Showing 311 open source projects for "q learning algorithm"

View related business solutions
  • Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • 1
    Hello Algorithm

    Hello Algorithm

    Animated illustrations, one-click data structure

    Animated illustrations, one-click data structure and algorithm tutorials. This project aims to create an open source, free, novice-friendly introductory tutorial on data structures and algorithms. The whole book uses animated illustrations, the content is clear and easy to understand, and the learning curve is smooth, guiding beginners to explore the knowledge map of data structures and algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    homemade-machine-learning is a repository by Oleksii Trekhleb containing Python implementations of classic machine-learning algorithms done “from scratch”, meaning you don’t rely heavily on high-level libraries but instead write the logic yourself to deepen understanding. Each algorithm is accompanied by mathematical explanations, visualizations (often via Jupyter notebooks), and interactive demos so you can tweak parameters, data, and observe outcomes in real time. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Interpretable machine learning

    Interpretable machine learning

    Book about interpretable machine learning

    This book is about interpretable machine learning. Machine learning is being built into many products and processes of our daily lives, yet decisions made by machines don't automatically come with an explanation. An explanation increases the trust in the decision and in the machine learning model. As the programmer of an algorithm you want to know whether you can trust the learned model.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    X's Recommendation Algorithm

    X's Recommendation Algorithm

    Source code for the X Recommendation Algorithm

    ...While certain components (such as safety layers, spam detection, or private data) are excluded, the release provides valuable insights into the design of real-world machine learning–driven ranking systems. The project is intended as a reference for researchers, developers, and the public to study, experiment with, and better understand the mechanisms behind social media content.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    Machine Learning Octave

    Machine Learning Octave

    MatLab/Octave examples of popular machine learning algorithms

    This repository contains MATLAB / Octave implementations of popular machine learning algorithms, along with explanatory code and mathematical derivations, intended as educational material rather than production code. Implementations of supervised learning algorithms (linear regression, logistic regression, neural nets). The author’s goal is to help users understand how each algorithm works “from scratch,” avoiding black-box library calls.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    The Arcade Learning Environment

    The Arcade Learning Environment

    The Arcade Learning Environment (ALE) -- a platform for AI research

    ...This environment suite has been central to many RL breakthroughs, including value-based agents, deep Q-nets, and general-agent benchmarking, because the Atari games span many genres and present diverse learning challenges (pixels, actions, delayed rewards). The repository supports multi‐platform build (Linux, macOS, Windows), vectorized execution of games, Python bindings, Gymnasium registration, and a large set of game ROMs bundled for convenience.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Adapters

    Adapters

    A Unified Library for Parameter-Efficient Learning

    Adapters is an add-on library to HuggingFace's Transformers, integrating 10+ adapter methods into 20+ state-of-the-art Transformer models with minimal coding overhead for training and inference. Adapters provide a unified interface for efficient fine-tuning and modular transfer learning, supporting a myriad of features like full-precision or quantized training (e.g. Q-LoRA, Q-Bottleneck Adapters, or Q-PrefixTuning), adapter merging via task arithmetics or the composition of multiple adapters via composition blocks, allowing advanced research in parameter-efficient transfer learning for NLP tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    CausalInference.jl

    CausalInference.jl

    Causal inference, graphical models and structure learning in Julia

    Julia package for causal inference and analysis, graphical models and structure learning. This package contains code for the PC algorithm and the extended FCI algorithm, the score based greedy equivalence search (GES) algorithm, the Bayesian Causal Zig-Zag sampler and a function suite for adjustment set search.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Deep-Learning-Interview-Book

    Deep-Learning-Interview-Book

    Interview guide for machine learning, mathematics, and deep learning

    Deep-Learning-Interview-Book collects structured notes, Q&A, and concept summaries tailored to deep-learning interviews, turning scattered study into a coherent playbook. It spans the core math (linear algebra, probability, optimization) and the practitioner topics candidates actually face, like CNNs, RNNs/Transformers, attention, regularization, and training tricks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Simplify Purchasing For Your Business Icon
    Simplify Purchasing For Your Business

    Manage what you buy and how you buy it with Order.co, so you have control over your time and money spent.

