Showing 123 open source projects for "xray-core"

View related business solutions
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • Vibes don’t ship, Retool does Icon
    Vibes don’t ship, Retool does

    Start from a prompt and build production-ready apps on your data—with security, permissions, and compliance built in.

    Vibe coding tools create cool demos, but Retool helps you build software your company can actually use. Generate internal apps that connect directly to your data—deployed in your cloud with enterprise security from day one. Build dashboards, admin panels, and workflows with granular permissions already in place. Stop prototyping and ship on a platform that actually passes security review.
    Build apps that ship
  • 1
    Bailing

    Bailing

    Bailing is a voice dialogue robot similar to GPT-4o

    ...Its goal is to offer a “voice-first” chat experience similar to what one might expect from a system like GPT-4o, but fully open and deployable by users. The project is modular: each core function — ASR, VAD, LLM, TTS — exists as a separately replaceable component, which allows flexibility in picking your preferred models depending on resources or languages. It aims to be light enough to run without a GPU, making it usable on modest hardware or edge devices, while still maintaining low latency and smooth interaction. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Code-Mode

    Code-Mode

    Plug-and-play library to enable agents to call MCP and UTCP tools

    Code-Mode is a plug-and-play library that lets AI agents call tools by executing TypeScript (or via a Python wrapper) instead of making many individual function calls. Its core philosophy is that language models are very good at writing code, so rather than exposing hundreds of separate tool endpoints, you give the model a single “code execution” tool that has access to your full toolkit through code. This approach can dramatically reduce the number of tool-call iterations needed in complex workflows, turning multi-step call chains into a single code execution with internal branching and loops. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Claude-Flow

    Claude-Flow

    The leading agent orchestration platform for Claude

    ...The platform supports both quick swarm tasks and persistent multi-agent sessions known as hives, facilitating distributed AI collaboration with persistent contextual memory. At its core, Claude-Flow integrates Dynamic Agent Architecture (DAA) for self-organizing agent management, neural pattern recognition accelerated by WebAssembly SIMD, and a SQLite-based memory system for context retention and knowledge persistence across tasks. It automates development workflows via pre- and post-operation hooks, providing seamless coordination, code formatting, validation, and performance optimization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Raster Vision

    Raster Vision

    Open source framework for deep learning satellite and aerial imagery

    ...There is built-in support for chip classification, object detection, and semantic segmentation using PyTorch. Raster Vision allows engineers to quickly and repeatably configure pipelines that go through core components of a machine learning workflow: analyzing training data, creating training chips, training models, creating predictions, evaluating models, and bundling the model files and configuration for easy deployment. The input to a Raster Vision pipeline is a set of images and training data, optionally with Areas of Interest (AOIs) that describe where the images are labeled. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    Lightly

    Lightly

    A python library for self-supervised learning on images

    ...Our solution can be applied before any data annotation step and the learned representations can be used to visualize and analyze datasets. This allows selecting the best core set of samples for model training through advanced filtering. We provide PyTorch, PyTorch Lightning and PyTorch Lightning distributed examples for each of the models to kickstart your project. Lightly requires Python 3.6+ but we recommend using Python 3.7+. We recommend installing Lightly in a Linux or OSX environment. With lightly, you can use the latest self-supervised learning methods in a modular way using the full power of PyTorch. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Kornia

    Kornia

    Open Source Differentiable Computer Vision Library

    Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer vision problems. At its core, the package uses PyTorch as its main backend both for efficiency and to take advantage of the reverse-mode auto-differentiation to define and compute the gradient of complex functions. Inspired by existing packages, this library is composed by a subset of packages containing operators that can be inserted within neural networks to train models to perform image transformations, epipolar geometry, depth estimation, and low-level image processing such as filtering and edge detection that operate directly on tensors. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    GLM-4.1V

    GLM-4.1V

    GLM-4.6V/4.5V/4.1V-Thinking, towards versatile multimodal reasoning

    GLM-4.1V — often referred to as a smaller / lighter version of the GLM-V family — offers a more resource-efficient option for users who want multimodal capabilities without requiring large compute resources. Though smaller in scale, GLM-4.1V maintains competitive performance, particularly impressive on many benchmarks for models of its size: in fact, on a number of multimodal reasoning and vision-language tasks it outperforms some much larger models from other families. It represents a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    PromptTools

    PromptTools

    Open-source tools for prompt testing and experimentation

    Welcome to prompttools created by Hegel AI! This repo offers a set of open-source, self-hostable tools for experimenting with, testing, and evaluating LLMs, vector databases, and prompts. The core idea is to enable developers to evaluate using familiar interfaces like code, notebooks, and a local playground.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    EmotiVoice

