Open Source Linux Reinforcement Learning Frameworks

Reinforcement Learning Frameworks for Linux

View 1 business solution

Browse free open source Reinforcement Learning Frameworks and projects for Linux below. Use the toggles on the left to filter open source Reinforcement Learning Frameworks by OS, license, language, programming language, and project status.

  • AI-powered service management for IT and enterprise teams Icon
    AI-powered service management for IT and enterprise teams

    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity. Maximize operational efficiency with refreshingly simple, AI-powered Freshservice.
    Try it Free
  • Test your software product anywhere in the world Icon
    Test your software product anywhere in the world

    Get feedback from real people across 190+ countries with the devices, environments, and payment instruments you need for your perfect test.

    Global App Testing is a managed pool of freelancers used by Google, Meta, Microsoft, and other world-beating software companies.
    Try us today.
  • 1
    DeepSeek-V3

    DeepSeek-V3

    Powerful AI language model (MoE) optimized for efficiency/performance

    DeepSeek-V3 is a robust Mixture-of-Experts (MoE) language model developed by DeepSeek, featuring a total of 671 billion parameters, with 37 billion activated per token. It employs Multi-head Latent Attention (MLA) and the DeepSeekMoE architecture to enhance computational efficiency. The model introduces an auxiliary-loss-free load balancing strategy and a multi-token prediction training objective to boost performance. Trained on 14.8 trillion diverse, high-quality tokens, DeepSeek-V3 underwent supervised fine-tuning and reinforcement learning to fully realize its capabilities. Evaluations indicate that it outperforms other open-source models and rivals leading closed-source models, achieving this with a training duration of 55 days on 2,048 Nvidia H800 GPUs, costing approximately $5.58 million.
    Downloads: 52 This Week
    Last Update:
    See Project
  • 2
    DeepSeek R1

    DeepSeek R1

    Open-source, high-performance AI model with advanced reasoning

    DeepSeek-R1 is an open-source large language model developed by DeepSeek, designed to excel in complex reasoning tasks across domains such as mathematics, coding, and language. DeepSeek R1 offers unrestricted access for both commercial and academic use. The model employs a Mixture of Experts (MoE) architecture, comprising 671 billion total parameters with 37 billion active parameters per token, and supports a context length of up to 128,000 tokens. DeepSeek-R1's training regimen uniquely integrates large-scale reinforcement learning (RL) without relying on supervised fine-tuning, enabling the model to develop advanced reasoning capabilities. This approach has resulted in performance comparable to leading models like OpenAI's o1, while maintaining cost-efficiency. To further support the research community, DeepSeek has released distilled versions of the model based on architectures such as LLaMA and Qwen.
    Downloads: 38 This Week
    Last Update:
    See Project
  • 3
    AirSim

    AirSim

    A simulator for drones, cars and more, built on Unreal Engine

    AirSim is an open-source, cross platform simulator for drones, cars and more vehicles, built on Unreal Engine with an experimental Unity release in the works. It supports software-in-the-loop simulation with popular flight controllers such as PX4 & ArduPilot and hardware-in-loop with PX4 for physically and visually realistic simulations. It is developed as an Unreal plugin that can simply be dropped into any Unreal environment. AirSim's development is oriented towards the goal of creating a platform for AI research to experiment with deep learning, computer vision and reinforcement learning algorithms for autonomous vehicles. For this purpose, AirSim also exposes APIs to retrieve data and control vehicles in a platform independent way. AirSim is fully enabled for multiple vehicles. This capability allows you to create multiple vehicles easily and use APIs to control them.
    Downloads: 29 This Week
    Last Update:
    See Project
  • 4
    Agent S2

    Agent S2

    Agent S: an open agentic framework that uses computers like a human

    Simular's Agent S2 represents a leap forward in the development of computer-use agents, capable of autonomously interacting with a range of devices and interfaces. By integrating specialized AI models, Agent S2 delivers state-of-the-art performance, whether on desktop systems or smartphones. Through modular architecture, it efficiently handles complex tasks, such as navigating UIs, performing low-level actions like text selection, and executing high-level strategies like planning. Additionally, the system's proactive hierarchical planning allows for real-time adaptation, making it an ideal solution for businesses seeking to streamline operations and automate digital workflows. Agent S2 is designed with flexibility, enabling seamless scaling for future applications and tasks.
    Downloads: 6 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    Best-of Machine Learning with Python

