins to the default value,
type:

relax> value.set(param='csa')

To set the CSA value of all spins to -172 ppm, type:

relax> value.set(-172 * 1e-6, 'csa')

relax> value.set(val=-172 * 1e-6, param='csa

')

To set the NH bond length of all spins to 1.02 Å, type:

relax> value.set(1.02 * 1e-10, 'r')

relax> value.set(val=1.02 * 1e-10, param='r'

)

To set both the bond length and the CSA value to the
default values, type:

relax> value.set(param=['r', 'csa'])

To set both τf and τs to 100 ps, type:

relax> value.set(100e-12, ['tf', 'ts'])

relax> value.set(val=100e-12, param=['tf', '

ts'])

17.2. THE LIST OF FUNCTIONS 659

Table 17.41: Relaxation dispersion parameter value setting.

Name Description Default Typ

r2eff The effective transversal relaxation rate 10.0 dict
i0 The initial intensity 10000.0 dict
r1 The longitudinal relaxation rate 2.0 dict
r2 The transversal relaxation rate 10.0 dict
r2a The transversal relaxation rate for state A in the absence of exchange 10.0 dict
r2b The transversal relaxation rate for state B in the absence of exchange 10.0 dict
pA The population for state A 0.9 float
pB The population for state B 0.5 float
pC The population for state C 0.5 float
phi ex The φ ex = pA.pB.dw**2 value (ppmˆ2) 5.0 float
phi ex B The fast exchange factor between sites A and B (ppmˆ2) 5.0 float
phi ex C The fast exchange factor between sites A and C (ppmˆ2) 5.0 float
padw2 The pA.dw**2 value (ppmˆ2) 1.0 float
dw The chemical shift difference between states A and B (in ppm) 1.0 float
dw AB The chemical shift difference between states A and B for 3-site exchange (in ppm) 1.0 float
dw AC The chemical shift difference between states A and C for 3-site exchange (in ppm) 1.0 float
dw BC The chemical shift difference between states B and C for 3-site exchange (in ppm) 1.0 float
dwH The proton chemical shift difference between states A and B (in ppm) 1.0 float
dwH AB The proton chemical shift difference between states A and B for 3-site exchange (in ppm) 1.0 float
dwH AC The proton chemical shift difference between states A and C for 3-site exchange (in ppm) 1.0 float
dwH BC The proton chemical shift difference between states B and C for 3-site exchange (in ppm) 1.0 float
kex The exchange rate 1000.0 float
kex AB The exchange rate between sites A and B for 3-site exchange with kex AB = k AB + k BA (rad.sˆ-1) 1000.0 float
kex AC The exchange rate between sites A and C for 3-site exchange with kex AC = k AC + k CA (rad.sˆ-1) 1000.0 float
kex BC The exchange rate between sites B and C for 3-site exchange with kex BC = k BC + k CB (rad.sˆ-1) 1000.0 float
kB Approximate chemical exchange rate constant between sites A and B (rad.sˆ-1) 1000.0 float
kC Approximate chemical exchange rate constant between sites A and C (rad.sˆ-1) 1000.0 float
tex The time of exchange (tex = 1/kex) 0.001 float
k AB The exchange rate from state A to state B 2.0 float
k BA The exchange rate from state B to state A 1000.0 float

660 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

To set the S2 and τe parameter values of residue 126, Ca
spins to 0.56 and 13 ps, type:

relax> value.set([0.56, 13e-12], ['s2', 'te'

], ':126@Ca')

relax> value.set(val=[0.56, 13e-12], param=[

's2', 'te'], spin_id=':126@Ca')

relax> value.set(val=[0.56, 13e-12], param=[

's2', 'te'], spin_id=':126@Ca')

17.2.269 value.write

Synopsis

Write spin specific parameter values to a file.

Defaults

value.write(param=None, file=None, dir=None, scaling=
1.0, comment=None, bc=False, force=False)

Keyword arguments

param: The parameter.

file: The name of the file.

dir: The directory name.

scaling: The factor to scale parameters by.

comment: Text which will be added to the start of the
file as comments. All lines will be prefixed by ‘# ’.

bc: A flag which if True will cause the back calculated
values to be written to file rather than the actual data.

force: A flag which, if set to True, will cause the file to
be overwritten.

Description

The values corresponding to the given parameter will be
written to file. The scaling argument can be used to scale
the parameter values. This can be useful for example in
the case of the model-free Rex parameter to obtain the
spectrometer dependent value from the omega ex field
strength independent internal value. Or to scale correla-
tion times from seconds down to nanosecond or picosec-
ond timescales.

Relaxation curve fitting parameters

Please see Table 17.33 on page 654.

Steady-state NOE parameters

Please see Table 17.9 on page 487.

17.2. THE LIST OF FUNCTIONS 661

Model-free parameters

Please see Table 17.34 on page 654.

For model-free theory it is assumed that Rex values are
scaled quadratically with field strength. The values will
be very small as they will be written out as a field
strength independent value. Hence use the following for-
mula to convert the value to that expected for a given
magnetic field strength:

Rex = value * (2.0 * pi * frequency) ** 2

The frequency is that of the proton in Hertz.

Reduced spectral density mapping pa-
rameters

Please see Table 17.11 on page 487.

Consistency testing parameters

Please see Table 17.12 on page 488.

Relaxation dispersion parameters

Please see Table 17.5 on page 474.

Prompt examples

To write the CSA values to the file ‘csa.txt’, type one
of:

relax> value.write('csa', 'csa.txt')

relax> value.write(param='csa', file='

csa.txt')

To write the NOE values to the file ‘noe’, type one of:

relax> value.write('noe', 'noe.out')

relax> value.write(param='noe', file='

noe.out')

relax> value.write(param='noe', file='

noe.out')

relax> value.write(param='noe', file='

noe.out', force=True)

To write the model-free Rex values scaled to 600 MHz to
the file ‘rex 600’, type one of:

relax> value.write('rex', 'rex_600', scaling

=(2.0*pi*600e6)**2)

relax> value.write(param='rex', file='

rex_600', scaling=(2.0*pi*600e6)**2)

17.2.270 vmd.view

Synopsis

View the structures loaded into the relax data store using
VMD.

Defaults

vmd.view()

Description

This will launch VMD with all of the structures loaded
into the relax data store.

Prompt examples

relax> vmd.view()

662 CHAPTER 17. ALPHABETICAL LISTING OF USER FUNCTIONS

Chapter 18

Licence

18.1 Copying, modification, sublicencing, and distribution

of relax

To ensure that the program relax, including all future versions, will remain legally available
for perpetuity to anyone who wishes to use the program the code has been released under
the GNU General Public Licence. The freedom of relax is guaranteed by the GPL. This
is a licence which has been very carefully crafted to protect both the developers of the
program as well as the users by means of copyright law. If the licence is violated by
improper copying, modification, sublicencing, or distribution then the licence terminates –
hence the violator is copying, modifying, sublicencing, or distributing the program illegally
in full violation of copyright law. For a better understanding of the protections afforded
by the GPL the licence is reprinted in whole within the next section.

18.2 The GPL

The following is a verbatim copy of the GNU General Public Licence. A text version is
available in the relax ‘docs’ directory within the file ‘COPYING’.

663

664 CHAPTER 18. LICENCE

GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this

license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License
is intended to guarantee your freedom to share and change all versions of a program–to
make sure it remains free software for all its users. We, the Free Software Foundation,
use the GNU General Public License for most of our software; it applies also to any other
work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for them if you wish), that you receive source code or can get it if
you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms
so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright
on the software, and (2) offer you this License giving you legal permission to copy, distribute
and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of
the software inside them, although the manufacturer can do so. This is fundamentally
incompatible with the aim of protecting users’ freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for individuals to use,
which is precisely where it is most unacceptable. Therefore, we have designed this version
of the GPL to prohibit the practice for those products. If such problems arise substantially

18.2. THE GPL 665

in other domains, we stand ready to extend this provision to those domains in future
versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers,
but in those that do, we wish to avoid the special danger that patents applied to a free
program could make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such
as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a
fashion requiring copyright permission, other than the making of an exact copy. The
resulting work is called a “modified version” of the earlier work or a work “based
on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the
Program.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright
law, except executing it on a computer or modifying a private copy. Propagation
includes copying, distribution (with or without modification), making available to
the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to
make or receive copies. Mere interaction with a user through a computer network,
with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent
that it includes a convenient and prominently visible feature that (1) displays an
appropriate copyright notice, and (2) tells the user that there is no warranty for the
work (except to the extent that warranties are provided), that licensees may convey
the work under this License, and how to view a copy of this License. If the interface
presents a list of user commands or options, such as a menu, a prominent item in
the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making
modifications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular

666 CHAPTER 18. LICENCE

programming language, one that is widely used among developers working in that
language.

The “System Libraries” of an executable work include anything, other than the work
as a whole, that (a) is included in the normal form of packaging a Major Component,
but which is not part of that Major Component, and (b) serves only to enable use
of the work with that Major Component, or to implement a Standard Interface for
which an implementation is available to the public in source code form. A “Major
Component”, in this context, means a major essential component (kernel, window
system, and so on) of the specific operating system (if any) on which the executable
work runs, or a compiler used to produce the work, or an object code interpreter
used to run it.

The “Corresponding Source” for a work in object code form means all the source
code needed to generate, install, and (for an executable work) run the object code
and to modify the work, including scripts to control those activities. However, it
does not include the work’s System Libraries, or general-purpose tools or generally
available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes
interface definition files associated with source files for the work, and the source code
for shared libraries and dynamically linked subprograms that the work is specifically
designed to require, such as by intimate data communication or control flow between
those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate au-
tomatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License
explicitly affirms your unlimited permission to run the unmodified Program. The
output from running a covered work is covered by this License only if the output,
given its content, constitutes a covered work. This License acknowledges your rights
of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must
do so exclusively on your behalf, under your direction and control, on terms that
prohibit them from making any copies of your copyrighted material outside their
relationship with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any
applicable law fulfilling obligations under article 11 of the WIPO copyright treaty

18.2. THE GPL 667

adopted on 20 December 1996, or similar laws prohibiting or restricting circumven-
tion of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention
of technological measures to the extent such circumvention is effected by exercising
rights under this License with respect to the covered work, and you disclaim any
intention to limit operation or modification of the work as a means of enforcing,
against the work’s users, your or third parties’ legal rights to forbid circumvention
of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it,
in any medium, provided that you conspicuously and appropriately publish on each
copy an appropriate copyright notice; keep intact all notices stating that this License
and any non-permissive terms added in accord with section 7 apply to the code; keep
intact all notices of the absence of any warranty; and give all recipients a copy of
this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may
offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it
from the Program, in the form of source code under the terms of section 4, provided
that you also meet all of these conditions:

(a) The work must carry prominent notices stating that you modified it, and giving
a relevant date.

