...It builds upon the original CO3Dv1 dataset, expanding both scale and quality—featuring 2× more sequences and 4× more frames, with improved image fidelity, more accurate segmentation masks, and enhanced annotations for object-centric 3D reconstruction. CO3Dv2 enables research in multi-view 3D reconstruction, novel view synthesis, and geometry-aware representation learning. Each of the thousands of sequences in CO3Dv2 captures a common object (from categories like cars, chairs, or plants) from multiple real-world viewpoints. The dataset includes RGB images, depth maps, masks, and camera poses for each frame, along with pre-defined training, validation, and testing splits for both few-view and many-view reconstruction tasks.