Showing 50 open source projects for "q learning algorithm"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    Hello Algorithm

    Hello Algorithm

    Animated illustrations, one-click data structure

    Animated illustrations, one-click data structure and algorithm tutorials. This project aims to create an open source, free, novice-friendly introductory tutorial on data structures and algorithms. The whole book uses animated illustrations, the content is clear and easy to understand, and the learning curve is smooth, guiding beginners to explore the knowledge map of data structures and algorithms.
    Downloads: 19 This Week
    Last Update:
    See Project
  • 2
    X's Recommendation Algorithm

    X's Recommendation Algorithm

    Source code for the X Recommendation Algorithm

    ...While certain components (such as safety layers, spam detection, or private data) are excluded, the release provides valuable insights into the design of real-world machine learning–driven ranking systems. The project is intended as a reference for researchers, developers, and the public to study, experiment with, and better understand the mechanisms behind social media content.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    Smile

    Smile

    Statistical machine intelligence and learning engine

    Smile is a fast and comprehensive machine learning engine. With advanced data structures and algorithms, Smile delivers the state-of-art performance. Compared to this third-party benchmark, Smile outperforms R, Python, Spark, H2O, xgboost significantly. Smile is a couple of times faster than the closest competitor. The memory usage is also very efficient. If we can train advanced machine learning models on a PC, why buy a cluster? Write applications quickly in Java, Scala, or any JVM...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Alink

    Alink

    Alink is the Machine Learning algorithm platform based on Flink

    Alink is Alibaba’s scalable machine learning algorithm platform built on Apache Flink, designed for batch and stream data processing. It provides a wide variety of ready-to-use ML algorithms for tasks like classification, regression, clustering, recommendation, and more. Written in Java and Scala, Alink is suitable for enterprise-grade big data applications where performance and scalability are crucial.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 5
    OpenCV

    OpenCV

    Open Source Computer Vision Library

    The Open Source Computer Vision Library has >2500 algorithms, extensive documentation and sample code for real-time computer vision. It works on Windows, Linux, Mac OS X, Android, iOS in your browser through JavaScript. Languages: C++, Python, Julia, Javascript Homepage: https://opencv.org Q&A forum: https://forum.opencv.org/ Documentation: https://docs.opencv.org Source code: https://github.com/opencv Please pay special attention to our tutorials!...
    Leader badge
    Downloads: 3,187 This Week
    Last Update:
    See Project
  • 6
    The Art of Programming

    The Art of Programming

    A collection of practical tips can be found at the bottom of this page

    ...In July 2023, work on the second edition was announced, which expands the project with updated content, new problems inspired by recent big-tech interviews, and introductions to modern machine learning techniques such as XGBoost, CNNs, RNNs, and LSTMs. This collection serves both as a historical record of algorithm problem-solving and as a living resource for programmers preparing for interviews.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    JQM Java Quine McCluskey

    JQM Java Quine McCluskey

    JQM - Java Quine McCluskey for minimization of Boolean functions.

    Java Quine McCluskey implements the Quine McCluskey algorithm with Petrick’s Method (or the method of prime implicants) for minimization of Boolean functions. This software can be used both for learning and solving real problems. As a learning/teaching tool, it presents not only the results but also how the problem was solved as well as how to use Karnaugh Maps to solve the problem. Up to sixteen functions of sixteen variables can be minimized.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    LeetCode Animation

    LeetCode Animation

    Demonstrate all the questions on LeetCode in the form of animation

    ...The project also includes a curated set of 40 problems from the “Sword Pointing to Offer” series—commonly asked in technical interviews—accompanied by detailed analyses and visual breakdowns. These materials are designed for both beginners starting their algorithm journey and experienced developers seeking to reinforce their understanding. Originally published through the WeChat public account “Brother Wu Learns Algorithms”, LeetCodeAnimation has become a valuable learning resource.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    java-string-similarity

    java-string-similarity

    Implementation of various string similarity and distance algorithms

    Implementation of various string similarity and distance algorithms: Levenshtein, Jaro-winkler, n-Gram, Q-Gram, Jaccard index, Longest Common Subsequence edit distance, cosine similarity. A library implementing different string similarity and distance measures. A dozen of algorithms (including Levenshtein edit distance and sibblings, Jaro-Winkler, Longest Common Subsequence, cosine similarity etc.) are currently implemented. The main characteristics of each implemented algorithm are presented below. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 10
    karatasi - flip cards on iPhone
    Flip card learning program for iPhone with a spaced learning algorithm. Create your own databases and edit the cards directly on the iPhone. Import Palm databases or csv-formatted files and backup your data with our Java application.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11

    OpenDino

    Open Source Java platform for Optimization, DoE, and Learning.

