Open Source Reinforcement Learning Frameworks - Page 6

Reinforcement Learning Frameworks

View 27 business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    WikiSQL

    WikiSQL

    A large annotated semantic parsing corpus for developing NL interfaces

    A large crowd-sourced dataset for developing natural language interfaces for relational databases. WikiSQL is the dataset released along with our work Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning. Regarding tokenization and Stanza, when WikiSQL was written 3-years ago, it relied on Stanza, a CoreNLP python wrapper that has since been deprecated. If you'd still like to use the tokenizer, please use the docker image. We do not anticipate switching to the current Stanza as changes to the tokenizer would render the previous results not reproducible.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2

    cerrla

    The CERRLA algorithm, developed by Sam Sarjant

    This project contains the files required to run the Cross-Entropy Relational Reinforcement Learning Agent (CERRLA) algorithm. Note that a copy of the JESS rules engine will also be required.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    dm_control

    dm_control

    DeepMind's software stack for physics-based simulation

    DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo. DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo physics. The MuJoCo Python bindings support three different OpenGL rendering backends: EGL (headless, hardware-accelerated), GLFW (windowed, hardware-accelerated), and OSMesa (purely software-based). At least one of these three backends must be available in order render through dm_control. Hardware rendering with a windowing system is supported via GLFW and GLEW. On Linux these can be installed using your distribution's package manager. "Headless" hardware rendering (i.e. without a windowing system such as X11) requires EXT_platform_device support in the EGL driver. While dm_control has been largely updated to use the pybind11-based bindings provided via the mujoco package, at this time it still relies on some legacy components that are automatically generated.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    dotRL

    dotRL

    A platform for rapid Reinforcement Learning methods development

    Application allowing convenient experimentation in Reinforcement Learning - a Machine Learning domain. Project goals are: - keep adding new environments and agents as simple as possible - provide a rich set of state-of-art algorithms and problems - integrate with other existing Reinforcement Learning platforms If you found this application useful please cite this work: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6643987
    Downloads: 0 This Week
    Last Update:
    See Project
  • Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place. Icon
    Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place.

    For healthcare Providers and Facilities

    Incredable streamlines and simplifies the complex process of medical credentialing for hospitals and medical facilities, helping you save valuable time, reduce costs, and minimize risks. With Incredable, you can effortlessly manage all your healthcare providers and their credentials within a single, unified platform. Our state-of-the-art technology ensures top-notch data security, giving you peace of mind.
    Learn More
  • 5
    gym-pybullet-drones

    gym-pybullet-drones

    PyBullet Gymnasium environments for multi-agent reinforcement

    Gym-PyBullet-Drones is an open-source Gym-compatible environment for training and evaluating reinforcement learning agents on drone control and swarm robotics tasks. It leverages the PyBullet physics engine to simulate quadrotors and provides a platform for studying control, navigation, and coordination of single and multiple drones in 3D space.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6

    iget

    Adaptive Parallel Data Retrieval Mechanism

    Adaptive Synchronous-Retrieval mechanism with Concurrent I/O using Reinforcement Learning. A data retrieval mechanism that can adapt to the continuous contraction and expansion of the network bottleneck so that an optimal concurrency index can be maintained at any time during the data retrieval process. Sample usage: python iget.py <target url> <output file>
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    tic tac toe AI

    tic tac toe AI

    simplest AI programme of tic-tac-toe game

    This is a program of tic tac toe game it currently is the 1.0 version of this this is my program - an AI program which plays tic-tac-toe, it is an AI program which is given knowledge on the basis of my previous analysis and knowledge about playing tic-tac-toe. I have made it to be playable with players right now but I can make it for AI vs AI, AI vs player, player vs player as well. Using a settings option. I think this program has enough IQ to defeat a normal person. This is the update 1.1 of this game. My future visions about this program is: v 1.0.1 --> bug fixes v 1.1 --> (added) click interaction _______________________________________________________________________________________________________________________________________________ v 1.2 --> addition of reinforcement learning (cache data different for each computer unlike v1.3). v 1.3 --> addition of cloud reinforcement learning (optional; chosen from settings). ... & more
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    verl

    verl

    Volcano Engine Reinforcement Learning for LLMs

    VERL is a reinforcement-learning–oriented toolkit designed to train and align modern AI systems, from language models to decision-making agents. It brings together supervised fine-tuning, preference modeling, and online RL into one coherent training stack so teams can move from raw data to aligned policies with minimal glue code. The library focuses on scalability and efficiency, offering distributed training loops, mixed precision, and replay/buffering utilities that keep accelerators busy. It ships with reference implementations of popular alignment algorithms and clear examples that make it straightforward to reproduce baselines before customizing. Data pipelines treat human feedback, simulated environments, and synthetic preferences as interchangeable sources, which helps with rapid experimentation. VERL is meant for both research and production hardening: logging, checkpointing, and evaluation suites are built in so you can track learning dynamics and regressions over time.
    Downloads: 0 This Week
    Last Update:
    See Project