    Best-of Machine Learning with Python

    A ranked list of awesome machine learning Python libraries

    This curated list contains 900 awesome open-source projects with a total of 3.3M stars grouped into 34 categories. All projects are ranked by a project-quality score, which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml. Contributions are very welcome! General-purpose machine learning and deep learning frameworks.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    Pwnagotchi

    Pwnagotchi

    Deep Reinforcement learning instrumenting bettercap for WiFi pwning

    Pwnagotchi is an A2C-based “AI” powered by bettercap and running on a Raspberry Pi Zero W that learns from its surrounding WiFi environment in order to maximize the crackable WPA key material it captures (either through passive sniffing or by performing deauthentication and association attacks). This material is collected on disk as PCAP files containing any form of handshake supported by hashcat, including full and half WPA handshakes as well as PMKIDs. Instead of merely playing Super Mario or Atari games like most reinforcement learning based “AI” (yawn), Pwnagotchi tunes its own parameters over time to get better at pwning WiFi things in the real world environments you expose it to. To give hackers an excuse to learn about reinforcement learning and WiFi networking, and have a reason to get out for more walks.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 7
    Unity ML-Agents Toolkit

    Unity ML-Agents Toolkit

    Unity machine learning agents toolkit

    Train and embed intelligent agents by leveraging state-of-the-art deep learning technology. Creating responsive and intelligent virtual players and non-playable game characters is hard. Especially when the game is complex. To create intelligent behaviors, developers have had to resort to writing tons of code or using highly specialized tools. With Unity Machine Learning Agents (ML-Agents), you are no longer “coding” emergent behaviors, but rather teaching intelligent agents to “learn” through a combination of deep reinforcement learning and imitation learning. Using ML-Agents allows developers to create more compelling gameplay and an enhanced game experience. Advancement of artificial intelligence (AI) research depends on figuring out tough problems in existing environments using current benchmarks for training AI models. Using Unity and the ML-Agents toolkit, you can create AI environments that are physically, visually, and cognitively rich.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 8
    TorchRL

    TorchRL

    A modular, primitive-first, python-first PyTorch library

    TorchRL is an open-source Reinforcement Learning (RL) library for PyTorch. TorchRL provides PyTorch and python-first, low and high-level abstractions for RL that are intended to be efficient, modular, documented, and properly tested. The code is aimed at supporting research in RL. Most of it is written in Python in a highly modular way, such that researchers can easily swap components, transform them, or write new ones with little effort.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 9
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    Initially, this project started as the 4th edition of Python Machine Learning. However, after putting so much passion and hard work into the changes and new topics, we thought it deserved a new title. So, what’s new? There are many contents and additions, including the switch from TensorFlow to PyTorch, new chapters on graph neural networks and transformers, a new section on gradient boosting, and many more that I will detail in a separate blog post. For those who are interested in knowing what this book covers in general, I’d describe it as a comprehensive resource on the fundamental concepts of machine learning and deep learning. The first half of the book introduces readers to machine learning using scikit-learn, the defacto approach for working with tabular datasets. Then, the second half of this book focuses on deep learning, including applications to natural language processing and computer vision.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Crowdtesting That Delivers | Testeum Icon
    Crowdtesting That Delivers | Testeum

    Unfixed bugs delaying your launch? Test with real users globally – check it out for free, results in days.

