• Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 1
    PyBoy

    PyBoy

    Game Boy emulator written in Python

    It is highly recommended to read the report to get a light introduction to Game Boy emulation. But do be aware, that the Python implementation has changed a lot. The report is relevant, even though you want to contribute to another emulator or create your own. If you are looking to make a bot or AI, you can find all the external components in the PyBoy Documentation. There is also a short example on our Wiki page Scripts, AI and Bots as well as in the examples directory. If more features are...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    MedicalGPT

    MedicalGPT

    MedicalGPT: Training Your Own Medical GPT Model with ChatGPT Training

    MedicalGPT training medical GPT model with ChatGPT training pipeline, implementation of Pretraining, Supervised Finetuning, Reward Modeling and Reinforcement Learning. MedicalGPT trains large medical models, including secondary pre-training, supervised fine-tuning, reward modeling, and reinforcement learning training.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Ray

    Ray

    A unified framework for scalable computing

    ...Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO. Easily build out scalable, distributed systems in Python with simple and composable primitives in Ray Core.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    AnyTrading

    AnyTrading

    The most simple, flexible, and comprehensive OpenAI Gym trading

    gym-anytrading is an OpenAI Gym-compatible environment designed for developing and testing reinforcement learning algorithms on trading strategies. It simulates trading environments for financial markets, including stocks and forex.
    Downloads: 0 This Week
    Last Update:
    See Project
  • The top-rated AI recruiting platform for faster, smarter hiring. Icon
    The top-rated AI recruiting platform for faster, smarter hiring.

    Humanly is an AI recruiting platform that automates candidate conversations, screening, and scheduling.

    Humanly is an AI-first recruiting platform that helps talent teams hire in days, not months—without adding headcount. Our intuitive CRM pairs with powerful agentic AI to engage and screen every candidate instantly, surfacing top talent fast. Built on insights from over 4 million candidate interactions, Humanly delivers speed, structure, and consistency at scale—engaging 100% of interested candidates and driving pipeline growth through targeted outreach and smart re-engagement. We integrate seamlessly with all major ATSs to reduce manual work, improve data flow, and enhance recruiter efficiency and candidate experience. Independent audits ensure our AI remains fair and bias-free, so you can hire confidently.
    Learn More
  • 5
    CORL

    CORL

    High-quality single-file implementations of SOTA Offline

    CORL (Collection of Reinforcement Learning Environments for Control Tasks) is a modular and extensible set of high-quality reinforcement learning environments focused on continuous control and robotics. It aims to offer standardized environments suitable for benchmarking state-of-the-art RL algorithms in control tasks, including physics-based simulations and custom-designed scenarios.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    CleanRL

    CleanRL

    High-quality single file implementation of Deep Reinforcement Learning

    CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation with research-friendly features. The implementation is clean and simple, yet we can scale it to run thousands of experiments using AWS Batch. CleanRL is not a modular library and therefore it is not meant to be imported. At the cost of duplicate code, we make all implementation details of a DRL algorithm variant easy to understand, so CleanRL comes with its own pros and cons. You should consider using CleanRL if you want to 1) understand all implementation details of an algorithm's variant or 2) prototype advanced features that other modular DRL libraries do not support (CleanRL has minimal lines of code so it gives you great debugging experience and you don't have to do a lot of subclassing like sometimes in modular DRL libraries).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    Gym by OpenAI is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents, everything from walking to playing games like Pong or Pinball. Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    ReinventCommunity

    ReinventCommunity

    Jupyter Notebook tutorials for REINVENT 3.2

    This repository is a collection of useful jupyter notebooks, code snippets and example JSON files illustrating the use of Reinvent 3.2.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Hands-on Unsupervised Learning

    Hands-on Unsupervised Learning

    Code for Hands-on Unsupervised Learning Using Python (O'Reilly Media)

    ...Unsupervised learning can be applied to unlabeled datasets to discover meaningful patterns buried deep in the data, patterns that may be near impossible for humans to uncover. Author Ankur Patel provides practical knowledge on how to apply unsupervised learning using two simple, production-ready Python frameworks - scikit-learn and TensorFlow. With the hands-on examples and code provided, you will identify difficult-to-find patterns in data.
    Downloads: 5 This Week
    Last Update:
    See Project
  • The Game-Changing URL Builder For Your Marketing Campaigns Icon
    The Game-Changing URL Builder For Your Marketing Campaigns

    Saves time by automating campaign conventions and UTM Link creation

    CampaignTrackly is a SaaS-based platform that automates the process of adding tracking tags to digital links. The platform enables businesses to build a centralized, consistent and standardized link-tracking strategy in a simple and cost-effective way. It removes ambiguities, simplifies processes and empowers marketers to be in control of their campaign setup and reporting process without the need to use IT code or manual operations. Its ease of use promotes consistency and high adoption rates among platform users, resulting in enhanced insights into the customer journeys and marketing budget spend, which in turn, helps businesses optimize their promotions to increase revenue streams. The platform boasts over 45 automation features across standard Google Analytics, Adobe and Custom tags, as well as, extensive tag library management capabilities, friendly reporting functions, sophisticated team access level management and more.
    Learn More
  • 10
    TensorLayer

    TensorLayer

    Deep learning and reinforcement learning library for scientists

    TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extensive collection of customizable neural layers to build advanced AI models quickly, based on this, the community open-sourced mass tutorials and applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society. This project can also be found at OpenI and Gitee. 3.0.0 has been pre-released, the current version...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    ...The available environments allow testing the agent in different fields such as robotics, autonomous driving, games and more. It exposes a set of easy-to-use APIs for experimenting with new RL algorithms and allows simple integration of new environments to solve. Coach collects statistics from the training process and supports advanced visualization techniques for debugging the agent being trained. Coach supports many state-of-the-art reinforcement learning algorithms, which are separated into three main classes - value optimization, policy optimization, and imitation learning. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Easy-TensorFlow

    Easy-TensorFlow

    Simple and comprehensive tutorials in TensorFlow

    ...There is a necessity to address the motivations for this project. TensorFlow is one of the deep learning frameworks available with the largest community. This repository is dedicated to suggesting a simple path to learn TensorFlow. In addition to the aforementioned points, the large community of TensorFlow enriches the developers with the answer to almost all the questions one may encounter. Furthermore, since most of the developers are using TensorFlow for code development, having hands-on on TensorFlow is a necessity these days. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Deep Reinforcement Learning for Keras

    Deep Reinforcement Learning for Keras

    Deep Reinforcement Learning for Keras.

    ...You can use built-in Keras callbacks and metrics or define your own. Even more so, it is easy to implement your own environments and even algorithms by simply extending some simple abstract classes. Documentation is available online.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next