(b) The work must carry prominent notices stating that it is released under this
License and any conditions added under section 7. This requirement modifies
the requirement in section 4 to “keep intact all notices”.

(c) You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with
any applicable section 7 additional terms, to the whole of the work, and all its
parts, regardless of how they are packaged. This License gives no permission to
license the work in any other way, but it does not invalidate such permission if
you have separately received it.

(d) If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what
the individual works permit. Inclusion of a covered work in an aggregate does not
cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

668 CHAPTER 18. LICENCE

You may convey a covered work in object code form under the terms of sections 4
and 5, provided that you also convey the machine-readable Corresponding Source
under the terms of this License, in one of these ways:

(a) Convey the object code in, or embodied in, a physical product (including a
physical distribution medium), accompanied by the Corresponding Source fixed
on a durable physical medium customarily used for software interchange.

(b) Convey the object code in, or embodied in, a physical product (including a
physical distribution medium), accompanied by a written offer, valid for at least
three years and valid for as long as you offer spare parts or customer support
for that product model, to give anyone who possesses the object code either
(1) a copy of the Corresponding Source for all the software in the product that
is covered by this License, on a durable physical medium customarily used for
software interchange, for a price no more than your reasonable cost of physically
performing this conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge.

(c) Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an
offer, in accord with subsection 6b.

(d) Convey the object code by offering access from a designated place (gratis or
for a charge), and offer equivalent access to the Corresponding Source in the
same way through the same place at no further charge. You need not require
recipients to copy the Corresponding Source along with the object code. If the
place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports
equivalent copying facilities, provided you maintain clear directions next to the
object code saying where to find the Corresponding Source. Regardless of what
server hosts the Corresponding Source, you remain obligated to ensure that it
is available for as long as needed to satisfy these requirements.

(e) Convey the object code using peer-to-peer transmission, provided you inform
other peers where the object code and Corresponding Source of the work are
being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the
Corresponding Source as a System Library, need not be included in conveying the
object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible
personal property which is normally used for personal, family, or household purposes,
or (2) anything designed or sold for incorporation into a dwelling. In determining
whether a product is a consumer product, doubtful cases shall be resolved in favor
of coverage. For a particular product received by a particular user, “normally used”
refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects
or is expected to use, the product. A product is a consumer product regardless of
whether the product has substantial commercial, industrial or non-consumer uses,
unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, au-
thorization keys, or other information required to install and execute modified ver-

18.2. THE GPL 669

sions of a covered work in that User Product from a modified version of its Corre-
sponding Source. The information must suffice to ensure that the continued func-
tioning of the modified object code is in no case prevented or interfered with solely
because modification has been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product
(for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification
itself materially and adversely affects the operation of the network or violates the
rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord
with this section must be in a format that is publicly documented (and with an
implementation available to the public in source code form), and must require no
special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by
making exceptions from one or more of its conditions. Additional permissions that
are applicable to the entire Program shall be treated as though they were included
in this License, to the extent that they are valid under applicable law. If additional
permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License
without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

(a) Disclaiming warranty or limiting liability differently from the terms of sections
15 and 16 of this License; or

(b) Requiring preservation of specified reasonable legal notices or author attribu-
tions in that material or in the Appropriate Legal Notices displayed by works
containing it; or

(c) Prohibiting misrepresentation of the origin of that material, or requiring that
modified versions of such material be marked in reasonable ways as different
from the original version; or

670 CHAPTER 18. LICENCE

(d) Limiting the use for publicity purposes of names of licensors or authors of the
material; or

(e) Declining to grant rights under trademark law for use of some trade names,
trademarks, or service marks; or

(f) Requiring indemnification of licensors and authors of that material by any-
one who conveys the material (or modified versions of it) with contractual as-
sumptions of liability to the recipient, for any liability that these contractual
assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it,
contains a notice stating that it is governed by this License along with a term that
is a further restriction, you may remove that term. If a license document contains a
further restriction but permits relicensing or conveying under this License, you may
add to a covered work material governed by the terms of that license document,
provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in
the relevant source files, a statement of the additional terms that apply to those files,
or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a
separately written license, or stated as exceptions; the above requirements apply
either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided
under this License. Any attempt otherwise to propagate or modify it is void, and
will automatically terminate your rights under this License (including any patent
licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently
if the copyright holder notifies you of the violation by some reasonable means, this
is the first time you have received notice of violation of this License (for any work)
from that copyright holder, and you cure the violation prior to 30 days after your
receipt of the notice.

Termination of your rights under this section does not terminate the licenses of
parties who have received copies or rights from you under this License. If your rights
have been terminated and not permanently reinstated, you do not qualify to receive
new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence
of using peer-to-peer transmission to receive a copy likewise does not require accep-
tance. However, nothing other than this License grants you permission to propagate

18.2. THE GPL 671

or modify any covered work. These actions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating a covered work, you indicate
your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organiza-
tions. If propagation of a covered work results from an entity transaction, each party
to that transaction who receives a copy of the work also receives whatever licenses
to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from
the predecessor in interest, if the predecessor has it or can get it with reasonable
efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty,
or other charge for exercise of rights granted under this License, and you may not
initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for sale, or importing
the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled
by the contributor, whether already acquired or hereafter acquired, that would be
infringed by some manner, permitted by this License, of making, using, or selling
its contributor version, but do not include claims that would be infringed only as
a consequence of further modification of the contributor version. For purposes of
this definition, “control” includes the right to grant patent sublicenses in a manner
consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale,
import and otherwise run, modify and propagate the contents of its contributor
version.

In the following three paragraphs, a “patent license” is any express agreement or
commitment, however denominated, not to enforce a patent (such as an express
permission to practice a patent or covenant not to sue for patent infringement).
To “grant” such a patent license to a party means to make such an agreement or
commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Cor-
responding Source of the work is not available for anyone to copy, free of charge
and under the terms of this License, through a publicly available network server or

672 CHAPTER 18. LICENCE

other readily accessible means, then you must either (1) cause the Corresponding
Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with
the requirements of this License, to extend the patent license to downstream recipi-
ents. “Knowingly relying” means you have actual knowledge that, but for the patent
license, your conveying the covered work in a country, or your recipient’s use of the
covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you
grant is automatically extended to all recipients of the covered work and works based
on it.

A patent license is “discriminatory” if it does not include within the scope of its
coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or
more of the rights that are specifically granted under this License. You may not
convey a covered work if you are a party to an arrangement with a third party that
is in the business of distributing software, under which you make payment to the
third party based on the extent of your activity of conveying the work, and under
which the third party grants, to any of the parties who would receive the covered
work from you, a discriminatory patent license (a) in connection with copies of the
covered work conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that contain the covered
work, unless you entered into that arrangement, or that patent license was granted,
prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license
or other defenses to infringement that may otherwise be available to you under
applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the
conditions of this License. If you cannot convey a covered work so as to satisfy
simultaneously your obligations under this License and any other pertinent obliga-
tions, then as a consequence you may not convey it at all. For example, if you agree
to terms that obligate you to collect a royalty for further conveying from those to
whom you convey the Program, the only way you could satisfy both those terms and
this License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

18.2. THE GPL 673

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of
a version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of
your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PRO-
VIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EI-
THER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be
given local legal effect according to their terms, reviewing courts shall apply local law
that most closely approximates an absolute waiver of all civil liability in connection
with the Program, unless a warranty or assumption of liability accompanies a copy
of the Program in return for a fee.

End of Terms and Conditions

674 CHAPTER 18. LICENCE

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone
can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to
the start of each source file to most effectively state the exclusion of warranty; and
each file should have at least the “copyright” line and a pointer to where the full
notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <textyear> <name of author>

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when
it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the appropriate parts
of the General Public License. Of course, your program’s commands might be dif-
ferent; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school,
if any, to sign a “copyright disclaimer” for the program, if necessary. For
more information on this, and how to apply and follow the GNU GPL, see
http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it
more useful to permit linking proprietary applications with the library. If this is what
you want to do, use the GNU Lesser General Public License instead of this License.
But first, please read http://www.gnu.org/philosophy/why-not-lgpl.html.

Bibliography

Abragam, A. (1961). The principles of nuclear magnetism. Clarendon Press, Oxford.

Akaike, H. (1973). Information theory and an extension of the maximum likelihood prin-
ciple. In: Petrov, B. N. and Csaki, F. (eds.): Proceedings of the Second International
Symposium on Information Theory. Budapest, pages 267–281, Akademia Kiado.

Baldwin, A. J. (2014). An exact solution for R2,eff in CPMG experiments in the case of two
site chemical exchange. J. Magn. Reson., 244, 114–124. (10.1016/j.jmr.2014.02.023).

Baldwin, A. J. and Kay, L. E. (2013). An R1ρ expression for a spin in chemical exchange
between two sites with unequal transverse relaxation rates. J. Biomol. NMR, 55(2),
211–218. (10.1007/s10858-012-9694-6).

Barbato, G., Ikura, M., Kay, L. E., Pastor, R. W., and Bax, A. (1992). Backbone dy-
namics of calmodulin studied by 15N relaxation using inverse detected two-dimensional
NMR spectroscopy: the central helix is flexible. Biochemistry, 31(23), 5269–5278.
(10.1021/bi00138a005).

Bieri, M., d’Auvergne, E., and Gooley, P. (2011). relaxGUI: a new software for fast and
simple NMR relaxation data analysis and calculation of ps-ns and µs motion of proteins.
J. Biomol. NMR, 50, 147–155. (10.1007/s10858-011-9509-1).

Bieri, M. and Gooley, P. R. (2011). Automated NMR relaxation dispersion data analysis
using NESSY. BMC Bioinformatics, 12, 421. (10.1186/1471-2105-12-421).

Bloch, F. (1946). Nuclear induction. Phys. Rev., 70(7-8), 460–474.
(10.1103/PhysRev.70.460).

Bloembergen, N., Purcell, E. M., and Pound, R. V. (1948). Relaxation effects in nuclear
magnetic resonance absorption. Phys. Rev., 73(7), 679–712. (10.1103/PhysRev.73.679).

Bonev, I. A. and Gosselin, C. M. (2006). Analytical determination of the workspace of sym-
metrical spherical parallel mechanisms. 22(5), 1011–1017. (10.1109/TRO.2006.878983).

Broyden, C. G. (1970). The convergence of a class of double-rank minimiza-
tion algorithms 1. General considerations. J. Inst. Maths. Applics., 6(1), 76–90.
(10.1093/imamat/6.1.76).

Brüschweiler, R., Liao, X., and Wright, P. E. (1995). Long-range motional restrictions
in a multidomain zinc-finger protein from anisotropic tumbling. Science, 268(5212),
886–889. (10.1126/science.7754375).

