Showing 79 open source projects for "automatic"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    ImplicitDifferentiation.jl

    ImplicitDifferentiation.jl

    Automatic differentiation of implicit functions

    ImplicitDifferentiation.jl is a package for automatic differentiation of functions defined implicitly, i.e., forward mappings. Those for which automatic differentiation fails. Reasons can vary depending on your backend, but the most common include calls to external solvers, mutating operations or type restrictions. Those for which automatic differentiation is very slow. A common example is iterative procedures like fixed point equations or optimization algorithms.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    ForwardDiff.jl

    ForwardDiff.jl

    Forward Mode Automatic Differentiation for Julia

    ForwardDiff implements methods to take derivatives, gradients, Jacobians, Hessians, and higher-order derivatives of native Julia functions (or any callable object, really) using forward mode automatic differentiation (AD). While performance can vary depending on the functions you evaluate, the algorithms implemented by ForwardDiff generally outperform non-AD algorithms (such as finite-differencing) in both speed and accuracy. Functions like f which map a vector to a scalar are the best case for reverse-mode automatic differentiation, but ForwardDiff may still be a good choice if x is not too large, as it is much simpler. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    CBinding.jl

    CBinding.jl

    Automatic C interfacing for Julia

    Use CBinding.jl to automatically create C library bindings with Julia at runtime. In order to support the fully automatic conversion and avoid name collisions, the names of C types or functions are mangled a bit to work in Julia. Therefore everything generated by CBinding.jl can be accessed with the c"..." string macro to indicate that it lives in C-land. As an example, the function func above is available in Julia as c"func". It is possible to store the generated bindings to more user-friendly names (this can sometimes be automated, see the j option). ...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 4
    Enzyme.jl

    Enzyme.jl

    Julia bindings for the Enzyme automatic differentiator

    This is a package containing the Julia bindings for Enzyme. This is very much a work in progress and bug reports/discussion is greatly appreciated. Enzyme is a plugin that performs automatic differentiation (AD) of statically analyzable LLVM. It is highly-efficient and its ability perform AD on optimized code allows Enzyme to meet or exceed the performance of state-of-the-art AD tools.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 5
    ReverseDiff

    ReverseDiff

    Reverse Mode Automatic Differentiation for Julia

    ReverseDiff is a fast and compile-able tape-based reverse mode automatic differentiation (AD) that implements methods to take gradients, Jacobians, Hessians, and higher-order derivatives of native Julia functions (or any callable object, really). While performance can vary depending on the functions you evaluate, the algorithms implemented by ReverseDiff generally outperform non-AD algorithms in both speed and accuracy.
    Downloads: 17 This Week
    Last Update:
    See Project
  • 6
    VoronoiFVM.jl

    VoronoiFVM.jl

    Solution of nonlinear multiphysics partial differential equations

    Solver for coupled nonlinear partial differential equations (elliptic-parabolic conservation laws) based on the Voronoi finite volume method. It uses automatic differentiation via ForwardDiff.jl and DiffResults.jl to evaluate user functions along with their jacobians and calculate derivatives of solutions with respect to their parameters.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    Run Page

    Run Page

    Make your own running home page

    GitHub Actions manages automatic synchronization of runs and generation of new pages. Gatsby-generated static pages, fast. Support for Vercel (recommended) and GitHub Pages automated deployment. React Hooks. Mapbox for map display. Supports most sports apps such as nike strava. Automatically backup gpx data for easy backup and uploading to other software.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    ChainRules.jl

    ChainRules.jl

    Forward and reverse mode automatic differentiation primitives

    The ChainRules package provides a variety of common utilities that can be used by downstream automatic differentiation (AD) tools to define and execute forward-, reverse--, and mixed-mode primitives. The core logic of ChainRules is implemented in ChainRulesCore.jl. To add ChainRules support to your package, by defining new rules or frules, you only need to depend on the very light-weight package ChainRulesCore.jl. This repository contains ChainRules.jl, which is what people actually use directly. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    Gnuplot.jl

