Showing 29 open source projects for "automatic"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    ImplicitDifferentiation.jl

    ImplicitDifferentiation.jl

    Automatic differentiation of implicit functions

    ImplicitDifferentiation.jl is a package for automatic differentiation of functions defined implicitly, i.e., forward mappings. Those for which automatic differentiation fails. Reasons can vary depending on your backend, but the most common include calls to external solvers, mutating operations or type restrictions. Those for which automatic differentiation is very slow. A common example is iterative procedures like fixed point equations or optimization algorithms.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    ForwardDiff.jl

    ForwardDiff.jl

    Forward Mode Automatic Differentiation for Julia

    ForwardDiff implements methods to take derivatives, gradients, Jacobians, Hessians, and higher-order derivatives of native Julia functions (or any callable object, really) using forward mode automatic differentiation (AD). While performance can vary depending on the functions you evaluate, the algorithms implemented by ForwardDiff generally outperform non-AD algorithms (such as finite-differencing) in both speed and accuracy. Functions like f which map a vector to a scalar are the best case for reverse-mode automatic differentiation, but ForwardDiff may still be a good choice if x is not too large, as it is much simpler. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Enzyme.jl

    Enzyme.jl

    Julia bindings for the Enzyme automatic differentiator

    This is a package containing the Julia bindings for Enzyme. This is very much a work in progress and bug reports/discussion is greatly appreciated. Enzyme is a plugin that performs automatic differentiation (AD) of statically analyzable LLVM. It is highly-efficient and its ability perform AD on optimized code allows Enzyme to meet or exceed the performance of state-of-the-art AD tools.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    CBinding.jl

    CBinding.jl

    Automatic C interfacing for Julia

    Use CBinding.jl to automatically create C library bindings with Julia at runtime. In order to support the fully automatic conversion and avoid name collisions, the names of C types or functions are mangled a bit to work in Julia. Therefore everything generated by CBinding.jl can be accessed with the c"..." string macro to indicate that it lives in C-land. As an example, the function func above is available in Julia as c"func". It is possible to store the generated bindings to more user-friendly names (this can sometimes be automated, see the j option). ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Resolver Risk Intelligence Platform Icon
    Resolver Risk Intelligence Platform

    Resolver gathers all risk data and analyzes it in context - revealing the true business impact within every risk.

    Choose the risk intelligence software used by over 1000 of the world’s largest organizations. Resolver makes it easy to collaborate and collect data from across the enterprise, allowing teams to fully understand their risk landscape and control effectiveness. Understanding your data is one thing; being able to use it to drive vital action. Resolver automates workflows and reporting to ensure risk intelligence turns into risk reduction.
    Learn More
  • 5
    ReverseDiff

    ReverseDiff

    Reverse Mode Automatic Differentiation for Julia

    ReverseDiff is a fast and compile-able tape-based reverse mode automatic differentiation (AD) that implements methods to take gradients, Jacobians, Hessians, and higher-order derivatives of native Julia functions (or any callable object, really). While performance can vary depending on the functions you evaluate, the algorithms implemented by ReverseDiff generally outperform non-AD algorithms in both speed and accuracy.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 6
    VoronoiFVM.jl

    VoronoiFVM.jl

    Solution of nonlinear multiphysics partial differential equations

    Solver for coupled nonlinear partial differential equations (elliptic-parabolic conservation laws) based on the Voronoi finite volume method. It uses automatic differentiation via ForwardDiff.jl and DiffResults.jl to evaluate user functions along with their jacobians and calculate derivatives of solutions with respect to their parameters.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    Gnuplot.jl

    Gnuplot.jl

    Julia interface to gnuplot

    Gnuplot.jl is a simple package able to send both data and commands from Julia to an underlying gnuplot process. Its main purpose it to provide a fast and powerful data visualization framework, using an extremely concise Julia syntax. It also has automatic display of plots in Jupyter, Juno and VS Code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    NNlib.jl

    NNlib.jl

    Neural Network primitives with multiple backends

    This package provides a library of functions useful for neural networks, such as softmax, sigmoid, batched multiplication, convolutions and pooling. Many of these are used by Flux.jl, which loads this package, but they may be used independently.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 9
    ChainRulesCore

