MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
Start Free
No-Nonsense Code-to-Cloud Security for Devs | Aikido
Connect your GitHub, GitLab, Bitbucket, or Azure DevOps account to start scanning your repos for free.
Aikido provides a unified security platform for developers, combining 12 powerful scans like SAST, DAST, and CSPM. AI-driven AutoFix and AutoTriage streamline vulnerability management, while runtime protection blocks attacks.
A Python class library of tools for learning agents, including reinforcement learning algorithms, function approximators, and vector quantizations algorithms. (Pronounced "plastic".)
PIQLE is a Platform Implementing Q-LEarning (and other Reinforcement Learning) algorithms in JAVA. Version 2 is a major refactoring. The core data structures and algorithms are in piqle-coreVersion2. Examples are in piqle-examplesVersion2. A complete doc
RL Poker is a study project Java implementation of an e-soft on-policy Monte Carlo Texas Hold'em poker reinforcement learning algoritm with a feedforward neural network and backpropagation. It provides a graphical interface to monitor game rounds.
Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.
Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
General purpose agents using reinforcement learning. Combines radial basis functions, temporal difference learning, planning, uncertainty estimations, and curiosity. Intended to be an out-of-the-box solution for roboticists and game developers.
RL++ is an easy to use modular open source library for Reinforcement Learning written in C++. It includes learning algorithms (TD, Sarsa, Q) as well as the implementation of value function representations (LookupTable, TileCoding, Neuronal Network).
RL-POMDP is a Reinforcement Learning (RL) based algorithm to find approximate and satisfactory solution to POMDP problems. RL-POMDP is orders of magnitude faster than exact POMDP solver.