    OpenDino is an open source Java platform for optimization, design of experiment and learning. It provides a graphical user interface (GUI) and a platform which simplifies integration of new algorithms as "Modules". Implemented Modules Evolutionary Algorithms: - CMA-ES - (1+1)-ES - Differential Evolution Deterministic optimization algorithm: - SIMPLEX Learning: - a simple Artificial Neural Net Optimization problems: - test functions - interface for executing other programs (solvers) - parallel execution of problems - distributed execution of problems via socket connection between computers Others: - data storage - data analyser and viewer
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Easy Machine Learning

    Easy Machine Learning

    Easy Machine Learning is a general-purpose dataflow-based system

    ...Our platform Easy Machine Learning presents a general-purpose dataflow-based system for easing the process of applying machine learning algorithms to real-world tasks. In the system, a learning task is formulated as a directed acyclic graph (DAG) in which each node represents an operation (e.g. a machine learning algorithm), and each edge represents the flow of the data from one node to its descendants.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    JCSprout

    JCSprout

    Basic, concurrent algorithm

    JCSprout is a curated learning path for Java engineers that mixes concise notes, diagrams, and runnable examples to cover core computer science and JVM topics. It walks readers through data structures and algorithms, networking fundamentals, Java concurrency, JVM memory model and GC, and common interview problem patterns. The repository emphasizes understanding over memorization, linking conceptual summaries with small code artifacts that can be compiled and profiled. It also highlights best...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    The Teachingbox uses advanced machine learning techniques to relieve developers from the programming of hand-crafted sophisticated behaviors of autonomous agents (such as robots, game players etc...) In the current status we have implemented a well founded reinforcement learning core in Java with many popular usecases, environments, policies and learners. Obtaining the teachingbox: FOR USERS: If you want to download the latest releases, please visit:...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15

    DGRLVQ

    Dynamic Generalized Relevance Learning Vector Quantization

    Some of the usual problems for Learning vector quantization (LVQ) based methods are that one cannot optimally guess about the number of prototypes required for initialization for multimodal data structures i.e.these algorithms are very sensitive to initialization of prototypes and one has to pre define the optimal number of prototypes before running the algorithm. If a prototype, for some reasons, is ‘outside’ the cluster which it should represent and if there are points of a different categories in between, then the other points act as a barrier and the prototype will not find its optimum position during training. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16

    OWL Machine Learning

    Machine learning algorithm using OWL

    Feature construction and selection are two key factors in the field of Machine Learning (ML). Usually, these are very time-consuming and complex tasks because the features have to be manually crafted. The features are aggregated, combined or split to create features from raw data. This project makes use of ontologies to automatically generate features for the ML algorithms. The features are generated by combining the concepts and relationships that are already in the knowledge base,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Genetic Oversampling Weka Plugin

    Genetic Oversampling Weka Plugin

    A Weka Plugin that uses a Genetic Algorithm for Data Oversampling

    Weka genetic algorithm filter plugin to generate synthetic instances. This Weka Plugin implementation uses a Genetic Algorithm to create new synthetic instances to solve the imbalanced dataset problem. See my master thesis available for download, for further details.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18

    GA-EoC

    GeneticAlgorithm-based search for Heterogeneous Ensemble Combinations

    In data classification, there are no particular classifiers that perform consistently in every case. This is even worst in case of both the high dimensional and class-imbalanced datasets. To overcome the limitations of class-imbalanced data, we split the dataset using a random sub-sampling to balance them. Then, we apply the (alpha,beta)-k feature set method to select a better subset of features and combine their outputs to get a consolidated feature set for classifier training. To...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19

    DE-HEoC

    DE-based Weight Optimisation for Heterogeneous Ensemble

    We propose the use of Differential Evolution algorithm for the weight adjustment of base classifiers used in weighted voting heterogeneous ensemble of classifier. Average Matthews Correlation Coefficient (MCC) score, calculated over 10-fold cross-validation, has been used as the measure of quality of an ensemble. DE/rand/1/bin algorithm has been utilised to maximize the average MCC score calculated using 10-fold cross-validation on training dataset. The voting weights of base classifiers are...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Neural Libs

    Neural Libs

    Neural network library for developers

    This project includes the implementation of a neural network MLP, RBF, SOM and Hopfield networks in several popular programming languages. The project also includes examples of the use of neural networks as function approximation and time series prediction. Includes a special program makes it easy to test neural network based on training data and the optimization of the network.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    MODLEM

    MODLEM

    rule-based, WEKA compatible, Machine Learning algorithm

    This project is a WEKA (Waikato Environment for Knowledge Analysis) compatible implementation of MODLEM - a Machine Learning algorithm which induces minimum set of rules. These rules can be adopted as a classifier (in terms of ML). It is a sequential covering algorithm, which was invented to cope with numeric data without discretization. Actually the nominal and numeric attributes are treated in the same way: attribute's space is being searched to find the best rule condition during rule induction. ...
    Leader badge
    Downloads: 27 This Week
    Last Update:
    See Project
  • 22
    Intelligent Keyword Miner

    Intelligent Keyword Miner

    Intelligent SEO keyword miner and predicing tool

    THIS IS A NETBEANS 8.02 PROJECT ENGLISH ONLY This program was made to help me with the patent research. It simply generates the search keywords, based on your upvotes or a downvotes of the input parameters. It can accept a text or URL (text takes a prescedence over the URL). If you input URL, it goes to a page, and learns its text from HTML format. This program is intelligent as it predicts what you may want to search next, based on your personal trends. After searching the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23

    A2y

    Automated Algorithm Synthesis

    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    HAWK - PDF Text Search Java Project

    HAWK - PDF Text Search Java Project

    No more support for this project - TAKE A LOOK AT FALCONSEARCH

    No more support for this project - TAKE A LOOK AT FALCONSEARCH "https://sourceforge.net/projects/falcontextsearch/"
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Java application for training and deploying text processing applications such as part-of-speech taggers, based on a re-implementation of Brill's algorithm in Java.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next