675

http://dx.doi.org/10.1016/j.jmr.2014.02.023
http://dx.doi.org/10.1007/s10858-012-9694-6
http://dx.doi.org/10.1021/bi00138a005
http://dx.doi.org/10.1007/s10858-011-9509-1
http://dx.doi.org/10.1186/1471-2105-12-421
http://dx.doi.org/10.1103/PhysRev.70.460
http://dx.doi.org/10.1103/PhysRev.73.679
http://dx.doi.org/10.1109/TRO.2006.878983
http://dx.doi.org/10.1093/imamat/6.1.76
http://dx.doi.org/10.1126/science.7754375

676 BIBLIOGRAPHY

Butterwick, J. A., Loria, P. J., Astrof, N. S., Kroenke, C. D., Cole, R., Rance, M., and
Palmer, 3rd, A. G. (2004). Multiple time scale backbone dynamics of homologous
thermophilic and mesophilic ribonuclease HI enzymes. J. Mol. Biol., 339(4), 855–871.
(10.1016/j.jmb.2004.03.055).

Carver, J. P. and Richards, R. E. (1972). General 2-site solution for chemical exchange
produced dependence of T2 upon Carr-Purcell pulse separation. J. Magn. Reson., 6(1),
89–105. (10.1016/0022-2364(72)90090-X).

Chen, J., Brooks, 3rd, C. L., and Wright, P. E. (2004). Model-free analy-
sis of protein dynamics: assessment of accuracy and model selection protocols
based on molecular dynamics simulation. J. Biomol. NMR, 29(3), 243–257.
(10.1023/b:jnmr.0000032504.70912.58).

Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Driscoll, P. C., and Gronenborn, A. M. (1990).
Deviations from the simple 2-parameter model-free approach to the interpretation of
15N nuclear magnetic-relaxation of proteins. J. Am. Chem. Soc., 112(12), 4989–4991.
(10.1021/ja00168a070).

Crawford, N. R., Yamaguchi, G. T., and Dickman, C. A. (1999). A new technique for
determining 3-D joint angles: the tilt/twist method. Clin. Biomech. (Bristol, Avon),
14(3), 153–165. (10.1016/S0268-0033(98)00080-1).

d’Auvergne, E. J. (2006). Protein dynamics: a study of the model-free analysis of NMR
relaxation data. PhD thesis, Biochemistry and Molecular Biology, University of Mel-
bourne. http://eprints.infodiv.unimelb.edu.au/archive/00002799/. (10187/2281).

d’Auvergne, E. J. and Gooley, P. R. (2003). The use of model selection in
the model-free analysis of protein dynamics. J. Biomol. NMR, 25(1), 25–39.
(10.1023/a:1021902006114).

d’Auvergne, E. J. and Gooley, P. R. (2006). Model-free model elimination: A new step
in the model-free dynamic analysis of NMR relaxation data. J. Biomol. NMR, 35(2),
117–135. (10.1007/s10858-006-9007-z).

d’Auvergne, E. J. and Gooley, P. R. (2007). Set theory formulation of the model-free
problem and the diffusion seeded model-free paradigm. Mol. BioSyst., 3(7), 483–494.
(10.1039/b702202f).

d’Auvergne, E. J. and Gooley, P. R. (2008a). Optimisation of NMR dynamic models. J.
Biomol. NMR, 40(2), 107–133.

d’Auvergne, E. J. and Gooley, P. R. (2008b). Optimisation of NMR dynamic models I. Min-
imisation algorithms and their performance within the model-free and Brownian rota-
tional diffusion spaces. J. Biomol. NMR, 40(2), 107–119. (10.1007/s10858-007-9214-2).

d’Auvergne, E. J. and Gooley, P. R. (2008c). Optimisation of NMR dynamic mod-
els II. A new methodology for the dual optimisation of the model-free parameters
and the Brownian rotational diffusion tensor. J. Biomol. NMR, 40(2), 121–133.
(10.1007/s10858-007-9213-3).

d’Auvergne, E. J. and Griesinger, C. (2019). The theory of frame ordering: observing mo-
tions in calmodulin complexes. Q. Rev. Biophys., 52, e3. (10.1017/S0033583519000015).

http://dx.doi.org/10.1016/j.jmb.2004.03.055
http://dx.doi.org/10.1016/0022-2364(72)90090-X
http://dx.doi.org/10.1023/b:jnmr.0000032504.70912.58
http://dx.doi.org/10.1021/ja00168a070
http://dx.doi.org/10.1016/S0268-0033(98)00080-1
http://dx.doi.org/10187/2281
http://dx.doi.org/10.1023/a:1021902006114
http://dx.doi.org/10.1007/s10858-006-9007-z
http://dx.doi.org/10.1039/b702202f
http://dx.doi.org/10.1007/s10858-007-9214-2
http://dx.doi.org/10.1007/s10858-007-9213-3
http://dx.doi.org/10.1017/S0033583519000015

BIBLIOGRAPHY 677

Davis, D. G., Perlman, M. E., and London, R. E. (1994). Direct measurements of the
dissociation-rate constant for inhibitor-enzyme complexes via the T1ρ and T2 (CPMG)
methods. J. Magn. Reson., 104(3), 266–275. (10.1006/jmrb.1994.1084).

Einstein, A. (1905). Über die von der molekularkinetischen Theorie der Wärme geforderte
Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [The motion of elements
suspended in static liquids as claimed in the molecular kinetic theory of heat]. Ann.
Physik, 17(8), 549–560. (10.1002/andp.19053220806).

Erdelyi, M., d’Auvergne, E., Navarro-Vazquez, A., Leonov, A., and Griesinger, C. (2011).
Dynamics of the glycosidic bond: conformational space of lactose. Chem. Eur. J.,
17(34), 9368–9376. (10.1002/chem.201100854).

Farrow, N. A., Zhang, O. W., Szabo, A., Torchia, D. A., and Kay, L. E. (1995). Spectral
density-function mapping using 15N relaxation data exclusively. J. Biomol. NMR, 6(2),
153–162. (10.1007/bf00211779).

Favro, L. D. (1960). Theory of the rotational Brownian motion of a free rigid body. Phys.
Rev., 119(1), 53–62. (10.1103/PhysRev.119.53).

Fletcher, R. (1970). A new approach to variable metric algorithms. Comp. J., 13(3),
317–322. (10.1093/comjnl/13.3.317).

Fletcher, R. and Reeves, C. M. (1964). Function minimization by conjugate gradients.
Comp. J., 7(2), 149–154. (10.1093/comjnl/7.2.149).

Fushman, D., Cahill, S., and Cowburn, D. (1997). The main-chain dynamics
of the dynamin pleckstrin homology (PH) domain in solution: analysis of 15N
relaxation with monomer/dimer equilibration. J. Mol. Biol., 266(1), 173–194.
(10.1006/jmbi.1996.0771).

Fushman, D., Tjandra, N., and Cowburn, D. (1998). Direct measurement of 15N
chemical shift anisotropy in solution. J. Am. Chem. Soc., 120(42), 10947–10952.
(10.1021/ja981686m).

Fushman, D., Tjandra, N., and Cowburn, D. (1999). An approach to direct determination
of protein dynamics from 15N NMR relaxation at multiple fields, independent of variable
15N chemical shift anisotropy and chemical exchange contributions. J. Am. Chem. Soc.,
121(37), 8577–8582. (10.1021/ja9904991).

Gill, P. E., Murray, W., and Wright, M. H. (1981). Practical optimization. Academic
Press.

Goldfarb, D. (1970). A family of variable-metric methods derived by variational means.
Math. Comp., 24(109), 23–26. (10.1090/s0025-5718-1970-0258249-6).

Hansen, D. F., Vallurupalli, P., Lundstrom, P., Neudecker, P., and Kay, L. E. (2008).
Probing chemical shifts of invisible states of proteins with relaxation dispersion NMR
spectroscopy: how well can we do? J. Am. Chem. Soc., 130(8), 2667–2675.
(10.1021/ja078337p).

Hestenes, M. R. and Stiefel, E. (1952). Methods of conjugate gradients for solving linear
systems. J. Res. Natn. Bur. Stand., 49(6), 409–436. (10.6028/jres.049.044).

http://dx.doi.org/10.1006/jmrb.1994.1084
http://dx.doi.org/10.1002/andp.19053220806
http://dx.doi.org/10.1002/chem.201100854
http://dx.doi.org/10.1007/bf00211779
http://dx.doi.org/10.1103/PhysRev.119.53
http://dx.doi.org/10.1093/comjnl/13.3.317
http://dx.doi.org/10.1093/comjnl/7.2.149
http://dx.doi.org/10.1006/jmbi.1996.0771
http://dx.doi.org/10.1021/ja981686m
http://dx.doi.org/10.1021/ja9904991
http://dx.doi.org/10.1090/s0025-5718-1970-0258249-6
http://dx.doi.org/10.1021/ja078337p
http://dx.doi.org/10.6028/jres.049.044

678 BIBLIOGRAPHY

Horne, J., d’Auvergne, E. J., Coles, M., Velkov, T., Chin, Y., Charman, W. N.,
Prankerd, R., Gooley, P. R., and Scanlon, M. J. (2007). Probing the flexibility of
the DsbA oxidoreductase from Vibrio cholerae–a 15N - 1H heteronuclear NMR relax-
ation analysis of oxidized and reduced forms of DsbA. J. Mol. Biol., 371(3), 703–716.
(10.1016/j.jmb.2007.05.067).

Huang, T., Wang, J., and Whitehouse, D. J. (1999). Closed form solution to
workspace of hexapod-based virtual axis machine tools. J. Mech. Des., 121(1), 26–
31. (10.1115/1.2829424).

Hurvich, C. M. and Tsai, C. L. (1989). Regression and time-series model selection in small
samples. Biometrika, 76(2), 297–307. (10.1093/biomet/76.2.297).

Ishima, R. and Torchia, D. A. (1999). Estimating the time scale of chemical exchange of
proteins from measurements of transverse relaxation rates in solution. J. Biomol. NMR,
14(4), 369–372. (10.1023/A:1008324025406).

Ishima, R. and Torchia, D. A. (2005). Error estimation and global fitting in transverse-
relaxation dispersion experiments to determine chemical-exchange parameters. J.
Biomol. NMR, 32(1), 41–54. (10.1007/s10858-005-3593-z).

Kay, L. E., Torchia, D. A., and Bax, A. (1989). Backbone dynamics of proteins as studied
by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal
nuclease. Biochemistry, 28(23), 8972–8979. (10.1021/bi00449a003).