    ChainRulesCore

    AD-backend agnostic system defining custom forward and reverse rules

    ...The ChainRulesCore package provides a light-weight dependency for defining sensitivities for functions in your packages, without you needing to depend on ChainRules itself. This will allow your package to be used with ChainRules.jl, which aims to provide a variety of common utilities that can be used by downstream automatic differentiation (AD) tools to define and execute forward-, reverse-, and mixed-mode primitives.
    Downloads: 1 This Week
    Last Update:
    See Project
  • The #1 White Label Solution for Event Ticketing and Registration Icon
    The #1 White Label Solution for Event Ticketing and Registration

    For Event Organizers

    White label event ticketing & registration solutions customized to fit your every need.
    Learn More
  • 10
    ChainRules.jl

    ChainRules.jl

    Forward and reverse mode automatic differentiation primitives

    The ChainRules package provides a variety of common utilities that can be used by downstream automatic differentiation (AD) tools to define and execute forward-, reverse--, and mixed-mode primitives. The core logic of ChainRules is implemented in ChainRulesCore.jl. To add ChainRules support to your package, by defining new rules or frules, you only need to depend on the very light-weight package ChainRulesCore.jl. This repository contains ChainRules.jl, which is what people actually use directly. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    ReactiveMP.jl

    ReactiveMP.jl

    High-performance reactive message-passing based Bayesian engine

    ReactiveMP.jl is a Julia package that provides an efficient reactive message passing based Bayesian inference engine on a factor graph. The package is a part of the bigger and user-friendly ecosystem for automatic Bayesian inference called RxInfer. While ReactiveMP.jl exports only the inference engine, RxInfer provides convenient tools for model and inference constraints specification as well as routines for running efficient inference both for static and real-time datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    InfiniteOpt.jl

    InfiniteOpt.jl

    An intuitive modeling interface for infinite-dimensional optimization

    ...InfiniteOpt.jl provides a general mathematical abstraction to express and solve infinite-dimensional optimization problems (i.e., problems with decision functions). Such problems stem from areas such as space-time programming and stochastic programming. InfiniteOpt is meant to facilitate intuitive model definition, automatic transcription into solvable models, permit a wide range of user-defined extensions/behavior, and more.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 13
    CxxWrap

    CxxWrap

    Package to make C++ libraries available in Julia

    ...The functions are passed to Julia either as raw function pointers (for regular C++ functions that don't need argument or return type conversion) or std::functions (for lambda expressions and automatic conversion of arguments and return types). The Julia side of this package wraps all this into Julia methods automatically.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    DynamicHMC

    DynamicHMC

    Implementation of robust dynamic Hamiltonian Monte Carlo methods

    ...In contrast to frameworks that utilize a directed acyclic graph to build a posterior for a Bayesian model from small components, this package requires that you code a log-density function of the posterior in Julia. Derivatives can be provided manually, or using automatic differentiation. Consequently, this package requires that the user is comfortable with the basics of the theory of Bayesian inference, to the extent of coding a (log) posterior density in Julia. This approach allows the use of standard tools like profiling and benchmarking to optimize its performance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    EzXML.jl

    EzXML.jl

    XML/HTML handling tools for primates

    EzXML.jl is a package to handle XML/HTML documents for primates. This package depends on libxml2, which will be automatically installed as an artifact via XML2_jll.jl if you use Julia 1.3 or later. Currently, Windows, Linux, macOS, and FreeBSD are now supported.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    CoordinateTransformations.jl

    CoordinateTransformations.jl

    A fresh approach to coordinate transformations

    ...Transformations can be easily applied, inverted, composed, and differentiated (both with respect to the input coordinates and with respect to transformation parameters such as rotation angle). Transformations are designed to be light-weight and efficient enough for, e.g., real-time graphical applications, while support for both explicit and automatic differentiation makes it easy to perform optimization and therefore ideal for computer vision applications such as SLAM (simultaneous localization and mapping).
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    NonlinearSolve.jl

    NonlinearSolve.jl

    High-performance and differentiation-enabled nonlinear solvers

    ...The package includes its own high-performance nonlinear solvers which include the ability to swap out to fast direct and iterative linear solvers, along with the ability to use sparse automatic differentiation for Jacobian construction and Jacobian-vector products. NonlinearSolve.jl interfaces with other packages of the Julia ecosystem to make it easy to test alternative solver packages and pass small types to control algorithm swapping. It also interfaces with the ModelingToolkit.jl world of symbolic modeling to allow for automatically generating high-performance code.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 18
    CausalityTools.jl