    Gnuplot.jl

    Julia interface to gnuplot

    Gnuplot.jl is a simple package able to send both data and commands from Julia to an underlying gnuplot process. Its main purpose it to provide a fast and powerful data visualization framework, using an extremely concise Julia syntax. It also has automatic display of plots in Jupyter, Juno and VS Code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • eProcurement Software Icon
    eProcurement Software

    Enterprises and companies seeking a solution to manage all their procurement operations and processes

    eBuyerAssist by Eyvo is a cloud-based procurement solution designed for businesses of all sizes and industries. Fully modular and scalable, it streamlines the entire procurement lifecycle—from requisition to fulfillment. The platform includes powerful tools for strategic sourcing, supplier management, warehouse operations, and contract oversight. Additional modules cover purchase orders, approval workflows, inventory and asset management, customer orders, budget control, cost accounting, invoice matching, vendor credit checks, and risk analysis. eBuyerAssist centralizes all procurement functions into a single, easy-to-use system—improving visibility, control, and efficiency across your organization. Whether you're aiming to reduce costs, enhance compliance, or align procurement with broader business goals, eBuyerAssist helps you get there faster, smarter, and with measurable results.
    Learn More
  • 10
    ChainRulesCore

    ChainRulesCore

    AD-backend agnostic system defining custom forward and reverse rules

    ...The ChainRulesCore package provides a light-weight dependency for defining sensitivities for functions in your packages, without you needing to depend on ChainRules itself. This will allow your package to be used with ChainRules.jl, which aims to provide a variety of common utilities that can be used by downstream automatic differentiation (AD) tools to define and execute forward-, reverse-, and mixed-mode primitives.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    forecast

    forecast

    Forecasting Functions for Time Series and Linear Models

    The forecast package is a comprehensive R package for time series analysis and forecasting. It provides functions for building, assessing, and using univariate forecasting models (e.g. ARIMA, exponential smoothing, etc.), tools for automatic model selection, diagnostics, plotting, forecasting future values, etc. It's widely used in statistics, economics, business forecasting, environmental science, etc. Exponential smoothing state space models (ETS) including seasonal components. Residual checks, model accuracy, plots, forecast error measures etc.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    DynamicHMC

    DynamicHMC

    Implementation of robust dynamic Hamiltonian Monte Carlo methods

    ...In contrast to frameworks that utilize a directed acyclic graph to build a posterior for a Bayesian model from small components, this package requires that you code a log-density function of the posterior in Julia. Derivatives can be provided manually, or using automatic differentiation. Consequently, this package requires that the user is comfortable with the basics of the theory of Bayesian inference, to the extent of coding a (log) posterior density in Julia. This approach allows the use of standard tools like profiling and benchmarking to optimize its performance.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    ReactiveMP.jl

    ReactiveMP.jl

    High-performance reactive message-passing based Bayesian engine

    ReactiveMP.jl is a Julia package that provides an efficient reactive message passing based Bayesian inference engine on a factor graph. The package is a part of the bigger and user-friendly ecosystem for automatic Bayesian inference called RxInfer. While ReactiveMP.jl exports only the inference engine, RxInfer provides convenient tools for model and inference constraints specification as well as routines for running efficient inference both for static and real-time datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    NNlib.jl

    NNlib.jl

    Neural Network primitives with multiple backends

    This package provides a library of functions useful for neural networks, such as softmax, sigmoid, batched multiplication, convolutions and pooling. Many of these are used by Flux.jl, which loads this package, but they may be used independently.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 15
    InfiniteOpt.jl

    InfiniteOpt.jl

    An intuitive modeling interface for infinite-dimensional optimization

    ...InfiniteOpt.jl provides a general mathematical abstraction to express and solve infinite-dimensional optimization problems (i.e., problems with decision functions). Such problems stem from areas such as space-time programming and stochastic programming. InfiniteOpt is meant to facilitate intuitive model definition, automatic transcription into solvable models, permit a wide range of user-defined extensions/behavior, and more.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 16
    EzXML.jl

    EzXML.jl

    XML/HTML handling tools for primates

    EzXML.jl is a package to handle XML/HTML documents for primates. This package depends on libxml2, which will be automatically installed as an artifact via XML2_jll.jl if you use Julia 1.3 or later. Currently, Windows, Linux, macOS, and FreeBSD are now supported.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    CxxWrap

