Reinforcement Learning Algorithms for Linux

View 1 business solution
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 1
    CleanRL

    CleanRL

    High-quality single file implementation of Deep Reinforcement Learning

    CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation with research-friendly features. The implementation is clean and simple, yet we can scale it to run thousands of experiments using AWS Batch. CleanRL is not a modular library and therefore it is not meant to be imported. At the cost of duplicate code, we make all implementation details of a DRL algorithm variant easy to understand, so CleanRL comes with its own pros and cons. You should consider using CleanRL if you want to 1) understand all implementation details of an algorithm's variant or 2) prototype advanced features that other modular DRL libraries do not support (CleanRL has minimal lines of code so it gives you great debugging experience and you don't have to do a lot of subclassing like sometimes in modular DRL libraries).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    Coach is a python framework that models the interaction between an agent and an environment in a modular way. With Coach, it is possible to model an agent by combining various building blocks, and training the agent on multiple environments. The available environments allow testing the agent in different fields such as robotics, autonomous driving, games and more. It exposes a set of easy-to-use APIs for experimenting with new RL algorithms and allows simple integration of new environments to solve. Coach collects statistics from the training process and supports advanced visualization techniques for debugging the agent being trained. Coach supports many state-of-the-art reinforcement learning algorithms, which are separated into three main classes - value optimization, policy optimization, and imitation learning. Coach supports a large number of environments which can be solved using reinforcement learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    ConvNetJS

    ConvNetJS

    Deep learning in Javascript to train convolutional neural networks

    ConvNetJS is a Javascript library for training Deep Learning models (Neural Networks) entirely in your browser. Open a tab and you're training. No software requirements, no compilers, no installations, no GPUs, no sweat. ConvNetJS is an implementation of Neural networks, together with nice browser-based demos. It currently supports common Neural Network modules (fully connected layers, non-linearities), classification (SVM/Softmax) and Regression (L2) cost functions, ability to specify and train Convolutional Networks that process images, and experimental Reinforcement Learning modules, based on Deep Q Learning. The library allows you to formulate and solve Neural Networks in Javascript. If you would like to add features to the library, you will have to change the code in src/ and then compile the library into the build/ directory. The compilation script simply concatenates files in src/ and then minifies the result.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Deep Learning Drizzle

    Deep Learning Drizzle

    Drench yourself in Deep Learning, Reinforcement Learning

    Drench yourself in Deep Learning, Reinforcement Learning, Machine Learning, Computer Vision, and NLP by learning from these exciting lectures! Optimization courses which form the foundation for ML, DL, RL. Computer Vision courses which are DL & ML heavy. Speech recognition courses which are DL heavy. Structured Courses on Geometric, Graph Neural Networks. Section on Autonomous Vehicles. Section on Computer Graphics with ML/DL focus.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    Deep Reinforcement Learning for Keras

    Deep Reinforcement Learning for Keras

    Deep Reinforcement Learning for Keras.

    keras-rl implements some state-of-the-art deep reinforcement learning algorithms in Python and seamlessly integrates with the deep learning library Keras. Furthermore, keras-rl works with OpenAI Gym out of the box. This means that evaluating and playing around with different algorithms is easy. Of course, you can extend keras-rl according to your own needs. You can use built-in Keras callbacks and metrics or define your own. Even more so, it is easy to implement your own environments and even algorithms by simply extending some simple abstract classes. Documentation is available online.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    DeepMind Lab

    DeepMind Lab

    A customizable 3D platform for agent-based AI research

    DeepMind Lab is a 3D learning environment based on id Software's Quake III Arena via ioquake3 and other open source software. DeepMind Lab provides a suite of challenging 3D navigation and puzzle-solving tasks for learning agents. Its primary purpose is to act as a testbed for research in artificial intelligence, especially deep reinforcement learning. If you use DeepMind Lab in your research and would like to cite the DeepMind Lab environment, we suggest you cite the DeepMind Lab paper. To enable compiler optimizations, pass the flag --compilation_mode=opt, or -c opt for short, to each bazel build, bazel test and bazel run command. The flag is omitted from the examples here for brevity, but it should be used for real training and evaluation where performance matters. DeepMind Lab ships with an example random agent in python/random_agent.py which can be used as a starting point for implementing a learning agent.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Dopamine