    Testeum connects your software, app, or website to a worldwide network of testers, delivering detailed feedback in under 48 hours. Ensure functionality and refine UX on real devices, all at a fraction of traditional costs. Trusted by startups and enterprises alike, our platform streamlines quality assurance with actionable insights.
    Click to perfect your product now.
  • 10
    MedicalGPT

    MedicalGPT

    MedicalGPT: Training Your Own Medical GPT Model with ChatGPT Training

    MedicalGPT training medical GPT model with ChatGPT training pipeline, implementation of Pretraining, Supervised Finetuning, Reward Modeling and Reinforcement Learning. MedicalGPT trains large medical models, including secondary pre-training, supervised fine-tuning, reward modeling, and reinforcement learning training.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 11
    Tensorpack

    Tensorpack

    A Neural Net Training Interface on TensorFlow, with focus on speed

    Tensorpack is a neural network training interface based on TensorFlow v1. Uses TensorFlow in the efficient way with no extra overhead. On common CNNs, it runs training 1.2~5x faster than the equivalent Keras code. Your training can probably gets faster if written with Tensorpack. Scalable data-parallel multi-GPU / distributed training strategy is off-the-shelf to use. Squeeze the best data loading performance of Python with tensorpack.dataflow. Symbolic programming (e.g. tf.data) does not offer the data processing flexibility needed in research. Tensorpack squeezes the most performance out of pure Python with various auto parallelization strategies. There are too many symbolic function wrappers already. Tensorpack includes only a few common layers. You can use any TF symbolic functions inside Tensorpack.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 12
    WikiSQL

    WikiSQL

    A large annotated semantic parsing corpus for developing NL interfaces

    A large crowd-sourced dataset for developing natural language interfaces for relational databases. WikiSQL is the dataset released along with our work Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning. Regarding tokenization and Stanza, when WikiSQL was written 3-years ago, it relied on Stanza, a CoreNLP python wrapper that has since been deprecated. If you'd still like to use the tokenizer, please use the docker image. We do not anticipate switching to the current Stanza as changes to the tokenizer would render the previous results not reproducible.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 13
    AnyTrading

    AnyTrading

    The most simple, flexible, and comprehensive OpenAI Gym trading

    gym-anytrading is an OpenAI Gym-compatible environment designed for developing and testing reinforcement learning algorithms on trading strategies. It simulates trading environments for financial markets, including stocks and forex.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    Bullet Physics SDK

    Bullet Physics SDK

    Real-time collision detection and multi-physics simulation for VR

    This is the official C++ source code repository of the Bullet Physics SDK: real-time collision detection and multi-physics simulation for VR, games, visual effects, robotics, machine learning etc. We are developing a new differentiable simulator for robotics learning, called Tiny Differentiable Simulator, or TDS. The simulator allows for hybrid simulation with neural networks. It allows different automatic differentiation backends, for forward and reverse mode gradients. TDS can be trained using Deep Reinforcement Learning, or using Gradient based optimization (for example LFBGS). In addition, the simulator can be entirely run on CUDA for fast rollouts, in combination with Augmented Random Search. This allows for 1 million simulation steps per second. It is highly recommended to use PyBullet Python bindings for improved support for robotics, reinforcement learning and VR. Use pip install pybullet and checkout the PyBullet Quickstart Guide.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    Trax

    Trax

    Deep learning with clear code and speed

    Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively used and maintained in the Google Brain team. Run a pre-trained Transformer, create a translator in a few lines of code. Features and resources, API docs, where to talk to us, how to open an issue and more. Walkthrough, how Trax works, how to make new models and train on your own data. Trax includes basic models (like ResNet, LSTM, Transformer) and RL algorithms (like REINFORCE, A2C, PPO). It is also actively used for research and includes new models like the Reformer and new RL algorithms like AWR. Trax has bindings to a large number of deep learning datasets, including Tensor2Tensor and TensorFlow datasets. You can use Trax either as a library from your own python scripts and notebooks or as a binary from the shell, which can be more convenient for training large models. It runs without any changes on CPUs, GPUs and TPUs.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    Catalyst

    Catalyst

    Accelerated deep learning R&D

    Catalyst is a PyTorch framework for accelerated Deep Learning research and development. It allows you to write compact but full-featured Deep Learning pipelines with just a few lines of code. With Catalyst you get a full set of features including a training loop with metrics, model checkpointing and more, all without the boilerplate. Catalyst is focused on reproducibility, rapid experimentation, and codebase reuse so you can break the cycle of writing another regular train loop and make something totally new. Catalyst is compatible with Python 3.6+. PyTorch 1.1+, and has been tested on Ubuntu 16.04/18.04/20.04, macOS 10.15, Windows 10 and Windows Subsystem for Linux. It's part of the PyTorch Ecosystem, as well as the Catalyst Ecosystem which includes Alchemy (experiments logging & visualization) and Reaction (convenient deep learning models serving).
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    DeepMind Lab

