Showing 39 open source projects for "bayesian python"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Cloud data warehouse to power your data-driven innovation Icon
    Cloud data warehouse to power your data-driven innovation

    BigQuery is a serverless and cost-effective enterprise data warehouse that works across clouds and scales with your data.

    BigQuery Studio provides a single, unified interface for all data practitioners of various coding skills to simplify analytics workflows from data ingestion and preparation to data exploration and visualization to ML model creation and use. It also allows you to use simple SQL to access Vertex AI foundational models directly inside BigQuery for text processing tasks, such as sentiment analysis, entity extraction, and many more without having to deal with specialized models.
    Try for free
  • 1
    Bayesian Optimization

    Bayesian Optimization

    Python implementation of global optimization with gaussian processes

    This is a constrained global optimization package built upon bayesian inference and gaussian process, that attempts to find the maximum value of an unknown function in as few iterations as possible. This technique is particularly suited for optimization of high cost functions, situations where the balance between exploration and exploitation is important. More detailed information, other advanced features, and tips on usage/implementation can be found in the examples folder. Follow the basic...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    PyMC

    PyMC

    Bayesian Modeling and Probabilistic Programming in Python

    PyMC is a Python library for probabilistic programming focused on Bayesian statistical modeling and machine learning. Built on top of computational tools like Aesara and NumPy, PyMC allows users to define models using intuitive syntax and perform inference using MCMC, variational inference, and other advanced algorithms. It’s widely used in scientific research, data science, and decision modeling.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Nevergrad

    Nevergrad

    A Python toolbox for performing gradient-free optimization

    Nevergrad is a Python library for derivative-free optimization, offering robust implementations of many algorithms suited for black-box functions (i.e. functions where gradients are unavailable or unreliable). It targets hyperparameter search, architecture search, control problems, and experimental tuning—domains in which gradient-based methods may fail or be inapplicable.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Meridian

    Meridian

    Meridian is an MMM framework

    Meridian is a comprehensive, open source marketing mix modeling (MMM) framework developed by Google to help advertisers analyze and optimize the impact of their marketing investments. Built on Bayesian causal inference principles, Meridian enables organizations to evaluate how different marketing channels influence key performance indicators (KPIs) such as revenue or conversions while accounting for external factors like seasonality or economic trends. The framework provides a robust...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Dun and Bradstreet Risk Analytics - Supplier Intelligence Icon
    Dun and Bradstreet Risk Analytics - Supplier Intelligence

    Use an AI-powered solution for supply and compliance teams who want to mitigate costly supplier risks intelligently.

    Risk, procurement, and compliance teams across the globe are under pressure to deal with geopolitical and business risks. Third-party risk exposure is impacted by rapidly scaling complexity in domestic and cross-border businesses, along with complicated and diverse regulations. It is extremely important for companies to proactively manage their third-party relationships. An AI-powered solution to mitigate and monitor counterparty risks on a continuous basis, this cutting-edge platform is powered by D&B’s Data Cloud with 520M+ Global Business Records and 2B+ yearly updates for third-party risk insights. With high-risk procurement alerts and multibillion match points, D&B Risk Analytics leverages best-in-class risk data to help drive informed decisions. Perform quick and comprehensive screening, using intelligent workflows. Receive ongoing alerts of key business indicators and disruptions.
    Learn More
  • 5
    KerasTuner

    KerasTuner

    A Hyperparameter Tuning Library for Keras

    KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily configure your search space with a define-by-run syntax, then leverage one of the available search algorithms to find the best hyperparameter values for your models. KerasTuner comes with Bayesian Optimization, Hyperband, and Random Search algorithms built-in, and is also designed to be easy for researchers to extend in order to experiment with new search...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    BayesianOptimization

    BayesianOptimization

    A Python implementation of global optimization with gaussian processes

    BayesianOptimization is a Python library that helps find the maximum (or minimum) of expensive or unknown objective functions using Bayesian optimization. This technique is especially useful for hyperparameter tuning in machine learning, where evaluating the objective function is costly. The library provides an easy-to-use API for defining bounds and optimizing over parameter spaces using probabilistic models like Gaussian Processes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Pyro