    Dopamine

    Framework for prototyping of reinforcement learning algorithms

    Dopamine is a research framework for fast prototyping of reinforcement learning algorithms. It aims to fill the need for a small, easily grokked codebase in which users can freely experiment with wild ideas (speculative research). This first version focuses on supporting the state-of-the-art, single-GPU Rainbow agent (Hessel et al., 2018) applied to Atari 2600 game-playing (Bellemare et al., 2013). Specifically, our Rainbow agent implements the three components identified as most important by Hessel et al., n-step Bellman updates, prioritized experience replay, and distributional reinforcement learning. For completeness, we also provide an implementation of DQN (Mnih et al., 2015). For additional details, please see our documentation. We provide a set of Colaboratory notebooks which demonstrate how to use Dopamine. We provide a website which displays the learning curves for all the provided agents, on all the games.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Easy-TensorFlow

    Easy-TensorFlow

    Simple and comprehensive tutorials in TensorFlow

    The goal of this repository is to provide comprehensive tutorials for TensorFlow while maintaining the simplicity of the code. Each tutorial includes a detailed explanation (written in .ipynb) format, as well as the source code (in .py format). There is a necessity to address the motivations for this project. TensorFlow is one of the deep learning frameworks available with the largest community. This repository is dedicated to suggesting a simple path to learn TensorFlow. In addition to the aforementioned points, the large community of TensorFlow enriches the developers with the answer to almost all the questions one may encounter. Furthermore, since most of the developers are using TensorFlow for code development, having hands-on on TensorFlow is a necessity these days. Tensorboard is a powerful visualization suite that is developed to track both the network topology and performance, making debugging even simpler.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    EasyRL

    EasyRL

    Reinforcement learning (RL) tutorial series

    easy-rl is a beginner-friendly reinforcement learning (RL) tutorial series and framework developed by Datawhale China. It provides educational resources and implementations of various RL algorithms to help new researchers and practitioners learn RL concepts.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Business Automation Software for SMBs Icon
    Business Automation Software for SMBs

    Fed up with not having the time, money and resources to grow your business?

    The only software you need to increase cash flow, optimize resource utilization, and take control of your assets and inventory.
    Learn More
  • 10
    ElegantRL

    ElegantRL

    Massively Parallel Deep Reinforcement Learning

    ElegantRL is an efficient and flexible deep reinforcement learning framework designed for researchers and practitioners. It focuses on simplicity, high performance, and supporting advanced RL algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    The Free Connectionist Q-learning Java Framework is an library for developing learning systems. Keywords: qlearning, artificial intelligence, alife, neural nets, neural networks, machine learning, reinforcement learning unsupervised learning agents lejos
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Godot RL Agents

    Godot RL Agents

    An Open Source package that allows video game creators

    godot_rl_agents is a reinforcement learning integration for the Godot game engine. It allows AI agents to learn how to interact with and play Godot-based games using RL algorithms. The toolkit bridges Godot with Python-based RL libraries like Stable-Baselines3, making it possible to create complex and visually rich RL environments natively in Godot.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    Gym by OpenAI is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents, everything from walking to playing games like Pong or Pinball. Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no assumptions about the structure of your agent, and is compatible with any numerical computation library, such as TensorFlow or Theano. The gym library is a collection of test problems — environments — that you can use to work out your reinforcement learning algorithms. These environments have a shared interface, allowing you to write general algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Habitat-Lab

    Habitat-Lab

    A modular high-level library to train embodied AI agents

    Habitat-Lab is a modular high-level library for end-to-end development in embodied AI. It is designed to train agents to perform a wide variety of embodied AI tasks in indoor environments, as well as develop agents that can interact with humans in performing these tasks. Allowing users to train agents in a wide variety of single and multi-agent tasks (e.g. navigation, rearrangement, instruction following, question answering, human following), as well as define novel tasks. Configuring and instantiating a diverse set of embodied agents, including commercial robots and humanoids, specifying their sensors and capabilities. Providing algorithms for single and multi-agent training (via imitation or reinforcement learning, or no learning at all as in SensePlanAct pipelines), as well as tools to benchmark their performance on the defined tasks using standard metrics.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    neon is Intel's reference deep learning framework committed to best performance on all hardware. Designed for ease of use and extensibility. See the new features in our latest release. We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation. The gpu backend is selected by default, so the above command is equivalent to if a compatible GPU resource is found on the system. The Intel Math Kernel Library takes advantages of the parallelization and vectorization capabilities of Intel Xeon and Xeon Phi systems. When hyperthreading is enabled on the system, we recommend the following KMP_AFFINITY setting to make sure parallel threads are 1:1 mapped to the available physical cores.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    ML for Trading