    CausalityTools.jl

    Algorithms for detecting associations, dynamical influences

    ...Association measures from conventional statistics, information theory, and dynamical systems theory, for example, distance correlation, mutual information, transfer entropy, convergent cross mapping and a lot more. A dedicated API for independence testing, which comes with automatic compatibility with every measure-estimator combination you can think of. For example, we offer the generic SurrogateTest, which is fully compatible with TimeseriesSurrogates.jl, and the LocalPermutationTest for conditional independence testing.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    PETSc.jl

    PETSc.jl

    Julia wrappers for the PETSc library

    This package provides a low level interface for PETSc and allows combining julia features (such as automatic differentiation) with the PETSc infrastructure and nonlinear solvers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Roots.jl

    Roots.jl

    Root finding functions for Julia

    This package contains simple routines for finding roots, or zeros, of scalar functions of a single real variable using floating-point math. The find_zero function provides the primary interface. The basic call is find_zero(f, x0, [M], [p]; kws...) where, typically, f is a function, x0 a starting point or bracketing interval, M is used to adjust the default algorithms used, and p can be used to pass in parameters. Bisection-like algorithms. For functions where a bracketing interval is known...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 21
    MethodOfLines.jl

    MethodOfLines.jl

    Automatic Finite Difference PDE solving with Julia SciML

    MethodOfLines.jl is a Julia package for automated finite difference discretization of symbolically defined PDEs in N dimensions. It uses symbolic expressions for systems of partial differential equations as defined with ModelingToolkit.jl, and Interval from DomainSets.jl to define the space(time) over which the simulation runs. This project is under active development, therefore the interface is subject to change. The docs will be updated to reflect any changes, please check back for current...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    EAGO.jl

    EAGO.jl

    A development environment for robust and global optimization

    ...EAGO is a deterministic global optimizer designed to address a wide variety of optimization problems, emphasizing nonlinear programs (NLPs), by propagating McCormick relaxations along the factorable structure of each expression in the NLP. Most operators supported by modern automatic differentiation (AD) packages (e.g., +, sin, cosh) are supported by EAGO and a number of utilities for sanitizing native Julia code and generating relaxations on a wide variety of user-defined functions have been included. Currently, EAGO supports problems that have a priori variable bounds defined and have differentiable constraints.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Reduce.jl

    Reduce.jl

    Symbolic parser for Julia language term rewriting using REDUCE algebra

    REDUCE is a portable general-purpose computer algebra system. It is a system for doing scalar, vector and matrix algebra by computer, which also supports arbitrary precision numerical approximation and interfaces to gnuplot to provide graphics. It can be used interactively for simple calculations (as illustrated in the screenshot below) but also provides a full programming language, with a syntax similar to other modern programming languages. REDUCE supports alternative user interfaces...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    Optimization.jl

    Optimization.jl

    Mathematical Optimization in Julia

    ...It enables rapid prototyping and experimentation with minimal syntax overhead by providing a uniform interface to >25 optimization libraries, hence 100+ optimization solvers encompassing almost all classes of optimization algorithms such as global, mixed-integer, non-convex, second-order local, constrained, etc. It allows you to choose an Automatic Differentiation (AD) backend by simply passing an argument to indicate the package to use and automatically generates the efficient derivatives of the objective and constraints while giving you the flexibility to switch between different AD engines as per your problem. Additionally, Optimization.jl takes care of passing problem-specific information to solvers that can leverage it such as the sparsity pattern of the hessian or constraint jacobian and the expression graph.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    DiffOpt.jl

    DiffOpt.jl

    Differentiating convex optimization programs w.r.t. program parameters

    ...Differentiable optimization is a promising field of convex optimization and has many potential applications in game theory, control theory and machine learning. Recent work has shown how to differentiate specific subclasses of convex optimization problems. But several applications remain unexplored. With the help of automatic differentiation, differentiable optimization can have a significant impact on creating end-to-end differentiable systems to model neural networks, stochastic processes, or a game.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next