Kleckner, I. R. and Foster, M. P. (2012). GUARDD: user-friendly MATLAB software
for rigorous analysis of CPMG RD NMR data. J. Biomol. NMR, 52(1), 11–22.
(10.1007/s10858-011-9589-y).

Korein, J. U. (1985). A geometric investigation of reach. MIT Press, Cambridge, MA,
USA.

Korzhnev, D. M., Billeter, M., Arseniev, A. S., and Orekhov, V. Y. (2001). NMR studies
of Brownian tumbling and internal motions in proteins. Prog. NMR Spectrosc., 38(3),
197–266. (10.1016/s0079-6565(00)00028-5).

Korzhnev, D. M., Kloiber, K., Kanelis, V., Tugarinov, V., and Kay, L. E. (2004a). Prob-
ing slow dynamics in high molecular weight proteins by methyl-TROSY NMR spec-
troscopy: application to a 723-residue enzyme. J. Am. Chem. Soc., 126(12), 3964–3973.
(10.1021/ja039587i).

Korzhnev, D. M., Kloiber, K., and Kay, L. E. (2004b). Multiple-quantum relaxation dis-
persion NMR spectroscopy probing millisecond time-scale dynamics in proteins: theory
and application. J. Am. Chem. Soc., 126(23), 7320–7329. (10.1021/ja049968b).

Korzhnev, D. M., Neudecker, P., Mittermaier, A., Orekhov, V. Y., and Kay, L. E. (2005a).
Multiple-site exchange in proteins studied with a suite of six NMR relaxation dispersion
experiments: an application to the folding of a Fyn SH3 domain mutant. J. Am. Chem.
Soc., 127(44), 15602–15611. (10.1021/ja054550e).

Korzhnev, D. M., Orekhov, V. Y., and Kay, L. E. (2005b). Off-resonance R1ρ NMR studies
of exchange dynamics in proteins with low spin-lock fields: an application to a Fyn SH3
domain. J. Am. Chem. Soc., 127(2), 713–721. (10.1021/ja0446855).

http://dx.doi.org/10.1016/j.jmb.2007.05.067
http://dx.doi.org/10.1115/1.2829424
http://dx.doi.org/10.1093/biomet/76.2.297
http://dx.doi.org/10.1023/A:1008324025406
http://dx.doi.org/10.1007/s10858-005-3593-z
http://dx.doi.org/10.1021/bi00449a003
http://dx.doi.org/10.1007/s10858-011-9589-y
http://dx.doi.org/10.1016/s0079-6565(00)00028-5
http://dx.doi.org/10.1021/ja039587i
http://dx.doi.org/10.1021/ja049968b
http://dx.doi.org/10.1021/ja054550e
http://dx.doi.org/10.1021/ja0446855

BIBLIOGRAPHY 679

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. Ann. Math. Stat.,
22(1), 79–86. (10.1214/aoms/1177729694).

Lee, L. K., Rance, M., Chazin, W. J., and Palmer, A. G. (1997). Rotational diffusion
anisotropy of proteins from simultaneous analysis of 15N and 13Cα nuclear spin relax-
ation. J. Biomol. NMR, 9(3), 287–298. (10.1023/a:1018631009583).

Lefevre, J. F., Dayie, K. T., Peng, J. W., and Wagner, G. (1996). Internal mobility in the
partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the
N-H spectral density functions. Biochemistry, 35(8), 2674–2686. (10.1021/bi9526802).

Levenberg, K. (1944). A method for the solution of certain non-linear problems in least
squares. Quarterly of Applied Mathematics, 2, 164–168.

Linhart, H. and Zucchini, W. (1986). Model selection. Wiley Series in Probability and
Mathematical Statistics. John Wiley & Sons, Inc., New York, NY, USA.

Lipari, G. and Szabo, A. (1982a). Model-free approach to the interpretation of nuclear
magnetic-resonance relaxation in macromolecules I. Theory and range of validity. J.
Am. Chem. Soc., 104(17), 4546–4559. (10.1021/ja00381a009).

Lipari, G. and Szabo, A. (1982b). Model-free approach to the interpretation of nuclear
magnetic-resonance relaxation in macromolecules II. Analysis of experimental results.
J. Am. Chem. Soc., 104(17), 4559–4570. (10.1021/ja00381a010).

Luz, Z. and Meiboom, S. (1963). Nuclear magnetic resonance study of protolysis of
trimethylammonium ion in aqueous solution - order of reaction with respect to solvent.
J. Chem. Phys., 39(2), 366–370. (10.1063/1.1734254).

Mandel, A. M., Akke, M., and Palmer, 3rd, A. G. (1995). Backbone dynamics of Es-
cherichia coli ribonuclease HI: correlations with structure and function in an active
enzyme. J. Mol. Biol., 246(1), 144–163. (10.1006/jmbi.1994.0073).

Marquardt, D. W. (1963). An algorithm for least squares estimation of non-linear param-
eters. SIAM J., 11, 431–441. (10.1137/0111030).

Mazur, A., Hammesfahr, B., Griesinger, C., Lee, D., and Kollmar, M. (2013). ShereKhan–
calculating exchange parameters in relaxation dispersion data from CPMG experiments.
Bioinformatics, 29(14), 1819–1820. (10.1093/bioinformatics/btt286).

McConnell, H. M. (1958). Reaction rates by nuclear magnetic resonance. J. Chem. Phys.,
28(3), 430–431. (10.1063/1.1744152).

Meiboom, S. (1961). Nuclear magnetic resonance study of proton transfer in water. J.
Chem. Phys., 34(2), 375–388. (10.1063/1.1700960).

Millet, O., Loria, J. P., Kroenke, C. D., Pons, M., and Palmer, A. G. (2000). The static
magnetic field dependence of chemical exchange linebroadening defines the NMR chem-
ical shift time scale. J. Am. Chem. Soc., 122(12), 2867–2877.

Miloushev, V. Z. and Palmer, 3rd, A. G. (2005). R1ρ relaxation for two-site chemical
exchange: general approximations and some exact solutions. J. Magn. Reson., 177(2),
221–227. (10.1016/j.jmr.2005.07.023).

http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1023/a:1018631009583
http://dx.doi.org/10.1021/bi9526802
http://dx.doi.org/10.1021/ja00381a009
http://dx.doi.org/10.1021/ja00381a010
http://dx.doi.org/10.1063/1.1734254
http://dx.doi.org/10.1006/jmbi.1994.0073
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1093/bioinformatics/btt286
http://dx.doi.org/10.1063/1.1744152
http://dx.doi.org/10.1063/1.1700960
http://dx.doi.org/10.1016/j.jmr.2005.07.023

680 BIBLIOGRAPHY

Moré, J. J. and Thuente, D. J. (1994). Line search algorithms with guaranteed sufficient
decrease. ACM Trans. Maths. Softw., 20(3), 286–307. (10.1145/192115.192132).

Morin, S. (2011). A practical guide to protein dynamics from 15N spin relaxation in
solution. Prog. NMR Spectrosc., 59(3), 245–262. (10.1016/j.pnmrs.2010.12.003).

Morin, S. and Gagné, S. (2009a). Simple tests for the validation of multiple field spin
relaxation data. J. Biomol. NMR, 45, 361–372. (10.1007/s10858-009-9381-4).

Morin, S. and Gagné, S. M. (2009b). NMR dynamics of PSE-4 β-lactamase: An interplay
of ps-ns order and µs-ms motions in the active site. Biophys. J., 96(11), 4681–4691.
(10.1016/j.bpj.2009.02.068).

Morin, S., Linnet, T. E., Lescanne, M., Schanda, P., Thompson, G. S., Tollinger,
M., Teilum, K., Gagne, S., Marion, D., Griesinger, C., Blackledge, M., and
d’Auvergne, E. J. (2014). relax: the analysis of biomolecular kinetics and thermo-
dynamics using NMR relaxation dispersion data. Bioinformatics, 30(15), 2219–2220.
(10.1093/bioinformatics/btu166).

Nocedal, J. and Wright, S. J. (1999). Numerical Optimization. Springer Series in Opera-
tions Research. Springer-Verlag, New York.

O’Connell, N. E., Grey, M. J., Tang, Y., Kosuri, P., Miloushev, V. Z., Raleigh, D. P.,
and Palmer, 3rd, A. G. (2009). Partially folded equilibrium intermediate of the villin
headpiece HP67 defined by 13C relaxation dispersion. J. Biomol. NMR, 45(1-2), 85–98.
(10.1007/s10858-009-9340-0).

Orekhov, V. Y., Korzhnev, D. M., Diercks, T., Kessler, H., and Arseniev, A. S. (1999a).
1H-15N NMR dynamic study of an isolated α-helical peptide (1-36)bacteriorhodopsin
reveals the equilibrium helix-coil transitions. J. Biomol. NMR, 14(4), 345–356.
(10.1023/a:1008356809071).

Orekhov, V. Y., Korzhnev, D. M., Pervushin, K. V., Hoffmann, E., and Arseniev, A. S.
(1999b). Sampling of protein dynamics in nanosecond time scale by 15N NMR re-
laxation and self-diffusion measurements. J. Biomol. Struct. Dyn., 17(1), 157–174.
(10.1080/07391102.1999.10508348).

Orekhov, V. Y., Pervushin, K. V., Korzhnev, D. M., and Arseniev, A. S. (1995). Backbone
dynamics of (1-71)bacterioopsin and (1-36)bacterioopsin studied by 2-dimensional 1H-
15N NMR-spectroscopy. J. Biomol. NMR, 6(2), 113–122. (10.1007/BF00211774).

Palmer, 3rd, A. G. and Massi, F. (2006). Characterization of the dynamics of biomacro-
molecules using rotating-frame spin relaxation NMR spectroscopy. Chem. Rev., 106(5),
1700–1719. (10.1021/cr0404287).

Perrin, F. (1934). Mouvement Brownien d’un ellipsöıde (I). Dispersion diéletrique
pour des molécules ellipsöıdales [Brownian motion of an ellipsoid. (I) Di-
electric dispersion for ellipsoidal molecules]. J. Phys. Radium, 5, 497–511.
(10.1051/jphysrad:01934005010049700).