    CxxWrap

    Package to make C++ libraries available in Julia

    ...The functions are passed to Julia either as raw function pointers (for regular C++ functions that don't need argument or return type conversion) or std::functions (for lambda expressions and automatic conversion of arguments and return types). The Julia side of this package wraps all this into Julia methods automatically.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    CoordinateTransformations.jl

    CoordinateTransformations.jl

    A fresh approach to coordinate transformations

    ...Transformations can be easily applied, inverted, composed, and differentiated (both with respect to the input coordinates and with respect to transformation parameters such as rotation angle). Transformations are designed to be light-weight and efficient enough for, e.g., real-time graphical applications, while support for both explicit and automatic differentiation makes it easy to perform optimization and therefore ideal for computer vision applications such as SLAM (simultaneous localization and mapping).
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    CausalityTools.jl

    CausalityTools.jl

    Algorithms for detecting associations, dynamical influences

    ...Association measures from conventional statistics, information theory, and dynamical systems theory, for example, distance correlation, mutual information, transfer entropy, convergent cross mapping and a lot more. A dedicated API for independence testing, which comes with automatic compatibility with every measure-estimator combination you can think of. For example, we offer the generic SurrogateTest, which is fully compatible with TimeseriesSurrogates.jl, and the LocalPermutationTest for conditional independence testing.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 20
    ggpubr

    ggpubr

    'ggplot2' Based Publication Ready Plots

    ggpubr is an R package that provides easy-to-use wrapper functions around ggplot2 to create publication-ready visualizations with minimal code. It streamlines plot creation for researchers and analysts, allowing features such as statistical annotation, theme customization, and plot arrangement with fewer lines of code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    PETSc.jl

    PETSc.jl

    Julia wrappers for the PETSc library

    This package provides a low level interface for PETSc and allows combining julia features (such as automatic differentiation) with the PETSc infrastructure and nonlinear solvers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    EAGO.jl

    EAGO.jl

    A development environment for robust and global optimization

    ...EAGO is a deterministic global optimizer designed to address a wide variety of optimization problems, emphasizing nonlinear programs (NLPs), by propagating McCormick relaxations along the factorable structure of each expression in the NLP. Most operators supported by modern automatic differentiation (AD) packages (e.g., +, sin, cosh) are supported by EAGO and a number of utilities for sanitizing native Julia code and generating relaxations on a wide variety of user-defined functions have been included. Currently, EAGO supports problems that have a priori variable bounds defined and have differentiable constraints.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    Roots.jl

    Roots.jl

    Root finding functions for Julia

    This package contains simple routines for finding roots, or zeros, of scalar functions of a single real variable using floating-point math. The find_zero function provides the primary interface. The basic call is find_zero(f, x0, [M], [p]; kws...) where, typically, f is a function, x0 a starting point or bracketing interval, M is used to adjust the default algorithms used, and p can be used to pass in parameters. Bisection-like algorithms. For functions where a bracketing interval is known...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 24
    Vizzu

    Vizzu

    Library for animated data visualizations and data stories

    Vizzu is a free, open-source Javascript/C++ library utilizing a generic dataviz engine that generates many types of charts and seamlessly animates between them. It can be used to create static charts but more importantly, it is designed for building animated data stories and interactive explorers as Vizzu enables showing different perspectives of the data that the viewers can easily follow due to the animation. Create a placeholder element that will contain the rendered chart. The Vizzu...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    NonlinearSolve.jl

    NonlinearSolve.jl

    High-performance and differentiation-enabled nonlinear solvers

    ...The package includes its own high-performance nonlinear solvers which include the ability to swap out to fast direct and iterative linear solvers, along with the ability to use sparse automatic differentiation for Jacobian construction and Jacobian-vector products. NonlinearSolve.jl interfaces with other packages of the Julia ecosystem to make it easy to test alternative solver packages and pass small types to control algorithm swapping. It also interfaces with the ModelingToolkit.jl world of symbolic modeling to allow for automatically generating high-performance code.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • Next