• Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    Brax

    Brax

    Massively parallel rigidbody physics simulation

    Brax is a fast and fully differentiable physics engine for large-scale rigid body simulations, built on JAX. It is designed for research in reinforcement learning and robotics, enabling efficient simulations and gradient-based optimization.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    H2O LLM Studio

    H2O LLM Studio

    Framework and no-code GUI for fine-tuning LLMs

    Welcome to H2O LLM Studio, a framework and no-code GUI designed for fine-tuning state-of-the-art large language models (LLMs). You can also use H2O LLM Studio with the command line interface (CLI) and specify the configuration file that contains all the experiment parameters. To finetune using H2O LLM Studio with CLI, activate the pipenv environment by running make shell. With H2O LLM Studio, training your large language model is easy and intuitive. First, upload your dataset and then start...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    dm_control

    dm_control

    DeepMind's software stack for physics-based simulation

    DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo. DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo physics. The MuJoCo Python bindings support three different OpenGL rendering backends: EGL (headless, hardware-accelerated), GLFW (windowed, hardware-accelerated), and OSMesa (purely software-based). At least one of these three backends must be available in order render...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    Mctx

    Mctx

    Monte Carlo tree search in JAX

    mctx is a Monte Carlo Tree Search (MCTS) library developed by Google DeepMind for reinforcement learning research. It enables efficient and flexible implementation of MCTS algorithms, including those used in AlphaZero and MuZero.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Collect! is a highly configurable debt collection software Icon
    Collect! is a highly configurable debt collection software

    Everything that matters to debt collection, all in one solution.

    The flexible & scalable debt collection software built to automate your workflow. From startup to enterprise, we have the solution for you.
    Learn More
  • 5
    Tensorforce

    Tensorforce

    A TensorFlow library for applied reinforcement learning

    Tensorforce is an open-source deep reinforcement learning framework built on TensorFlow, emphasizing modularized design and straightforward usability for applied research and practice.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    LightZero

    LightZero

    [NeurIPS 2023 Spotlight] LightZero

    LightZero is an efficient, scalable, and open-source framework implementing MuZero, a powerful model-based reinforcement learning algorithm that learns to predict rewards and transitions without explicit environment models. Developed by OpenDILab, LightZero focuses on providing a highly optimized and user-friendly platform for both academic research and industrial applications of MuZero and similar algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    OpenRLHF

    OpenRLHF

    An Easy-to-use, Scalable and High-performance RLHF Framework

    OpenRLHF is an easy-to-use, scalable, and high-performance framework for Reinforcement Learning with Human Feedback (RLHF). It supports various training techniques and model architectures.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    AgentUniverse

    AgentUniverse

    agentUniverse is a LLM multi-agent framework

    AgentUniverse is a multi-agent AI framework that enables coordination between multiple intelligent agents for complex task execution and automation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Multi-Agent Orchestrator

    Multi-Agent Orchestrator

    Flexible and powerful framework for managing multiple AI agents

    Multi-Agent Orchestrator is an AI coordination framework that enables multiple intelligent agents to work together to complete complex, multi-step workflows.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Teradata VantageCloud Enterprise is a data analytics platform for performing advanced analytics on AWS, Azure, and Google Cloud. Icon
    Teradata VantageCloud Enterprise is a data analytics platform for performing advanced analytics on AWS, Azure, and Google Cloud.

    Power faster innovation with Teradata VantageCloud

    VantageCloud is the complete cloud analytics and data platform, delivering harmonized data and Trusted AI for all. Built for performance, flexibility, and openness, VantageCloud enables organizations to unify diverse data sources, run complex analytics, and deploy AI models—all within a single, scalable platform.
    Learn More
  • 10
    TensorHouse

    TensorHouse

    A collection of reference Jupyter notebooks and demo AI/ML application

    TensorHouse is a scalable reinforcement learning (RL) platform that focuses on high-throughput experience generation and distributed training. It is designed to efficiently train agents across multiple environments and compute resources. TensorHouse enables flexible experiment management, making it suitable for large-scale RL experiments in both research and applied settings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Ray

