Showing 98 open source projects for "python::module"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Transformer Reinforcement Learning X

    Transformer Reinforcement Learning X

    A repo for distributed training of language models with Reinforcement

    trlX is a distributed training framework designed from the ground up to focus on fine-tuning large language models with reinforcement learning using either a provided reward function or a reward-labeled dataset. Training support for Hugging Face models is provided by Accelerate-backed trainers, allowing users to fine-tune causal and T5-based language models of up to 20B parameters, such as facebook/opt-6.7b, EleutherAI/gpt-neox-20b, and google/flan-t5-xxl. For models beyond 20B parameters,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    CORL

    CORL

    High-quality single-file implementations of SOTA Offline

    CORL (Collection of Reinforcement Learning Environments for Control Tasks) is a modular and extensible set of high-quality reinforcement learning environments focused on continuous control and robotics. It aims to offer standardized environments suitable for benchmarking state-of-the-art RL algorithms in control tasks, including physics-based simulations and custom-designed scenarios.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    T81 558

    T81 558

    Applications of Deep Neural Networks

    Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks that can handle tabular data, images, text, and audio as both input and output. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to classic neural network...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    PARL

    PARL

    A high-performance distributed training framework

    PARL is a scalable reinforcement learning framework built on top of PaddlePaddle. It focuses on modularity and ease of use, supporting distributed training and a variety of RL algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Award-Winning Medical Office Software Designed for Your Specialty Icon
    Award-Winning Medical Office Software Designed for Your Specialty

    Succeed and scale your practice with cloud-based, data-backed, AI-powered healthcare software.

    RXNT is an ambulatory healthcare technology pioneer that empowers medical practices and healthcare organizations to succeed and scale through innovative, data-backed, AI-powered software.
    Learn More
  • 5
    TradeMaster

    TradeMaster

    TradeMaster is an open-source platform for quantitative trading

    TradeMaster is a first-of-its-kind, best-in-class open-source platform for quantitative trading (QT) empowered by reinforcement learning (RL), which covers the full pipeline for the design, implementation, evaluation and deployment of RL-based algorithms. TradeMaster is composed of 6 key modules: 1) multi-modality market data of different financial assets at multiple granularities; 2) whole data preprocessing pipeline; 3) a series of high-fidelity data-driven market simulators for mainstream...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    ElegantRL

    ElegantRL

    Massively Parallel Deep Reinforcement Learning

    ElegantRL is an efficient and flexible deep reinforcement learning framework designed for researchers and practitioners. It focuses on simplicity, high performance, and supporting advanced RL algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    CleanRL

    CleanRL

    High-quality single file implementation of Deep Reinforcement Learning

    CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation with research-friendly features. The implementation is clean and simple, yet we can scale it to run thousands of experiments using AWS Batch. CleanRL is not a modular library and therefore it is not meant to be imported. At the cost of duplicate code, we make all implementation details of a DRL algorithm variant easy to understand, so CleanRL comes with its own pros and cons. You should...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    Gym by OpenAI is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents, everything from walking to playing games like Pong or Pinball. Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Bullet Physics SDK

    Bullet Physics SDK

    Real-time collision detection and multi-physics simulation for VR

    ...In addition, the simulator can be entirely run on CUDA for fast rollouts, in combination with Augmented Random Search. This allows for 1 million simulation steps per second. It is highly recommended to use PyBullet Python bindings for improved support for robotics, reinforcement learning and VR. Use pip install pybullet and checkout the PyBullet Quickstart Guide.
    Downloads: 9 This Week
    Last Update:
    See Project
  • AestheticsPro Medical Spa Software Icon
    AestheticsPro Medical Spa Software

    Our new software release will dramatically improve your medspa business performance while enhancing the customer experience

    AestheticsPro is the most complete Aesthetics Software on the market today. HIPAA Cloud Compliant with electronic charting, integrated POS, targeted marketing and results driven reporting; AestheticsPro delivers the tools you need to manage your medical spa business. It is our mission To Provide an All-in-One Cutting Edge Software to the Aesthetics Industry.
    Learn More
  • 10
    PySC2

    PySC2

    StarCraft II learning environment

    PySC2 is DeepMind's Python component of the StarCraft II Learning Environment (SC2LE). It exposes Blizzard Entertainment's StarCraft II Machine Learning API as a Python RL Environment. This is a collaboration between DeepMind and Blizzard to develop StarCraft II into a rich environment for RL research. PySC2 provides an interface for RL agents to interact with StarCraft 2, getting observations and sending actions.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Catalyst

    Catalyst

    Accelerated deep learning R&D

    ...Catalyst is focused on reproducibility, rapid experimentation, and codebase reuse so you can break the cycle of writing another regular train loop and make something totally new. Catalyst is compatible with Python 3.6+. PyTorch 1.1+, and has been tested on Ubuntu 16.04/18.04/20.04, macOS 10.15, Windows 10 and Windows Subsystem for Linux. It's part of the PyTorch Ecosystem, as well as the Catalyst Ecosystem which includes Alchemy (experiments logging & visualization) and Reaction (convenient deep learning models serving).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    RLCard