Perrin, F. (1936). Mouvement Brownien d’un ellipsöıde (II). Rotation libre et
dépolarisation des fluorescences. Translation et diffusion de molécules ellipsöıdales
[Brownian motion of an ellipsoid (II). Free rotation and fluorescence depolarisa-
tion. Translation and diffusion of ellipsoidal molecules]. J. Phys. Radium, 7, 1–11.
(10.1051/jphysrad:01936007010100).

http://dx.doi.org/10.1145/192115.192132
http://dx.doi.org/10.1016/j.pnmrs.2010.12.003
http://dx.doi.org/10.1007/s10858-009-9381-4
http://dx.doi.org/10.1016/j.bpj.2009.02.068
http://dx.doi.org/10.1093/bioinformatics/btu166
http://dx.doi.org/10.1007/s10858-009-9340-0
http://dx.doi.org/10.1023/a:1008356809071
http://dx.doi.org/10.1080/07391102.1999.10508348
http://dx.doi.org/10.1007/BF00211774
http://dx.doi.org/10.1021/cr0404287
http://dx.doi.org/10.1051/jphysrad:01934005010049700
http://dx.doi.org/10.1051/jphysrad:01936007010100

BIBLIOGRAPHY 681

Polak, E. and Ribière, G. (1969). Note sur la convergence de méthodes de directions
conjuguées. Revue Française d’Informatique et de Recherche Opérationnelle, 16, 35–43.

Schurr, J. M., Babcock, H. P., and Fujimoto, B. S. (1994). A test of the model-free
formulas. Effects of anisotropic rotational diffusion and dimerization. J. Magn. Reson.
B, 105(3), 211–224. (10.1006/jmrb.1994.1127).

Schwarz, G. (1978). Estimating dimension of a model. Ann. Stat., 6(2), 461–464.
(10.1214/aos/1176344136).

Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimization.
Math. Comp., 24(111), 647–656. (10.1090/s0025-5718-1970-0274029-x).

Sobol’, I. (1967). Point distribution in a cube and approximate evaluation of in-
tegrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 7, 784–802.
(10.1016/0041-5553(67)90144-9).

Spencer, A. J. M. (1980). Continuum mechanics. Longman Group UK Limited, Essex,
England.

Steihaug, T. (1983). The conjugate gradient method and trust regions in large scale
optimization. SIAM J. Numer. Anal., 20(3), 626–637. (10.1137/0720042).

Sugase, K., Konuma, T., Lansing, J. C., and Wright, P. E. (2013). Fast and accurate fitting
of relaxation dispersion data using the flexible software package GLOVE. J. Biomol.
NMR, 56(3), 275–283. (10.1007/s10858-013-9747-5).

Sun, H., d’Auvergne, E. J., Reinscheid, U. M., Dias, L. C., Andrade, C. K. Z., Rocha,
R. O., and Griesinger, C. (2011). Bijvoet in solution reveals unexpected stereoselectivity
in a michael addition. Chem. Eur. J., 17(6), 1811–1817. (10.1002/chem.201002520).

Tjandra, N., Wingfield, P., Stahl, S., and Bax, A. (1996). Anisotropic rotational diffusion
of perdeuterated HIV protease from 15N NMR relaxation measurements at two magnetic.
J. Biomol. NMR, 8(3), 273–284. (10.1007/bf00410326).

Tollinger, M., Skrynnikov, N. R., Mulder, F. A. A., Forman-Kay, J. D., and Kay, L. E.
(2001). Slow dynamics in folded and unfolded states of an SH3 domain. J. Am. Chem.
Soc., 123(46), 11341–11352. (10.1021/ja011300z).

Trott, O., Abergel, D., and Palmer, A. (2003). An average-magnetization analy-
sis of R1ρ relaxation outside of the fast exchange. Mol. Phys., 101(6), 753–763.
(10.1080/0026897021000054826).

Trott, O. and Palmer, 3rd, A. G. (2002). R1ρ relaxation outside of the fast-exchange limit.
J. Magn. Reson., 154(1), 157–160. (10.1006/jmre.2001.2466).

Trott, O. and Palmer, 3rd, A. G. (2004). Theoretical study of R1ρ rotating-frame and R2

free-precession relaxation in the presence of n-site chemical exchange. J. Magn. Reson.,
170(1), 104–112. (10.1016/j.jmr.2004.06.005).

Viles, J., Duggan, B., Zaborowski, E., Schwarzinger, S., Huntley, J., Kroon, G., Dyson,
H. J., and Wright, P. (2001). Potential bias in NMR relaxation data introduced
by peak intensity analysis and curve fitting methods. J. Biomol. NMR, 21, 1–9.
(10.1023/A:1011966718826).

http://dx.doi.org/10.1006/jmrb.1994.1127
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1090/s0025-5718-1970-0274029-x
http://dx.doi.org/10.1016/0041-5553(67)90144-9
http://dx.doi.org/10.1137/0720042
http://dx.doi.org/10.1007/s10858-013-9747-5
http://dx.doi.org/10.1002/chem.201002520
http://dx.doi.org/10.1007/bf00410326
http://dx.doi.org/10.1021/ja011300z
http://dx.doi.org/10.1080/0026897021000054826
http://dx.doi.org/10.1006/jmre.2001.2466
http://dx.doi.org/10.1016/j.jmr.2004.06.005
http://dx.doi.org/10.1023/A:1011966718826

682 BIBLIOGRAPHY

Woessner, D. E. (1962). Nuclear spin relaxation in ellipsoids undergoing rotational Brow-
nian motion. J. Chem. Phys., 37(3), 647–654. (10.1063/1.1701390).

Zhuravleva, A. V., Korzhnev, D. M., Kupce, E., Arseniev, A. S., Billeter, M., and Orekhov,
V. Y. (2004). Gated electron transfers and electron pathways in azurin: a NMR dy-
namic study at multiple fields and temperatures. J. Mol. Biol., 342(5), 1599–1611.
(10.1016/j.jmb.2004.08.001).

Zucchini, W. (2000). An introduction to model selection. J. Math. Psychol., 44(1), 41–61.
(10.1006/jmps.1999.1276).

http://dx.doi.org/10.1063/1.1701390
http://dx.doi.org/10.1016/j.jmb.2004.08.001
http://dx.doi.org/10.1006/jmps.1999.1276

Index

SourceForge, 285

AIC, see model selection, AIC
AICc, see model selection, AICc

angles, 447–450, 452, 452, 467–469,
477–480, 482–484, 538, 540, 549,
581, 582, 626, 627, 629, 630,
633, 650, 655, 656

anisotropic diffusion, see diffusion,
anisotropic

ANOVA model selection, see model
selection, ANOVA

API documentation, 281, 291

argument, 8
keyword, 8

asymmetric diffusion, see diffusion,
ellipsoid (asymmetric)

Augmented Lagrangian, see
optimisation, constraint
algorithm, Method of
Multipliers

axially symmetric diffusion, see diffusion,
spheroid (axially symmetric)

Bayesian model selection, see model
selection, Bayesian

BFGS, see optimisation, algorithm,
BFGS

BIC, see model selection, BIC

bond length, 502, 505, 506, 658
Bootstrap model selection, see model

selection, Bootstrap

branches, 287

Brownian diffusion, see diffusion,
Brownian

bug, 31

design, 31

report, 198

search, 32

tracker, 23, 24, 31, 32, 286, 291, 296
bzip2, see compression, bzip2

C module compilation, 24, 290, see
SCons, C module compilation

camel case, 281

Cauchy point, see optimisation,
algorithm, Cauchy point

CG-Steihaug, see optimisation,
algorithm, CG-Steihaug

chemical exchange, 502, 586, 650, 655,
656

chi-squared, 85, 90, 91, 105, 190, 303,
304, 305, 310, 313, 496, 550,
569, 583, 623, 624

chi-squared gradient, 313

chi-squared Hessian, 313
clean up, 291
commit access, 284

commit log, 285
compression, 478, 479, 483, 597, 622, 646

bzip2, 596, 597, 622, 623, 637, 639,
646

gzip, 596, 597, 622, 637, 639, 646

uncompressed, 596, 622, 639
consistency testing, 133
constraint, 468, 475, 480, 497, 498, 500,

541

copy, 445, 466, 489, 493, 506–508, 545,
552, 565, 570, 581, 592, 604,
615, 649, 650

correlation time, 467–470, 475, 502, 629,
650, 653, 655, 656, 660

cross rate, see relaxation rate, cross rate
cross-relaxation, see relaxation rate,

cross-relaxation
cross-validation model selection, see

model selection, cross-validation

ctypes, 24

683

684 INDEX

Dasha, see software, Dasha
data pipe, 10
delete, 446, 466, 493, 503, 509, 546, 554,

566, 571, 593, 608, 617, 631, 632
diff, 32

diffusion, 87
anisotropic, 468, 469
Brownian, 87, 483, 528, 558, 562,

629
ellipsoid (asymmetric), 88, 94, 102,

350, 452, 468, 470, 492, 629
sphere (isotropic), 89, 102, 367,

452, 467, 468, 470, 471, 479–482,
537, 538, 629

spheroid (axially symmetric), 89,
93, 94, 102, 363, 452, 467, 468,
470, 492, 629

tensor, 452, 466–470, 476, 492, 528,
555, 562, 629, 631

direction cosine, 350, 363
discrepancy, 105

Kullback-Leibler, 105
display, 446, 454, 467, 471, 494, 509,

528, 547, 557, 558, 562, 563,
567, 571, 593, 596, 598, 604,
612, 613, 617, 648, 649, 653

distribution archive, 24, 32, 277, 291
doc string, 280
dogleg, see optimisation, algorithm,

dogleg

eigenvalues, 447, 467–469, 629, 636

ellipsoidal diffusion, see diffusion,
ellipsoid (asymmetric)

Ensemble analysis, 141
epydoc, 281
Euler angles, 102, 350, 467–469, 482,

540, 650, 656
exact trust region, see optimisation,

algorithm, exact trust region
exponential curve fitting, 4

Fletcher-Reeves, see optimisation,
algorithm, Fletcher-Reeves

floating point number, 7, 447, 468, 469,
472, 536

forks, 289
frame order, 237

axis permutations, 254
linear constraints, 257

matrix, 385, 387, 391, 399, 403, 407,
412, 420, 427, 439

model
double rotor, 433
free rotor, 391

isotropic cone, 394
isotropic cone, free rotor, 405
isotropic cone, torsionless, 400

pseudo-ellipse, 408
pseudo-ellipse, free rotor, 427

pseudo-ellipse, torsionless, 419
rigid, 264, 385
rotor, 386

model nesting, 260
simulation, 375

Frequentist model selection, see model
selection, Frequentist

function class, 9, 10

git, 32, 277, 284
check out, 291

checkout, 32
clone, 32

conflict, 288
manual, 32
merge, 290

GNU/Linux, see Operating system,
GNU/ Linux

Google, 30
GPG

key, 32
signature, 32, 33

GPL, 4, 663
Grace, see software, Grace
gradient, 304

GUI, see User interface, GUI
gzip, see compression, gzip

help system, 9, 9, 443

Hessian, 304
Hestenes-Stiefel, see optimisation,

algorithm, Hestenes-Stiefel
Hypothesis testing model selection, see

model selection, Hypothesis
testing

indentation, 280
installation, 23
integer, 7, 293

interatomic data container, 11

INDEX 685

isotropic diffusion, see diffusion, sphere
(isotropic)

keyword argument, see argument,
keyword

Kullback-Leibler discrepancy, see
discrepancy, Kullback-Leibler

Levenberg-Marquardt, see optimisation,
algorithm,
Levenberg-Marquardt

licence, 663

linking, 297
Linux, see Operating system,

GNU/Linux
list, 7, 293

Logarithmic barrier, see optimisation,
constraint algorithm,
Logarithmic barrier

longitudinal relaxation, see relaxation
rate, spin-lattice

Mac OS X, see Operating system, Mac
OS X

mailing list, 30, 30, 277, 286, 295

archive, 30, 31
relax-announce, 30, 277
relax-commits, 30, 31, 277

relax-devel, 30–32, 56, 59, 74, 107,
197, 277, 286, 287, 291

relax-users, xxxi, 30–32, 146, 198,
277

make, 290
manual

HTML, 30
map, 448–450, 455, 460, 471, 472, 486,

489, 496, 513, 525, 526, 530–532,
534–536, 551, 552, 559, 561, 583,
587, 650, 655, 656