    Pyro

    Deep universal probabilistic programming with Python and PyTorch

    Pyro is a flexible, universal probabilistic programming language (PPL) built on PyTorch. It allows for expressive deep probabilistic modeling, combining the best of modern deep learning and Bayesian modeling. Pyro is centered on four main principles: Universal, Scalable, Minimal and Flexible. Pyro is universal in that it can represent any computable probability distribution. It scales easily to large datasets with minimal overhead, and has a small yet powerful core of composable...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    pomegranate

    pomegranate

    Fast, flexible and easy to use probabilistic modelling in Python

    pomegranate is a library for probabilistic modeling defined by its modular implementation and treatment of all models as the probability distributions they are. The modular implementation allows one to easily drop normal distributions into a mixture model to create a Gaussian mixture model just as easily as dropping a gamma and a Poisson distribution into a mixture model to create a heterogeneous mixture. But that's not all! Because each model is treated as a probability distribution,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Neural Tangents

    Neural Tangents

    Fast and Easy Infinite Neural Networks in Python

    Neural Tangents is a high-level neural network API for specifying complex, hierarchical models at both finite and infinite width, built in Python on top of JAX and XLA. It lets researchers define architectures from familiar building blocks—convolutions, pooling, residual connections, and nonlinearities—and obtain not only the finite network but also the corresponding Gaussian Process (GP) kernel of its infinite-width limit. With a single specification, you can compute NNGP and NTK kernels,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • eProcurement Software Icon
    eProcurement Software

    Enterprises and companies seeking a solution to manage all their procurement operations and processes

    eBuyerAssist by Eyvo is a cloud-based procurement solution designed for businesses of all sizes and industries. Fully modular and scalable, it streamlines the entire procurement lifecycle—from requisition to fulfillment. The platform includes powerful tools for strategic sourcing, supplier management, warehouse operations, and contract oversight. Additional modules cover purchase orders, approval workflows, inventory and asset management, customer orders, budget control, cost accounting, invoice matching, vendor credit checks, and risk analysis. eBuyerAssist centralizes all procurement functions into a single, easy-to-use system—improving visibility, control, and efficiency across your organization. Whether you're aiming to reduce costs, enhance compliance, or align procurement with broader business goals, eBuyerAssist helps you get there faster, smarter, and with measurable results.
    Learn More
  • 10
    PyMC3

    PyMC3

    Probabilistic programming in Python

    PyMC3 allows you to write down models using an intuitive syntax to describe a data generating process. Fit your model using gradient-based MCMC algorithms like NUTS, using ADVI for fast approximate inference — including minibatch-ADVI for scaling to large datasets, or using Gaussian processes to build Bayesian nonparametric models. PyMC3 includes a comprehensive set of pre-defined statistical distributions that can be used as model building blocks. Sometimes an unknown parameter or variable...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Implicit

    Implicit

    Fast Python collaborative filtering for implicit feedback datasets

    This project provides fast Python implementations of several different popular recommendation algorithms for implicit feedback datasets. All models have multi-threaded training routines, using Cython and OpenMP to fit the models in parallel among all available CPU cores. In addition, the ALS and BPR models both have custom CUDA kernels - enabling fitting on compatible GPU’s. This library also supports using approximate nearest neighbour libraries such as Annoy, NMSLIB and Faiss for speeding...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    CausalNex

    CausalNex

    A Python library that helps data scientists to infer causation

    CausalNex is a Python library that uses Bayesian Networks to combine machine learning and domain expertise for causal reasoning. You can use CausalNex to uncover structural relationships in your data, learn complex distributions, and observe the effect of potential interventions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    auto-sklearn

    auto-sklearn

    Automated machine learning with scikit-learn

    auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. auto-sklearn frees a machine learning user from algorithm selection and hyperparameter tuning. It leverages recent advantages in Bayesian optimization, meta-learning and ensemble construction. Auto-sklearn 2.0 includes latest research on automatically configuring the AutoML system itself and contains a multitude of improvements which speed up the fitting the AutoML system....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Bayesian machine learning notebooks

    Bayesian machine learning notebooks

    Notebooks about Bayesian methods for machine learning

    Notebooks about Bayesian methods for machine learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Think Bayes

    Think Bayes

    Code repository for Think Bayes

    ThinkBayes is the code repository accompanying Think Bayes: a book on Bayesian statistics written in a computational style. Instead of heavy focus on continuous mathematics or calculus, the book emphasizes learning Bayesian inference by writing Python programs. The project includes code examples, scripts, and environments that correspond to the chapters of the book. Learners can run the code, experiment with probability distributions, compute posterior probabilities, and understand Bayesian updating via simulation and algorithmic methods. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    DEBay