    Simplify every aspect of buying for your business in Order.co. From sourcing products to scaling purchasing across locations to automating your AP and approvals workstreams, Order.co is the platform of choice for growing businesses.
    Learn More
  • 10
    Anime4KCPP

    Anime4KCPP

    A high performance anime upscaler

    Anime4KCPP provides an optimized bloc97's Anime4K algorithm version 0.9, and it also provides its own CNN algorithm ACNet, it provides a variety of way to use, including preprocessing and real-time playback, it aims to be a high-performance tool to process both image and video. This project is for learning and the exploration task of the algorithm course in SWJTU. Anime4K is a simple high-quality anime upscale algorithm.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 11
    Vowpal Wabbit

    Vowpal Wabbit

    Machine learning system which pushes the frontier of machine learning

    ...The input format for the learning algorithm is substantially more flexible than might be expected. Examples can have features consisting of free-form text, which is interpreted in a bag-of-words way. There can even be multiple sets of free-form text in different namespaces. Similar to the few other online algorithm implementations out there. There are several optimization algorithms available with the baseline being sparse gradient descent (GD) on a loss function.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    PyGAD

    PyGAD

    Source code of PyGAD, Python 3 library for building genetic algorithms

    PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine learning algorithms. It supports Keras and PyTorch. PyGAD supports optimizing both single-objective and multi-objective problems. PyGAD supports different types of crossover, mutation, and parent selection. PyGAD allows different types of problems to be optimized using the genetic algorithm by customizing the fitness function.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    FSRS4Anki

    FSRS4Anki

    A modern Anki custom scheduling based on Free Spaced Repetition

    A modern spaced-repetition scheduler for Anki based on the Free Spaced Repetition Scheduler algorithm.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Algorithm Visualizer

    Algorithm Visualizer

    Interactive Online Platform that Visualizes Algorithms from Code

    Hacker Scripts is a light-hearted collection of small automation and demo scripts that solve amusing everyday tasks or illustrate quick integrations with external services. The repo collects short programs (originally a set of shell and Ruby scripts) and many community contributed ports in other languages to show “how you might automate X” — for example sending a quick SMS, firing off an email, or triggering a coffee maker — with examples and scheduling snippets included. The README explains...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 15
    SHAP

    SHAP

    A game theoretic approach to explain the output of ml models

    SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions. While SHAP can explain the output of any machine learning model, we have developed a high-speed exact algorithm for tree ensemble methods. Fast C++ implementations are supported for XGBoost, LightGBM, CatBoost, scikit-learn and pyspark tree models. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    D4RL

    D4RL

    Collection of reference environments, offline reinforcement learning

    D4RL (Datasets for Deep Data-Driven Reinforcement Learning) is a benchmark suite focused on offline reinforcement learning — i.e., learning policies from fixed datasets rather than via online interaction with the environment. It contains standardized environments, tasks and datasets (observations, actions, rewards, terminals) aimed at enabling reproducible research in offline RL. Researchers can load a dataset for a given task (e.g., maze navigation, manipulation) and apply their algorithm without the need to collect fresh transitions, which accelerates experimentation and comparison. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    StemRoller

    StemRoller

    Isolate vocals, drums, bass, and other instrumental stems from songs

    StemRoller is the first free app that enables you to separate vocal and instrumental stems from any song with a single click! StemRoller uses Facebook's state-of-the-art Demucs algorithm for demixing songs and integrates search results from YouTube. Simply type the name/artist of any song into the search bar and click the Split button that appears in the results! You'll need to wait several minutes for splitting to complete. Once stems have been extracted, you'll see an Open button next to...
    Downloads: 54 This Week
    Last Update:
    See Project
  • 18
    AI4U