Method of Multipliers, see optimisation,
constraint algorithm, Method of
Multipliers

minfx, see optimisation, minfx
model elimination, 5, 455, 475, 530–532,

534–536
model selection, 5

AIC, 5, 105, 158, 205, 455, 506, 507,
623

AICc, 5, 205, 506

ANOVA, 5

Bayesian, 158

BIC, 5, 205, 506

bootstrap, 5, 455, 506, 529

cross-validation, 5, 455, 506

frequentist, 205

hypothesis testing, 5

model-free analysis, 85

Modelfree, see software, Modelfree

modelling, 475

molecular dynamics simulation, 143

molecule, 447, 459, 463, 464, 467, 468,
479, 507, 507, 508, 508, 509,
509, 510, 510, 511, 511, 529,
547, 548, 555, 564, 572, 573,
584, 592–595, 600, 601, 604–606,
611–613, 615–621, 624–627, 629,
631–647, 654

MOLMOL, see software, MOLMOL

Monte Carlo simulation, 5, 51, 61, 204

Monte Carlo simulations, 264

MPI, 19

mpi4py, 19, 23

OpenMPI, 19, 210, 211, 263

MS Windows, see Operating system, MS
Windows

multi-processor framework, 17

N-state model, 141

Nelder-Mead simplex, see optimisation,
algorithm, Nelder-Mead simplex

Newton, see optimisation, algorithm,
Newton

Newton-CG, see optimisation,
algorithm, Newton-CG

Newton-Raphson, see optimisation,
algorithm, Newton

NMR, 453–455, 457, 458, 460, 479, 490,
491, 496, 549, 573, 611–613

NMRView, see software, NMRView

NOE, 4, 71, 141, 143

NumPy, 23

OpenDX, see software, OpenDX

OpenMPI, see MPI, OpenMPI

Operating system

GNU/Linux, 24, 290

Mac OS X, 25, 290

MS Windows, 24, 290

Unix, 290

686 INDEX

optimisation, 8, 85, 301, 460, 468, 475,
496, 497, 497, 498, 500, 500,
501, 507, 529–536, 583, 633,
649, 655, 656

algorithm, 5, 305
BFGS, 304, 306, 307, 497
Cauchy point, 307
CG-Steihaug, 308
conjugate gradient, 497, 498
coordinate descent, 306
dogleg, 307, 498
exact trust region, 308, 498
Fletcher-Reeves, 308
Hestenes-Stiefel, 308
Levenberg-Marquardt, 310, 460
Nelder-Mead simplex, 204, 263,
303, 309, 500, 633

Newton, 305, 306, 310, 460, 497,
498

Newton-CG, 306, 309
Polak-Ribière, 308
Polak-Ribière +, 308
steepest descent, 305, 307, 309

constraint algorithm
Logarithmic barrier, 204, 312
Method of Multipliers, 311

minfx, 263, 301
space, 303
step-length selection algorithm, 307
topology, 303

optimise, 467, 480, 496, 506, 530–535,
538, 540, 555, 577, 581, 583, 590

order parameter, 482, 502, 525, 526, 536,
559, 561

OS X, see Operating system, Mac OS X

parameter
bounds, 458, 468, 471, 478, 483, 500,

501, 540, 552
limit, 475, 485, 486, 498, 587

parameter convolution, 343
patches, 288
PCS, see Pseudo-contact shift
PDB, 58, 73, 113, 468, 469, 477–480,

482, 483, 501, 527–529, 536–538,
541, 542, 544, 557, 558, 562–564,
624, 626, 628–631, 635, 638–640,
645–647

peak
height, 73

intensity, 51, 59, 74, 206
volume, 73

plot, 471, 485, 486, 546, 549, 566, 581,
582, 636

Polak-Ribière, see optimisation,
algorithm, Polak-Ribière

Polak-Ribière +, see optimisation,
algorithm, Polak-Ribière +

Pseudo-contact shifts, 141, 142
PyMOL, see software, PyMOL
pyreadline, 24
Python, 3, 6, 7, 8, 14, 16, 23, 293, 456,

497, 597, 635, 647, 648

R1, see relaxation rate, spin-lattice
R2, see relaxation rate, spin-spin
RDC, see Residual dipolar couplings
read, 454, 459, 464, 490, 491, 494, 528,

537, 540, 547, 548, 557, 562,
563, 567, 568, 572, 573, 584,
585, 596, 597, 601, 605, 611–613,
620, 629, 631, 635, 637–640, 654

reduced spectral density mapping, 4,
129

regular expression, 485, 497, 508–511,
593–595, 616–621

relax, see software, relax
relaxation, 455, 459, 460, 462, 464, 467,

486, 489–491, 496, 502, 505, 551,
552, 570–577, 579, 581–583,
585–587, 589–591, 597, 600, 601,
650, 655, 658

relaxation curve-fitting, 51
relaxation dispersion, 4, 147

analytical model, 148
experiment
R1ρ-type, 197
CPMG-type, 197

model
B14, 149, 166
B14 full, 149, 164
BK13, 197
BK13 full, 197
CR72, 149, 162
CR72 full, 149, 161
DPL94, 150, 178
IT99, 149, 162
LM63, 148, 159
LM63 3-site, 148, 160
M61, 150, 177

INDEX 687

M61 skew, 150, 177
MMQ CR72, 149, 170
MP05, 150, 180
no Rex, 148, 158
NS CPMG 2-site 3D, 149, 169
NS CPMG 2-site 3D full, 149, 169
NS CPMG 2-site expanded, 149,
166

NS CPMG 2-site star, 149, 170
NS CPMG 2-site star full, 149,
169

NS MMQ 2-site, 150, 172
NS MMQ 3-site, 150, 175
NS MMQ 3-site linear, 150, 174
NS R1rho 2-site, 150, 181
NS R1rho 3-site, 150, 181
NS R1rho 3-site linear, 150, 183
R2eff, 148, 156
TAP03, 150, 179
TP02, 150, 178
TP04, 197
TSMFK01, 149, 163

model category
analytic CPMG, 159
analytic MMQ CPMG, 170
analytic R1rho, 176
base models, 156
numeric CPMG, 166
numeric MMQ CPMG, 172
numeric R1rho, 180

numerical model, 148
relaxation rate

cross rate, 86
cross-relaxation, 86
spin-lattice, 86
spin-spin, 86

repository, 32, 277, 286
branch versioning, 287
branches, 287
forks, 289
keeping up to date, 287
merging branch back, 289
patches, 288
rebasing, 288

Residual dipolar coupling, 141, 142
RMSD, 74
rotation, 467, 469, 478, 482, 483, 528,

536, 539, 562, 629, 632, 633, 642

SciPy, 23

SCons, 24, 32, 290

API documentation, 291

binary distribution, 32, 291

C module compilation, 290

clean up, 291

help, 290

install, 24

source distribution, 291

user manual (HTML version), 291

user manual (PDF version), 290

scripting, 472, 475, 512, 557, 597, 612,
613

sample scripts, 14

script file, 455, 456, 460, 472, 475,
512, 557, 597, 597, 612, 613, 627

sequence, 481, 484, 497, 530–535, 555,
577, 592, 594, 595, 603, 603,
604, 604, 605, 605, 606, 606,
615, 620, 621, 631, 634, 635,
639, 640, 642, 643

simplex algorithm, see optimisation,
algorithm, Nelder-Mead simplex

simulated annealing, 143

software

Dasha, 6, 27, 310, 455, 460, 460,
461, 461

Grace, 3, 5, 26, 70, 75, 76, 485,
485, 486, 546, 549, 566, 581, 582

Modelfree, 6, 27, 310, 455, 541–543

MOLMOL, 3, 5, 27, 512, 512, 513,
513, 525, 525, 526, 526, 527,
527, 528, 528, 529, 529, 559,
561

NMRView, 59, 73

OpenDX, 3, 5, 26, 471, 472

PyMOL, 3, 5, 27

relax, 312

Sparky, 59, 73, 74, 215, 457, 459,
609, 612, 613, 620

Tensor, 310

XEasy, 59, 73, 612, 613

Sparky, see software, Sparky

spherical angles, 363

spherical diffusion, see diffusion, sphere
(isotropic)

spheroidal diffusion, see diffusion,
spheroid (axially symmetric)

spin container, 11

spin-lattice relaxation, see relaxation

688 INDEX

rate, spin-lattice
spin-spin relaxation, see relaxation rate,

spin-spin
standard deviation, 51
steepest descent, see optimisation,

algorithm, steepest descent
step-length, see optimisation,

step-length selection algorithm
string, 7, 293
support request

tracker, 296
SVN, see Subversion
symbolic link, 24

tab completion, 9
tar, 24, 477, 481, 484, 496, 497, 552, 604,

635
task

tracker, 296
Tensor, see software, Tensor
terminal, 6
test suite, 14, 284
tracker

bug, 296

support request, 296

task, 296
transverse relaxation, see relaxation

rate, spin-spin

under-fitting, 106

Unix, see Operating system, Unix
user functions, 8, 9–11, 443

User interface
GUI, 3, 14, 23, 293

prompt, 6, 293
scripting, 12, 293

user manual

HTML compilation, 291
PDF compilation, 290

web site, 30

Windows, see Operating system, MS
Windows

write, 458, 486, 495, 550, 569, 575, 597,
606, 646, 647, 660, 661

wxPython, 23

XEasy, see software, XEasy

	Preface - citing relax
	I The basics
	Introduction
	Program features
	Literature
	Supported NMR theories
	Data analysis tools
	Data visualisation
	Interfacing with other programs
	The user interfaces (UI)

	How to use relax
	The prompt
	Python
	User functions
	The help system
	Tab completion
	The data pipe
	The spin and interatomic data containers
	Scripting
	The test suite
	The GUI
	Access to the internals of relax