    DeepMind Lab

    A customizable 3D platform for agent-based AI research

    DeepMind Lab is a 3D learning environment based on id Software's Quake III Arena via ioquake3 and other open source software. DeepMind Lab provides a suite of challenging 3D navigation and puzzle-solving tasks for learning agents. Its primary purpose is to act as a testbed for research in artificial intelligence, especially deep reinforcement learning. If you use DeepMind Lab in your research and would like to cite the DeepMind Lab environment, we suggest you cite the DeepMind Lab paper. To enable compiler optimizations, pass the flag --compilation_mode=opt, or -c opt for short, to each bazel build, bazel test and bazel run command. The flag is omitted from the examples here for brevity, but it should be used for real training and evaluation where performance matters. DeepMind Lab ships with an example random agent in python/random_agent.py which can be used as a starting point for implementing a learning agent.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    Gymnasium

    Gymnasium

    An API standard for single-agent reinforcement learning environments

    Gymnasium is a fork of OpenAI Gym, maintained by the Farama Foundation, that provides a standardized API for reinforcement learning environments. It improves upon Gym with better support, maintenance, and additional features while maintaining backward compatibility.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    TradeMaster

    TradeMaster

    TradeMaster is an open-source platform for quantitative trading

    TradeMaster is a first-of-its-kind, best-in-class open-source platform for quantitative trading (QT) empowered by reinforcement learning (RL), which covers the full pipeline for the design, implementation, evaluation and deployment of RL-based algorithms. TradeMaster is composed of 6 key modules: 1) multi-modality market data of different financial assets at multiple granularities; 2) whole data preprocessing pipeline; 3) a series of high-fidelity data-driven market simulators for mainstream QT tasks; 4) efficient implementations of over 13 novel RL-based trading algorithms; 5) systematic evaluation toolkits with 6 axes and 17 measures; 6) different interfaces for interdisciplinary users.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    AgentUniverse

    AgentUniverse

    agentUniverse is a LLM multi-agent framework

    AgentUniverse is a multi-agent AI framework that enables coordination between multiple intelligent agents for complex task execution and automation.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    CCZero (中国象棋Zero)

    CCZero (中国象棋Zero)

    Implement AlphaZero/AlphaGo Zero methods on Chinese chess

    ChineseChess-AlphaZero is a project that implements the AlphaZero algorithm for the game of Chinese Chess (Xiangqi). It adapts DeepMind’s AlphaZero method—combining neural networks and Monte Carlo Tree Search (MCTS)—to learn and play Chinese Chess without prior human data. The system includes self-play, training, and evaluation pipelines tailored to Xiangqi's unique game mechanics.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    DouZero

    DouZero

    [ICML 2021] DouZero: Mastering DouDizhu

    DouZero is a reinforcement learning-based AI for playing DouDizhu, a popular Chinese card game. It focuses on perfecting AI strategies for competitive play using value-based deep RL techniques.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    EasyRL

    EasyRL

    Reinforcement learning (RL) tutorial series

    easy-rl is a beginner-friendly reinforcement learning (RL) tutorial series and framework developed by Datawhale China. It provides educational resources and implementations of various RL algorithms to help new researchers and practitioners learn RL concepts.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Google Research Football

    Google Research Football

    Check out the new game server

    Google Research Football is a reinforcement learning environment simulating soccer matches. It focuses on learning complex behaviors such as team collaboration and strategy formation in competitive settings.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators. The whole framework and meta-operators are compiled just in time. A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code specialized for your model. Jittor also contains a wealth of high-performance model libraries, including image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement learning, etc. The front-end language is Python. Module Design and Dynamic Graph Execution is used in the front-end, which is the most popular design for deep learning framework interface. The back-end is implemented by high-performance languages, such as CUDA, C++. Jittor'op is similar to NumPy. Let's try some operations. We create Var a and b via operation jt.float32, and add them. Printing those variables shows they have the same shape and dtype.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.