Deploy in 115+ regions with the modern database for every enterprise.
MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
Start Free
Keep company data safe with Chrome Enterprise
Protect your business with AI policies and data loss prevention in the browser
Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
Using reinforcement learning with relative input to train Ms. Pac-Man
This Java-application contains all required components to simulate a game of Ms. Pac-Man and let an agent learn intelligent playing behaviour using reinforcement learning and either Q-Learning or SARSA.
The framework was developed by Luuk Bom and Ruud Henken, under supervision of Marco Wiering, Department of Artificial Intelligence, University of Groningen. It formed the basis of a bachelor's thesis titled "Using reinforcement learning with relative input to train Ms. Pac-Man", L.A.M. Bom (2012).
PIQLE is a Platform Implementing Q-LEarning (and other Reinforcement Learning) algorithms in JAVA. Version 2 is a major refactoring. The core data structures and algorithms are in piqle-coreVersion2. Examples are in piqle-examplesVersion2. A complete doc
RL Poker is a study project Java implementation of an e-soft on-policy Monte Carlo Texas Hold'em poker reinforcement learning algoritm with a feedforward neural network and backpropagation. It provides a graphical interface to monitor game rounds.