    EmotiVoice

    Multi-Voice and Prompt-Controlled TTS Engine

    ...It supports both English and Chinese and ships with over 2,000 preset voices, making it suitable for everything from characters and virtual anchors to narration and dialogue. The core idea is prompt-based emotional and style control: you can ask the engine to speak “happy,” “sad,” “excited,” or with other high-level style prompts that shape prosody, pitch, speed, and energy. EmotiVoice provides multiple ways to interact with it, including a web interface, a Docker image, an HTTP API (including an OpenAI-compatible TTS API), and Python scripts for batch synthesis. ...
    Downloads: 7 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    Errbot

    Errbot

    Chatbot daemon that connects to your favorite chat services

    Errbot is a chatbot, a daemon that connects to your favorite chat service and brings your tools into the conversation. The goal of the project is to make it easy for you to write your own plugins so you can make it do whatever you want, a deployment, retrieving some information online, trigger a tool via an API, troll a co-worker, etc. Errbot is being used in a lot of different contexts, chatops (tools for devops), online gaming chatrooms like EVE, video streaming chatrooms like...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    TensorFlow Addons

    TensorFlow Addons

    Useful extra functionality for TensorFlow 2.x maintained by SIG-addons

    TensorFlow Addons is a repository of contributions that conform to well-established API patterns but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast-moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community). ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    TextGen

    TextGen

    textgen, Text Generation models

    Implementation of Text Generation models. textgen implements a variety of text generation models, including UDA, GPT2, Seq2Seq, BART, T5, SongNet and other models, out of the box. UDA, non-core word replacement. EDA, simple data augmentation technique: similar words, synonym replacement, random word insertion, deletion, replacement. This project refers to Google's UDA (non-core word replacement) algorithm and EDA algorithm, based on TF-IDF to replace some unimportant words in sentences with synonyms, random word insertion, deletion, replacement, etc. method, generating new text and implementing text augmentation This project realizes the back translation function based on Baidu translation API, first translate Chinese sentences into English, and then translate English into new Chinese. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    LLaMA

    LLaMA

    Inference code for Llama models

    ...Tokenizer utilities, download scripts, shell helpers to fetch model weights with correct licensing/permissions. Includes example scripts for chat completions and text completions to show how to call the models in code. This repo is a core piece of the Llama model infrastructure, used by researchers and developers to run LLaMA models locally or in their infrastructure. It is meant for inference (not training from scratch) and connects with aspects like model cards, responsible use, licensing, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    simpleaichat

    simpleaichat

    Python package for easily interfacing with chat apps

    simpleaichat is a Python library that streamlines building conversational apps with large language models by offering a minimal, developer-friendly interface. It aims to abstract the boilerplate of prompt management, message history, and streaming while leaving core Python control in your hands. The package emphasizes simplicity over heavy frameworks, making it ideal for scripts, notebooks, and small services that need LLMs without architectural lock-in. It supports structured responses and validation patterns so your app can reliably parse model outputs instead of wrestling with brittle free-text parsing. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    ParlAI

    ParlAI

    A framework for training and evaluating AI models

    ...It provides a unified interface—agents, teachers, and worlds—so the same model can be trained on multi-turn chit-chat, question answering, task-oriented dialogue, retrieval, or safety-focused datasets without changing core code. The library integrates tightly with PyTorch and supports both generative and retrieval-augmented models, along with utilities for multitask training and model selection. A large set of built-in tasks and dataset loaders (with consistent preprocessing and metrics) makes it easy to compare methods under shared conditions. Tools for distributed training, mixed precision, and model zoos help scale experiments from laptops to multi-GPU clusters.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    VAMS

    VAMS

    Virtual Assistant Maintenance System

    Virtual Assistant Maintenance System also knowns as VAMS is an AI software application, that helps users with some computer maintenance issues. Application Requirements: Operating System: Windows 8.1/10 /11 Processor: Intel Core i5 or equivalent RAM: 4GB or higher Free Disk Space: 500MB
    Downloads: 4 This Week
    Last Update:
    See Project
  • 17
    Chameleon LLM