    RLCard

    Reinforcement Learning / AI Bots in Card (Poker) Games

    RLCard is a toolkit for reinforcement learning research on card games. It includes several popular card games and focuses on learning algorithms for imperfect information games like poker and blackjack.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    Initially, this project started as the 4th edition of Python Machine Learning. However, after putting so much passion and hard work into the changes and new topics, we thought it deserved a new title. So, what’s new? There are many contents and additions, including the switch from TensorFlow to PyTorch, new chapters on graph neural networks and transformers, a new section on gradient boosting, and many more that I will detail in a separate blog post.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    Acme

    Acme

    A library of reinforcement learning components and agents

    Acme is a framework from DeepMind for building scalable and reproducible reinforcement learning agents. It emphasizes modular components, distributed training, and ease of experimentation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Google Research Football

    Google Research Football

    Check out the new game server

    Google Research Football is a reinforcement learning environment simulating soccer matches. It focuses on learning complex behaviors such as team collaboration and strategy formation in competitive settings.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    SLM Lab

    SLM Lab

    Modular Deep Reinforcement Learning framework in PyTorch

    SLM Lab is a modular and extensible deep reinforcement learning framework designed for research and practical applications. It provides implementations of various state-of-the-art RL algorithms and emphasizes reproducibility, scalability, and detailed experiment tracking. SLM Lab is structured around a flexible experiment management system, allowing users to define, run, and analyze RL experiments efficiently.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Trax

    Trax

    Deep learning with clear code and speed

    ...Trax has bindings to a large number of deep learning datasets, including Tensor2Tensor and TensorFlow datasets. You can use Trax either as a library from your own python scripts and notebooks or as a binary from the shell, which can be more convenient for training large models. It runs without any changes on CPUs, GPUs and TPUs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    DouZero

    DouZero

    [ICML 2021] DouZero: Mastering DouDizhu

    DouZero is a reinforcement learning-based AI for playing DouDizhu, a popular Chinese card game. It focuses on perfecting AI strategies for competitive play using value-based deep RL techniques.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    ReinventCommunity

    ReinventCommunity

    Jupyter Notebook tutorials for REINVENT 3.2

    This repository is a collection of useful jupyter notebooks, code snippets and example JSON files illustrating the use of Reinvent 3.2.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Hands-on Unsupervised Learning

    Hands-on Unsupervised Learning

    Code for Hands-on Unsupervised Learning Using Python (O'Reilly Media)

    ...Unsupervised learning can be applied to unlabeled datasets to discover meaningful patterns buried deep in the data, patterns that may be near impossible for humans to uncover. Author Ankur Patel provides practical knowledge on how to apply unsupervised learning using two simple, production-ready Python frameworks - scikit-learn and TensorFlow. With the hands-on examples and code provided, you will identify difficult-to-find patterns in data.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    gym-pybullet-drones

    gym-pybullet-drones

    PyBullet Gymnasium environments for multi-agent reinforcement

    Gym-PyBullet-Drones is an open-source Gym-compatible environment for training and evaluating reinforcement learning agents on drone control and swarm robotics tasks. It leverages the PyBullet physics engine to simulate quadrotors and provides a platform for studying control, navigation, and coordination of single and multiple drones in 3D space.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    TensorLayer

    TensorLayer

    Deep learning and reinforcement learning library for scientists

    TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extensive collection of customizable neural layers to build advanced AI models quickly, based on this, the community open-sourced mass tutorials and applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society. This project can also be found at OpenI and Gitee. 3.0.0 has been pre-released, the current version...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DeepMind Lab

    DeepMind Lab

    A customizable 3D platform for agent-based AI research

    ...The flag is omitted from the examples here for brevity, but it should be used for real training and evaluation where performance matters. DeepMind Lab ships with an example random agent in python/random_agent.py which can be used as a starting point for implementing a learning agent.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Stable Baselines

    Stable Baselines

    A fork of OpenAI Baselines, implementations of reinforcement learning

    Stable Baselines is a set of improved implementations of reinforcement learning algorithms based on OpenAI Baselines. You can read a detailed presentation of Stable Baselines in the Medium article. These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around which new ideas can be added, and as a tool for comparing a new...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Tensor2Tensor

    Tensor2Tensor

    Library of deep learning models and datasets

    Deep Learning (DL) has enabled the rapid advancement of many useful technologies, such as machine translation, speech recognition and object detection. In the research community, one can find code open-sourced by the authors to help in replicating their results and further advancing deep learning. However, most of these DL systems use unique setups that require significant engineering effort and may only work for a specific problem or architecture, making it hard to run new experiments and...
    Downloads: 0 This Week
    Last Update:
    See Project