    AI4U

    Multi-engine plugin to specify agents with reinforcement learning

    AI4U is a multi-engine plugin (Godot and Unity) that allows you to design Non-Player Characters (NPCs) of games using an agent abstraction. In addition, AI4U has a low-level API that allows you to connect the agent to any algorithm made available in Python by the reinforcement learning community specifically and by the Artificial Intelligence community in general. Reinforcement learning promises to overcome traditional navigation mesh mechanisms in games and to provide more autonomous characters. AI4U can be integrated into Imitation Learning through Behavioral Cloning or Generative Adversarial Imitation Learning present on stable-baslines. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    Appfl

    Appfl

    Advanced Privacy-Preserving Federated Learning framework

    APPFL (Advanced Privacy-Preserving Federated Learning) is a Python framework enabling researchers to easily build and benchmark privacy-aware federated learning solutions. It supports flexible algorithm development, differential privacy, secure communications, and runs efficiently on HPC and multi-GPU setups.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    AlphaZero.jl

    AlphaZero.jl

    A generic, simple and fast implementation of Deepmind's AlphaZero

    Beyond its much publicized success in attaining superhuman level at games such as Chess and Go, DeepMind's AlphaZero algorithm illustrates a more general methodology of combining learning and search to explore large combinatorial spaces effectively. We believe that this methodology can have exciting applications in many different research areas. Because AlphaZero is resource-hungry, successful open-source implementations (such as Leela Zero) are written in low-level languages (such as C++) and optimized for highly distributed computing environments. ...
    Downloads: 26 This Week
    Last Update:
    See Project
  • 21
    LightZero

    LightZero

    [NeurIPS 2023 Spotlight] LightZero

    LightZero is an efficient, scalable, and open-source framework implementing MuZero, a powerful model-based reinforcement learning algorithm that learns to predict rewards and transitions without explicit environment models. Developed by OpenDILab, LightZero focuses on providing a highly optimized and user-friendly platform for both academic research and industrial applications of MuZero and similar algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    DeepTutor

    DeepTutor

    AI-Powered Personalized Learning Assistant

    DeepTutor is an AI-powered tutoring and learning assistant framework designed to automatically teach, explain, and reinforce academic or technical concepts in depth according to a learner’s specific needs. It goes beyond simple Q&A by constructing multi-stage educational narratives, breaking down complex topics into sequenced “lesson steps,” and offering prompts, examples, and exercises that build on each other in a logical curriculum.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 23
    zvt

    zvt

    Modular quant framework

    For practical trading, a complex algorithm is fragile, a complex algorithm building on a complex facility is more fragile, complex algorithm building on a complex facility by a complex team is more and more fragile. zvt wants to provide a simple facility for building a straightforward algorithm. Technologies come and technologies go, but market insight is forever. Your world is built by core concepts inside you, so it’s you. zvt world is built by core concepts inside the market, so it’s zvt....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Zstandard

    Zstandard

    Zstandard - Fast real-time compression algorithm

    Zstandard is a fast compression algorithm, providing high compression ratios. It also offers a special mode for small data, called dictionary compression. The reference library offers a very wide range of speed / compression trade-off, and is backed by an extremely fast decoder (see benchmarks below). Zstandard library is provided as open source software using a BSD license. Its format is stable and published as IETF RFC 8478. The negative compression levels, specified with --fast=#, offer...
    Downloads: 133 This Week
    Last Update:
    See Project
  • 25
    R1-V

    R1-V

    Witness the aha moment of VLM with less than $3

    R1-V is an initiative aimed at enhancing the generalization capabilities of Vision-Language Models (VLMs) through Reinforcement Learning in Visual Reasoning (RLVR). The project focuses on building a comprehensive framework that emphasizes algorithm enhancement, efficiency optimization, and task diversity to achieve general vision-language intelligence and visual/GUI agents. The team's long-term goal is to contribute impactful open-source research in this domain.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next