    ML for Trading

    Code for machine learning for algorithmic trading, 2nd edition

    On over 800 pages, this revised and expanded 2nd edition demonstrates how ML can add value to algorithmic trading through a broad range of applications. Organized in four parts and 24 chapters, it covers the end-to-end workflow from data sourcing and model development to strategy backtesting and evaluation. Covers key aspects of data sourcing, financial feature engineering, and portfolio management. The design and evaluation of long-short strategies based on a broad range of ML algorithms, how to extract tradeable signals from financial text data like SEC filings, earnings call transcripts or financial news. Using deep learning models like CNN and RNN with financial and alternative data, and how to generate synthetic data with Generative Adversarial Networks, as well as training a trading agent using deep reinforcement learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    This project provides a framework for testing and comparing different machine learning algorithms (particularly reinforcement learning methods) in different scenarios. Its intended area of application is in research and education.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Mctx

    Mctx

    Monte Carlo tree search in JAX

    mctx is a Monte Carlo Tree Search (MCTS) library developed by Google DeepMind for reinforcement learning research. It enables efficient and flexible implementation of MCTS algorithms, including those used in AlphaZero and MuZero.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Multi-Agent Orchestrator

    Multi-Agent Orchestrator

    Flexible and powerful framework for managing multiple AI agents

    Multi-Agent Orchestrator is an AI coordination framework that enables multiple intelligent agents to work together to complete complex, multi-step workflows.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    PIQLE is a Platform Implementing Q-LEarning (and other Reinforcement Learning) algorithms in JAVA. Version 2 is a major refactoring. The core data structures and algorithms are in piqle-coreVersion2. Examples are in piqle-examplesVersion2. A complete doc
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    A Python class library of tools for learning agents, including reinforcement learning algorithms, function approximators, and vector quantizations algorithms. (Pronounced "plastic".)
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Parallel Reinforcement Evolutionary Artificial Neural Networks (PREANN) is a framework of flexible multi-layer ANN's with reinforcement learning based on genetic algorithms and a parallel implementation (using XMM registers and NVIDIA's CUDA).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Physical Symbolic Optimization (Φ-SO)

    Physical Symbolic Optimization (Φ-SO)

    Physical Symbolic Optimization

    Physical Symbolic Optimization (Φ-SO) - A symbolic optimization package built for physics. Symbolic regression module uses deep reinforcement learning to infer analytical physical laws that fit data points, searching in the space of functional forms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    PySC2

    PySC2

    StarCraft II learning environment

    PySC2 is DeepMind's Python component of the StarCraft II Learning Environment (SC2LE). It exposes Blizzard Entertainment's StarCraft II Machine Learning API as a Python RL Environment. This is a collaboration between DeepMind and Blizzard to develop StarCraft II into a rich environment for RL research. PySC2 provides an interface for RL agents to interact with StarCraft 2, getting observations and sending actions. The easiest way to get PySC2 is to use pip. That will install the pysc2 package along with all the required dependencies. virtualenv can help manage your dependencies. You may also need to upgrade pip: pip install --upgrade pip for the pysc2 install to work. If you're running on an older system you may need to install libsdl libraries for the pygame dependency.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    RL Baselines Zoo

    RL Baselines Zoo

    A collection of 100+ pre-trained RL agents using Stable Baselines

    RL Baselines Zoo is a comprehensive training framework and collection of pre-trained RL agents using Stable-Baselines3. It offers tools for training, tuning, and evaluating RL algorithms across many standard environments, including MuJoCo, Atari, and robotics simulations. Designed for reproducible RL research and benchmarking, it includes scripts, hyperparameter presets, and best practices for training robust agents.
    Downloads: 0 This Week
    Last Update:
    See Project