    DEBay

    Deconvolutes qPCR data to estimate cell-type-specific gene expression

    DEBay: Deconvolution of Ensemble through Bayes-approach DEBay estimates cell type-specific gene expression by deconvolution of quantitative PCR data of a mixed population. It will be useful in experiments where the segregation of different cell types in a sample is arduous, but the proportion of different cell types in the sample can be measured. DEBay uses the population distribution data and the qPCR data to calculate the relative expression of the target gene in different cell types in...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Deep Learning Drizzle

    Deep Learning Drizzle

    Drench yourself in Deep Learning, Reinforcement Learning

    Drench yourself in Deep Learning, Reinforcement Learning, Machine Learning, Computer Vision, and NLP by learning from these exciting lectures! Optimization courses which form the foundation for ML, DL, RL. Computer Vision courses which are DL & ML heavy. Speech recognition courses which are DL heavy. Structured Courses on Geometric, Graph Neural Networks. Section on Autonomous Vehicles. Section on Computer Graphics with ML/DL focus.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    BATS

    BATS

    Bayesian Adaptive Trial Simulator

    A user-friendly, quick simulator for Bayesian Multi-Arm Multi-Stage Trials
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    BayesRate

    BayesRate

    Bayesian estimation of diversification rates

    BayesRate is a program to estimate speciation and extinction rates from dated phylogenies in a Bayesian framework. The methods are described in: Silvestro, D., Schnitzler, J. and Zizka, G. (2011) A Bayesian framework to estimate diversification rates and their variation through time and space. BMC Evolutionary Biology, 11, 311 Silvestro D., Zizka G. & Schulte K. (2014) Disentangling the effects of key innovations on the diversification of Bromelioideae (Bromeliaceae). Evolution, 68, 163-175.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20

    Pyclamp

    A Python package used to extract and analyse electrophysiological data

    ...Quantal analysis : This part of the package performs simple variance-mean analysis and Bayesian quantal analysis to estimate the quantal sizea dn number of release sites among other measures.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21

    PyRate

    Bayesian Estimation of Speciation and Extinction from Fossil Data

    PyRate is a Python program to estimate speciation, extinction, and preservation rates from fossil occurrence data using a Bayesian framework. The method was described by D Silvestro, J Schnitzler, LH Liow, A Antonelli, and N Salamin in Systematic Biology (http://sysbio.oxfordjournals.org/content/early/2014/02/08/sysbio.syu006.abstract). *Please download the most up-to-date code from the "PyRate code" tab on this page or from: https://github.com/dsilvestro/PyRate * *An updated manual can be found here: https://github.com/dsilvestro/PyRate/tree/master/tutorials *
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    RadicalSpam Virtual Appliance

    RadicalSpam Virtual Appliance

    Virtual Appliance of RadicalSpam

    RadicalSpam Virtual Appliance takes full solution of RadicalSpam Community Edition , pre-installed in a OVF virtual machine ( Open Virtual Format ) compatible with the best virtualization platforms on the market , including VMware ESX Server. More information : http://www.radical-spam.org
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    RadicalSpam

    RadicalSpam

    Open Source Anti-Spam and Anti-Virus Gateway

    RadicalSpam is a free and open source package distributed under GPL v2, including products such as Postfix, SpamAssassin Amavisd-new, Clamav, Razor, DCC, Postgrey, Bind; providing a secure SMTP relay, ready to use with linux and docker environement. More information : http://www.radical-spam.org
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    ASSP Server Project
    The Anti-Spam SMTP Proxy (ASSP) Server project aims to create an open source platform-independent SMTP Proxy server which implements auto-whitelists, self learning Bayesian, Greylisting, DNSBL, DNSWL, URIBL, SPF, SRS, Backscatter, Virus scanning, attachment blocking, Senderbase and multiple other filter methods. Click 'Browse all files' to download the professional version 2.4.3 build 14313. V1 development has been stopped in May 2014. Possibly there will be done some bugfixing until end...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Provide a reference implementation of Moving Taylor Bayesian Regression, a method for nonparametric multi-dimensional function estimation with correlated errors from finite samples, as a Python package based on SciPy
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next