    Ray

    A unified framework for scalable computing

    Modern workloads like deep learning and hyperparameter tuning are compute-intensive and require distributed or parallel execution. Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. Find the best...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators. The whole framework and meta-operators are compiled just in time. A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code specialized for your model. Jittor also contains a wealth of high-performance model libraries, including image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    MedicalGPT

    MedicalGPT

    MedicalGPT: Training Your Own Medical GPT Model with ChatGPT Training

    MedicalGPT training medical GPT model with ChatGPT training pipeline, implementation of Pretraining, Supervised Finetuning, Reward Modeling and Reinforcement Learning. MedicalGPT trains large medical models, including secondary pre-training, supervised fine-tuning, reward modeling, and reinforcement learning training.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    TradeMaster

    TradeMaster

    TradeMaster is an open-source platform for quantitative trading

    TradeMaster is a first-of-its-kind, best-in-class open-source platform for quantitative trading (QT) empowered by reinforcement learning (RL), which covers the full pipeline for the design, implementation, evaluation and deployment of RL-based algorithms. TradeMaster is composed of 6 key modules: 1) multi-modality market data of different financial assets at multiple granularities; 2) whole data preprocessing pipeline; 3) a series of high-fidelity data-driven market simulators for mainstream...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    PySC2

    PySC2

    StarCraft II learning environment

    PySC2 is DeepMind's Python component of the StarCraft II Learning Environment (SC2LE). It exposes Blizzard Entertainment's StarCraft II Machine Learning API as a Python RL Environment. This is a collaboration between DeepMind and Blizzard to develop StarCraft II into a rich environment for RL research. PySC2 provides an interface for RL agents to interact with StarCraft 2, getting observations and sending actions. The easiest way to get PySC2 is to use pip. That will install the pysc2...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Trax

    Trax

    Deep learning with clear code and speed

    Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively used and maintained in the Google Brain team. Run a pre-trained Transformer, create a translator in a few lines of code. Features and resources, API docs, where to talk to us, how to open an issue and more. Walkthrough, how Trax works, how to make new models and train on your own data. Trax includes basic models (like ResNet, LSTM, Transformer) and RL algorithms (like REINFORCE, A2C, PPO). It...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    TensorLayer

    TensorLayer

    Deep learning and reinforcement learning library for scientists

    TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extensive collection of customizable neural layers to build advanced AI models quickly, based on this, the community open-sourced mass tutorials and applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society. This project can also be found at OpenI and Gitee. 3.0.0 has been pre-released, the current version...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Tensor2Tensor

    Tensor2Tensor

    Library of deep learning models and datasets

    Deep Learning (DL) has enabled the rapid advancement of many useful technologies, such as machine translation, speech recognition and object detection. In the research community, one can find code open-sourced by the authors to help in replicating their results and further advancing deep learning. However, most of these DL systems use unique setups that require significant engineering effort and may only work for a specific problem or architecture, making it hard to run new experiments and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    RecNN

    RecNN

    Reinforced Recommendation toolkit built around pytorch 1.7

    This is my school project. It focuses on Reinforcement Learning for personalized news recommendation. The main distinction is that it tries to solve online off-policy learning with dynamically generated item embeddings. I want to create a library with SOTA algorithms for reinforcement learning recommendation, providing the level of abstraction you like.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Texar

    Texar

    Toolkit for Machine Learning, Natural Language Processing

    Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides a library of easy-to-use ML modules and functionalities for composing whatever models and algorithms. The tool is designed for both researchers and practitioners for fast prototyping and experimentation. Texar was originally developed and is actively contributed by Petuum and CMU in collaboration with other institutes. A mirror of this...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    Coach is a python framework that models the interaction between an agent and an environment in a modular way. With Coach, it is possible to model an agent by combining various building blocks, and training the agent on multiple environments. The available environments allow testing the agent in different fields such as robotics, autonomous driving, games and more. It exposes a set of easy-to-use APIs for experimenting with new RL algorithms and allows simple integration of new environments...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    neon is Intel's reference deep learning framework committed to best performance on all hardware. Designed for ease of use and extensibility. See the new features in our latest release. We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation. The gpu...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next