	The multi-processor framework
	Introduction to the multi-processor
	Usage of the multi-processor
	Further details

	Usage of the name relax

	Installation instructions
	Dependencies
	Installation
	The source releases
	Installation on GNU/Linux
	Installation on MS Windows
	Installation on Mac OS X
	Installation on your OS
	Running a non-compiled version

	Optional programs
	Grace
	OpenDX
	Molmol
	PyMOL
	Dasha
	Modelfree4

	Free software infrastructure
	History
	The relax web sites
	The mailing lists
	relax-announce
	relax-users
	relax-devel
	relax-commits
	Replying to a message

	Reporting bugs
	Latest sources – the relax repositories
	The relax distribution archives

	The relax data model
	The concept of the relax data model
	The data model
	The relax data store
	Molecule, residue, and spin containers

	Interatomic data containers
	Setup in the prompt/script UI
	Script mode – spins from structural data
	Script mode – spins from a sequence file
	Script mode – manual construction

	Setup in the GUI
	GUI mode – setting up the data pipe
	GUI mode – spins from structural data
	GUI mode – spins from a sequence file
	GUI mode – manual construction
	GUI mode – deselect spins

	The next steps

	II The specific analyses
	Relaxation curve-fitting
	Introduction to relaxation curve-fitting
	The exponential curve models
	From spectra to peak intensities for the relaxation rates
	Temperature control and calibration
	Spectral processing
	Measuring peak intensities

	Relaxation curve-fitting in the prompt/script UI mode
	Relax-fit script mode – the sample script
	Relax-fit script mode – initialisation of the data pipe
	Relax-fit script mode – setting up the spin systems
	Relax-fit script mode – loading the data
	Relax-fit script mode – the rest of the setup
	Relax-fit script mode – optimisation of exponential curves
	Relax-fit script mode – error analysis
	Relax-fit script mode – finishing off

	The relaxation curve-fitting auto-analysis in the GUI
	Relax-fit GUI mode – initialisation of the data pipe
	Relax-fit GUI mode – general setup
	Relax-fit GUI mode – setting up the spin systems
	Relax-fit GUI mode – unresolved spins
	Relax-fit GUI mode – loading the data
	Relax-fit GUI mode – optimisation and error analysis

	Final checks of the curve-fitting

	Calculating the NOE
	Introduction to the steady-state NOE
	From spectra to peak intensities for the NOE
	Calculation of the NOE in the prompt/script UI mode
	NOE script mode – the sample script
	NOE script mode – initialisation of the data pipe
	NOE script mode – setting up the spin systems
	NOE script mode – loading the data
	NOE script mode – setting the errors
	NOE script mode – unresolved spins
	NOE script mode – the NOE calculation
	NOE script mode – viewing the results

	The NOE auto-analysis in the GUI
	NOE GUI mode – initialisation of the data pipe
	NOE GUI mode – general setup
	NOE GUI mode – setting up the spin systems
	NOE GUI mode – unresolved spins
	NOE GUI mode – loading the data
	NOE GUI mode – the NOE calculation

	Model-free analysis
	Model-free theory
	The chi-squared function – 2()
	The transformed relaxation equations – Ri()
	The relaxation equations – Ri'()
	The spectral density functions – J()
	Brownian rotational diffusion
	The model-free models
	Model-free optimisation theory

	Optimisation of a single model-free model
	Single model-free model script mode – the sample script
	Single model-free model script mode – explanation

	Optimisation of all model-free models
	All model-free models script mode – the sample script
	All model-free models script mode – explanation

	Model-free model selection
	Model-free model selection script mode – the sample script
	Model-free model selection script mode – explanation

	The methodology of Mandel et al., 1995
	The diffusion seeded paradigm
	The new model-free optimisation protocol
	The new protocol – model-free models
	The new protocol – the diffusion tensor
	The universal solution U
	Model-free analysis in reverse

	The new protocol in the prompt/script UI mode
	d'Auvergne protocol script mode – the sample script
	d'Auvergne protocol script mode – analysis variables
	d'Auvergne protocol script mode – data pipe initialisation
	d'Auvergne protocol script mode – setting up the spin systems
	d'Auvergne protocol script mode – loading the data
	d'Auvergne protocol script mode – deselection
	d'Auvergne protocol script mode – relaxation interactions
	d'Auvergne protocol script mode – execution

	The new protocol in the GUI
	d'Auvergne protocol GUI mode – data pipe initialisation
	d'Auvergne protocol GUI mode – general setup
	d'Auvergne protocol GUI mode – setting up the spin systems
	d'Auvergne protocol GUI mode – unresolved spins
	d'Auvergne protocol GUI mode – loading the data
	d'Auvergne protocol GUI mode – relaxation interactions
	d'Auvergne protocol GUI mode – spin isotopes
	d'Auvergne protocol GUI mode – the rest of the setup
	d'Auvergne protocol GUI mode – execution
	d'Auvergne protocol GUI mode – completion
	d'Auvergne protocol GUI mode – BMRB deposition

	Reduced spectral density mapping
	Introduction to reduced spectral density mapping
	J(w) mapping script mode – the sample script
	J(w) mapping script mode – data pipe and spin system setup
	J(w) mapping script mode – relaxation data loading
	J(w) mapping script mode – relaxation interactions
	J(w) mapping script mode – calculation and error propagation
	J(w) mapping script mode – visualisation and data output

	Consistency testing
	Introduction to the consistency testing of relaxation data
	Consistency testing in the prompt/script UI mode
	Consistency testing script mode – the sample script

	Consistency testing script mode – data pipe and spin system setup
	Consistency testing script mode – relaxation data loading
	Consistency testing script mode – relaxation interactions
	Consistency testing script mode – calculation and error propagation
	Consistency testing script mode – visualisation and data output

	The N-state model or ensemble analysis
	Introduction to the N-state model
	Experimental data support for the N-state model
	RDCs in the N-state model
	PCSs in the N-state model
	NOEs in the N-state model

	Determining stereochemistry in dynamic molecules
	Stereochemistry – the auto-analysis
	Stereochemistry – the sample script

	Relaxation dispersion
	Introduction to relaxation dispersion
	The modelling of dispersion data
	Implemented models
	Dispersion model summary

	The base dispersion models
	The R2eff model
	The model for no chemical exchange relaxation

	The analytic CPMG models
	The LM63 2-site fast exchange CPMG model
	The LM63 3-site fast exchange CPMG model
	The full CR72 2-site CPMG model
	The reduced CR72 2-site CPMG model
	The IT99 2-site CPMG model
	The TSMFK01 2-site CPMG model
	The full B14 2-site CPMG model
	The reduced B14 2-site CPMG model

	The numeric CPMG models
	The NS 2-site expanded CPMG model
	The full NS 2-site 3D CPMG model
	The reduced NS 2-site 3D CPMG model
	The full NS 2-site star CPMG model
	The reduced NS 2-site star CPMG model

	The analytic MMQ CPMG models
	The MMQ CR72 model

	The numeric MMQ CPMG models
	The NS MMQ 2-site model
	The NS MMQ 3-site linear model
	The NS MMQ 3-site model

	The analytic R1 models
	The M61 2-site fast exchange R1 model
	The M61 skew 2-site fast exchange R1 model
	The DPL94 2-site fast exchange R1 model
	The TP02 2-site exchange R1 model
	The TAP03 2-site exchange R1 model
	The MP05 2-site exchange R1 model

	The numeric R1 models
	The NS 2-site R1 model
	The NS 3-site R1 model
	The NS 3-site linear R1 model

	Relaxation dispersion optimisation theory
	The relaxation dispersion auto-analysis
	Dispersion curve insignificance
	The relaxation dispersion space
	The clustered relaxation dispersion analysis
	Dispersion parameter grid search
	Dispersion parameter optimisation
	Relaxation dispersion parameter constraints
	Relaxation dispersion diagonal scaling
	Relaxation dispersion model elimination
	Monte Carlo simulation elimination
	Relaxation dispersion on a computer cluster using OpenMPI

	To do – dispersion features yet to be implemented
	Tutorial for adding relaxation dispersion models
	Comparison of dispersion analysis software
	Analysing dispersion in the prompt/script UI mode
	Dispersion script mode – the sample script
	Dispersion script mode – imports
	Dispersion script mode – analysis variables
	Dispersion script mode – initialisation of the data pipe
	Dispersion script mode – setting up the spin systems
	Dispersion script mode – loading the data
	Dispersion script mode – the rest of the setup
	Dispersion script mode – execution

	The relaxation dispersion auto-analysis in the GUI
	Dispersion GUI mode – two analyses
	Dispersion GUI mode – computation time
	Dispersion GUI mode – initialisation of the data pipe
	Dispersion GUI mode – general setup
	Dispersion GUI mode – setting up the spin systems
	Dispersion GUI mode – unresolved spins
	Dispersion GUI mode – dispersion setup
	Dispersion GUI mode – loading the data
	Dispersion GUI mode – choosing the models to optimise
	Dispersion GUI mode – optimisation settings
	Dispersion GUI mode – execution of the non-clustered analysis
	Dispersion GUI mode – inspection of the results
	Dispersion GUI mode – comparing models
	Dispersion GUI mode – the clustered analysis
	Dispersion GUI mode – comparison of the analyses

	Frame order
	Introduction of frame ordering
	Tensors of frame ordering
	Ln3+ aligned RDC and PCS data

	Frame order theory
	Frame order introduction
	Frame order and the alignment tensor
	Single pivoted motions
	Double pivoted motions
	Frame order in rotational Brownian diffusion and NMR relaxation

	Frame order modelling
	Rigid body motions for a two domain system
	Frame order axis permutations
	Linear constraints for the frame order models

	Computation time and the numerical integration of the PCS
	Numerical integration techniques
	Parallelization and running on a cluster
	Frame order model nesting
	PCS subset
	Optimisation of the frame order models
	Error analysis

	The frame order data analysis
	Introduction to frame order data analysis
	The N-state model analysis scripts
	The frame order analysis scripts
	Computation times

	III Power users
	relax development
	The relax source code repositories
	relax repositories
	Primary relax repository
	Mirrors of the relax repository

	Coding conventions
	Indentation
	Doc strings
	Variable, function, and class names
	Whitespace
	Comments

	Committers
	Becoming a committer
	Register for a relax infrastructure account
	Joining the relax project
	Format of the commit logs
	Discussing major changes

	Submitting changes to the relax project
	Development branches
	Keeping the branch up to date
	Submitting patches
	Repository forks
	Merging the branch back into the main line

	The SCons build system
	SCons help
	C module compilation
	Compilation of the user manual (PDF version)
	Compilation of the user manual (HTML version)
	Compilation of the API documentation (HTML version)
	Making distribution archives
	Cleaning up

