Deploy in 115+ regions with the modern database for every enterprise.
MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
Start Free
Run Any Workload on Compute Engine VMs
From dev environments to AI training, choose preset or custom VMs with 1–96 vCPUs and industry-leading 99.95% uptime SLA.
Compute Engine delivers high-performance virtual machines for web apps, databases, containers, and AI workloads. Choose from general-purpose, compute-optimized, or GPU/TPU-accelerated machine types—or build custom VMs to match your exact specs. With live migration and automatic failover, your workloads stay online. New customers get $300 in free credits.
Doom-based AI research platform for reinforcement learning
ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is primarily intended for research in machine visual learning, and deep reinforcement learning, in particular. ViZDoom is based on ZDOOM, the most popular modern source-port of DOOM. This means compatibility with a huge range of tools and resources that can be used to create custom scenarios, availability of detailed documentation of the engine and tools and support of Doom community....
A platform for Artificial Intelligence experimentation on Minecraft
...The Malmo platform is a sophisticated AI experimentation platform built on top of Minecraft, and designed to support fundamental research in artificial intelligence.
The Project Malmo platform consists of a mod for the Java version, and code that helps artificial intelligence agents sense and act within the Minecraft environment. The two components can run on Windows, Linux, or Mac OS, and researchers can program their agents in any programming language they’re comfortable with.
The Teachingbox uses advanced machine learning techniques to relieve developers from the programming of hand-crafted sophisticated behaviors of autonomous agents (such as robots, game players etc...) In the current status we have implemented a well founded reinforcement learning core in Java with many popular usecases, environments, policies and learners.
Obtaining the teachingbox:
FOR USERS:
If you want to download the latest releases, please visit:
http://search.maven.org/#search|ga|1|teachingbox
FOR DEVELOPERS:
1) If you use Apache Maven, just add the following dependency to your pom.xml:
<dependency>
<groupId>org.sf.teachingbox</groupId>
<artifactId>teachingbox-core</artifactId>
<version>1.2.3</version>
</dependency>
2) If you want to check out the most recent source-code:
git clone https://git.code.sf.net/p/teachingbox/core teachingbox-core
Documentation:
https://sourceforge.net/p/teachingbox/documentation/HEAD/tree/trunk/manual/
This project contains the files required to run the Cross-Entropy Relational Reinforcement Learning Agent (CERRLA) algorithm. Note that a copy of the JESS rules engine will also be required.
Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.
Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
Using reinforcement learning with relative input to train Ms. Pac-Man
This Java-application contains all required components to simulate a game of Ms. Pac-Man and let an agent learn intelligent playing behaviour using reinforcement learning and either Q-Learning or SARSA.
The framework was developed by Luuk Bom and Ruud Henken, under supervision of Marco Wiering, Department of Artificial Intelligence, University of Groningen.
PIQLE is a Platform Implementing Q-LEarning (and other Reinforcement Learning) algorithms in JAVA. Version 2 is a major refactoring. The core data structures and algorithms are in piqle-coreVersion2. Examples are in piqle-examplesVersion2. A complete doc
RL Poker is a study project Java implementation of an e-soft on-policy Monte Carlo Texas Hold'em poker reinforcement learning algoritm with a feedforward neural network and backpropagation. It provides a graphical interface to monitor game rounds.
New to Google Cloud? Get $300 in free credit to explore Compute Engine, BigQuery, Cloud Run, Vertex AI, and 150+ other products.
Start your next project with $300 in free Google Cloud credit. Spin up VMs, run containers, query exabytes in BigQuery, or build AI apps with Vertex AI and Gemini. Once your credits are used, keep building with 20+ products with free monthly usage, including Compute Engine, Cloud Storage, GKE, and Cloud Run functions. Sign up to start building right away.