    Chameleon LLM

    Codes for "Chameleon: Plug-and-Play Compositional Reasoning

    ...By integrating various tools such as vision models, web search engines, Python functions, and rule-based modules, Chameleon delivers more accurate, up-to-date, and precise responses, making it a game-changer in the natural language processing landscape. With GPT-4 at its core, Chameleon has showcased exceptional improvements in accuracy on benchmark tasks, outperforming competitors and setting new industry standards.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    textacy

    textacy

    NLP, before and after spaCy

    textacy is a Python library for performing a variety of natural language processing (NLP) tasks, built on the high-performance spaCy library. With the fundamentals, tokenization, part-of-speech tagging, dependency parsing, etc., delegated to another library, textacy focuses primarily on the tasks that come before and follow after.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    minGPT

    minGPT

    A minimal PyTorch re-implementation of the OpenAI GPT

    minGPT is a minimalist, educational re-implementation of the GPT (Generative Pretrained Transformer) architecture built in PyTorch, designed by Andrej Karpathy to expose the core structure of a transformer-based language model in as few lines of code as possible. It strips away extraneous bells and whistles, aiming to show how a sequence of token indices is fed into a stack of transformer blocks and then decoded into the next token probabilities, with both training and inference supported. Because the whole model is around 300 lines of code, users can follow each step—from embedding lookup, positional encodings, multi-head attention, feed-forward layers, to output heads—and thus demystify how GPT-style models work beneath the surface. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    DeepCTR

    DeepCTR

    Package of deep-learning based CTR models

    DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can be used to easily build custom models. You can use any complex model with model.fit(), and model.predict(). Provide tf.keras.Model like interface for quick experiment. Provide tensorflow estimator interface for large scale data and distributed training. It is compatible with both tf 1.x and tf 2.x. With the great success of deep learning,DNN-based techniques have been widely used in CTR prediction task. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    DeepCTR-Torch

    DeepCTR-Torch

    Easy-to-use,Modular and Extendible package of deep-learning models

    DeepCTR-Torch is an easy-to-use, Modular and Extendible package of deep-learning-based CTR models along with lots of core components layers that can be used to build your own custom model easily.It is compatible with PyTorch.You can use any complex model with model.fit() and model.predict(). With the great success of deep learning, DNN-based techniques have been widely used in CTR estimation tasks. The data in the CTR estimation task usually includes high sparse,high cardinality categorical features and some dense numerical features. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    AllenNLP

    AllenNLP

    An open-source NLP research library, built on PyTorch

    AllenNLP makes it easy to design and evaluate new deep learning models for nearly any NLP problem, along with the infrastructure to easily run them in the cloud or on your laptop. AllenNLP includes reference implementations of high quality models for both core NLP problems (e.g. semantic role labeling) and NLP applications (e.g. textual entailment). AllenNLP supports loading "plugins" dynamically. A plugin is just a Python package that provides custom registered classes or additional allennlp subcommands. There is ecosystem of open source plugins, some of which are maintained by the AllenNLP team here at AI2, and some of which are maintained by the broader community. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DiffSinger

    DiffSinger

    Singing Voice Synthesis via Shallow Diffusion Mechanism

    DiffSinger is an open-source PyTorch implementation of a diffusion-based acoustic model for singing-voice synthesis (SVS) and also text-to-speech (TTS) in a related variant. The core idea is to view generation of a sung voice (mel-spectrogram) as a diffusion process: starting from noise, the model iteratively “denoises” while being conditioned on a music score (lyrics, pitch, musical timing). This avoids some of the typical problems of prior SVS models — like over-smoothing or unstable GAN training — and produces more realistic, expressive, and natural-sounding singing. ...
    Downloads: 40 This Week
    Last Update:
    See Project
  • 24
    Apple Neural Engine (ANE) Transformers

    Apple Neural Engine (ANE) Transformers

    Reference implementation of the Transformer architecture optimized

    ...It demonstrates how to structure attention and related layers to achieve substantial speedups and lower peak memory compared to baseline implementations when deployed to ANE. The repository targets practitioners who want to keep familiar PyTorch modeling while preparing models for Core ML/ANE execution paths. Documentation highlights reported improvements in throughput and memory residency, while releases track incremental fixes and packaging updates. The project sits alongside related Apple ML repos that focus on deploying attention-based models efficiently to ANE-equipped hardware. In short, it’s a practical blueprint for adapting Transformers to Apple’s dedicated ML accelerator without rewriting entire model stacks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    pyntcloud

    pyntcloud

    pyntcloud is a Python library for working with 3D point clouds

    This page will introduce the general concept of point clouds and illustrate the capabilities of pyntcloud as a point cloud processing tool. Point clouds are one of the most relevant entities for representing three dimensional data these days, along with polygonal meshes (which are just a special case of point clouds with connectivity graph attached). In its simplest form, a point cloud is a set of points in a cartesian coordinate system. Accurate 3D point clouds can nowadays be (easily and...
    Downloads: 2 This Week
    Last Update:
    See Project