	The core design of relax
	The divisions of relax's source code
	The major components of relax

	The mailing lists for development
	Private vs. public messages

	The bug, task, and support request trackers
	Submitting a bug report
	Assigning an issue to yourself
	Closing an issue

	Links, links, and more links
	Navigation
	Search engine indexing

	IV Advanced topics
	Optimisation
	Implementation
	The interface
	The minfx package

	The optimisation space
	Topology of the space
	The function value
	The gradient
	The Hessian

	Optimisation algorithms
	Line search methods
	Trust region methods
	Conjugate gradient methods
	Hessian modifications
	Other methods

	Constraint algorithms
	Method of Multipliers algorithm
	Logarithmic barrier constraint algorithm

	Diagonal scaling

	Optimisation of relaxation data – values, gradients, and Hessians
	Introduction to the mathematics behind the optimisation of relaxation data
	The four parameter combinations
	Optimisation of the model-free models
	Optimisation of the local m models
	Optimisation of the diffusion tensor parameters
	Optimisation of the global model S

	Construction of the values, gradients, and Hessians
	The sum of chi-squared values
	Construction of the gradient
	Construction of the Hessian

	The value, gradient, and Hessian dependency chain
	The 2 value, gradient, and Hessian
	The 2 value
	The 2 gradient
	The 2 Hessian

	The Ri() values, gradients, and Hessians
	The Ri() values
	The Ri() gradients
	The Ri() Hessians

	Ri'() values, gradients, and Hessians
	Components of the Ri'() equations
	Ri'() values
	Ri'() gradients
	Ri'() Hessians

	Optimisation equations for the model-free analysis
	The model-free equations
	The original model-free gradient
	The original model-free Hessian
	The extended model-free gradient
	The extended model-free Hessian
	The alternative extended model-free gradient
	The alternative extended model-free Hessian

	Ellipsoidal diffusion tensor
	The diffusion equation of the ellipsoid
	The weights of the ellipsoid
	The weight gradients of the ellipsoid
	The weight Hessians of the ellipsoid
	The correlation times of the ellipsoid
	The correlation time gradients of the ellipsoid
	The correlation time Hessians of the ellipsoid

	Spheroidal diffusion tensor
	The diffusion equation of the spheroid
	The weights of the spheroid
	The weight gradients of the spheroid
	The weight Hessians of the spheroid
	The correlation times of the spheroid
	The correlation time gradients of the spheroid
	The correlation time Hessians of the spheroid

	Spherical diffusion tensor
	The diffusion equation of the sphere
	The weight of the sphere
	The weight gradient of the sphere
	The weight Hessian of the sphere
	The correlation time of the sphere
	The correlation time gradient of the sphere
	The correlation time Hessian of the sphere

	Ellipsoidal dot product derivatives
	The dot product of the ellipsoid
	The dot product gradient of the ellipsoid
	The dot product Hessian of the ellipsoid

	Spheroidal dot product derivatives
	The dot product of the spheroid
	The dot product gradient of the spheroid
	The dot product Hessian of the spheroid

	The frame order models
	The current frame order models
	Simulation of the frame order models
	Rigid frame order model
	Rigid model parameterisation
	Rigid model equations

	Rotor frame order model
	Rotor parameterisation
	Rotor equations

	Free rotor frame order model
	Free rotor parameterisation
	Free rotor equations

	Isotropic cone frame order model
	Isotropic cone parameterisation
	Isotropic cone equations

	Torsionless isotropic cone frame order model
	Torsionless isotropic cone parameterisation
	Torsionless isotropic cone equations

	Free rotor isotropic cone frame order model
	Free rotor isotropic cone parameterisation
	Free rotor isotropic cone equations

	Pseudo-ellipse frame order model
	Pseudo-ellipse parameterisation
	Derivation of a 2D trigonometric function - the pseudo-elliptic cosine
	Pseudo-ellipse equations

	Torsionless pseudo-ellipse frame order model
	Torsionless pseudo-ellipse parameterisation
	Torsionless pseudo-ellipse equations

	Free rotor pseudo-ellipse frame order model
	Free rotor pseudo-ellipse parameterisation
	Free rotor pseudo-ellipse equations

	Double rotor frame order model
	Double rotor parameterisation
	Double rotor equations

	V Reference
	Alphabetical listing of user functions
	A warning about the formatting
	The list of functions
	The synopsis
	Defaults
	Docstring sectioning
	align_tensor.copy
	align_tensor.delete
	align_tensor.display
	align_tensor.fix
	align_tensor.init
	align_tensor.matrix_angles
	align_tensor.reduction
	align_tensor.set_domain
	align_tensor.svd
	angles.diff_frame
	bmrb.citation
	bmrb.display
	bmrb.read
	bmrb.script
	bmrb.software
	bmrb.software_select
	bmrb.thiol_state
	bmrb.write
	bruker.read
	chemical_shift.read
	consistency_tests.set_frq
	dasha.create
	dasha.execute
	dasha.extract
	deselect.all
	deselect.interatom
	deselect.read
	deselect.reverse
	deselect.sn_ratio
	deselect.spin
	diffusion_tensor.copy
	diffusion_tensor.delete
	diffusion_tensor.display
	diffusion_tensor.init
	domain
	dx.execute
	dx.map
	eliminate
	error_analysis.covariance_matrix
	fix
	frame_order.count_sobol_points
	frame_order.decompose
	frame_order.distribute
	frame_order.pdb_model
	frame_order.permute_axes
	frame_order.pivot
	frame_order.quad_int
	frame_order.ref_domain
	frame_order.select_model
	frame_order.simulate
	frame_order.sobol_setup
	grace.view
	grace.write
	interatom.copy
	interatom.define
	interatom.read_dist
	interatom.set_dist
	interatom.unit_vectors
	j_coupling.copy
	j_coupling.delete
	j_coupling.display
	j_coupling.read
	j_coupling.write
	jw_mapping.set_frq
	minimise.calculate
	minimise.execute
	minimise.grid_search
	minimise.grid_zoom
	model_free.create_model
	model_free.delete
	model_free.remove_tm
	model_free.select_model
	model_selection
	molecule.copy
	molecule.create
	molecule.delete
	molecule.display
	molecule.name
	molecule.type
	molmol.clear_history
	molmol.command
	molmol.macro_apply
	molmol.macro_run
	molmol.macro_write
	molmol.ribbon
	molmol.tensor_pdb
	molmol.view
	monte_carlo.create_data
	monte_carlo.error_analysis
	monte_carlo.initial_values
	monte_carlo.off
	monte_carlo.on
	monte_carlo.setup
	n_state_model.CoM
	n_state_model.cone_pdb
	n_state_model.elim_no_prob
	n_state_model.number_of_states
	n_state_model.ref_domain
	n_state_model.select_model
	noe.read_restraints
	noe.spectrum_type
	palmer.create
	palmer.execute
	palmer.extract
	paramag.centre
	pcs.back_calc
	pcs.calc_q_factors
	pcs.copy
	pcs.corr_plot
	pcs.delete
	pcs.display
	pcs.read
	pcs.set_errors
	pcs.structural_noise
	pcs.weight
	pcs.write
	pipe.bundle
	pipe.change_type
	pipe.copy
	pipe.create
	pipe.current
	pipe.delete
	pipe.display
	pipe.hybridise
	pipe.switch
	pymol.cartoon
	pymol.clear_history
	pymol.command
	pymol.cone_pdb
	pymol.frame_order
	pymol.macro_apply
	pymol.macro_run
	pymol.macro_write
	pymol.tensor_pdb
	pymol.vector_dist
	pymol.view
	rdc.back_calc
	rdc.calc_q_factors
	rdc.copy
	rdc.corr_plot
	rdc.delete
	rdc.display
	rdc.read
	rdc.set_errors
	rdc.weight
	rdc.write
	relax_data.back_calc
	relax_data.copy
	relax_data.delete
	relax_data.display
	relax_data.peak_intensity_type
	relax_data.read
	relax_data.temp_calibration
	relax_data.temp_control
	relax_data.type
	relax_data.write
	relax_disp.catia_execute
	relax_disp.catia_input
	relax_disp.cluster
	relax_disp.cpmg_setup
	relax_disp.cpmgfit_execute
	relax_disp.cpmgfit_input
	relax_disp.exp_type
	relax_disp.insignificance
	relax_disp.nessy_input
	relax_disp.parameter_copy
	relax_disp.plot_disp_curves
	relax_disp.plot_exp_curves
	relax_disp.r1_fit
	relax_disp.r20_from_min_r2eff
	relax_disp.r2eff_err_estimate
	relax_disp.r2eff_read
	relax_disp.r2eff_read_spin
	relax_disp.relax_time
	relax_disp.select_model
	relax_disp.sherekhan_input
	relax_disp.spin_lock_field
	relax_disp.spin_lock_offset
	relax_disp.write_disp_curves
	relax_fit.relax_time
	relax_fit.select_model
	reset
	residue.copy
	residue.create
	residue.delete
	residue.display
	residue.name
	residue.number
	results.display
	results.read
	results.write
	script
	select.all
	select.display
	select.domain
	select.interatom
	select.read
	select.reverse
	select.sn_ratio
	select.spin
	sequence.attach_protons
	sequence.copy
	sequence.display
	sequence.read
	sequence.write
	spectrometer.frequency
	spectrometer.temperature
	spectrum.baseplane_rmsd
	spectrum.delete
	spectrum.error_analysis
	spectrum.error_analysis_per_field
	spectrum.integration_points
	spectrum.read_intensities
	spectrum.read_spins
	spectrum.replicated
	spectrum.sn_ratio
	spin.copy
	spin.create
	spin.create_pseudo
	spin.delete
	spin.display
	spin.element
	spin.isotope
	spin.name
	spin.number
	state.load
	state.save
	statistics.aic
	statistics.model
	structure.add_atom
	structure.add_helix
	structure.add_model
	structure.add_sheet
	structure.atomic_fluctuations
	structure.com
	structure.connect_atom
	structure.create_diff_tensor_pdb
	structure.create_rotor_pdb
	structure.create_vector_dist
	structure.delete
	structure.delete_ss
	structure.displacement
	structure.find_pivot
	structure.get_pos
	structure.load_spins
	structure.mean
	structure.pca
	structure.read_gaussian
	structure.read_pdb
	structure.read_xyz
	structure.rmsd
	structure.rotate
	structure.sequence_alignment
	structure.superimpose
	structure.translate
	structure.web_of_motion
	structure.write_pdb
	system.cd
	system.pwd
	system.sys_info
	system.time
	value.copy
	value.display
	value.read
	value.set
	value.write
	vmd.view

	Licence
	Copying, modification, sublicencing, and distribution of relax
	The GPL

