Embeddinghub

Embeddinghub

Featureform
+
+

Related Products

  • RaimaDB
    9 Ratings
    Visit Website
  • Ditto
    2 Ratings
    Visit Website
  • Cloudflare
    1,915 Ratings
    Visit Website
  • MongoDB Atlas
    1,648 Ratings
    Visit Website
  • Tai TMS
    167 Ratings
    Visit Website
  • Wallester
    264 Ratings
    Visit Website
  • Parasoft
    137 Ratings
    Visit Website
  • Teradata VantageCloud
    992 Ratings
    Visit Website
  • Planview AdaptiveWork
    706 Ratings
    Visit Website
  • XpertCoding
    42 Ratings
    Visit Website

About

Operationalize your embeddings with one simple tool. Experience a comprehensive database designed to provide embedding functionality that, until now, required multiple platforms. Elevate your machine learning quickly and painlessly through Embeddinghub. Embeddings are dense, numerical representations of real-world objects and relationships, expressed as vectors. They are often created by first defining a supervised machine learning problem, known as a "surrogate problem." Embeddings intend to capture the semantics of the inputs they were derived from, subsequently getting shared and reused for improved learning across machine learning models. Embeddinghub lets you achieve this in a streamlined, intuitive way.

About

The Universal Sentence Encoder (USE) encodes text into high-dimensional vectors that can be utilized for tasks such as text classification, semantic similarity, and clustering. It offers two model variants: one based on the Transformer architecture and another on Deep Averaging Network (DAN), allowing a balance between accuracy and computational efficiency. The Transformer-based model captures context-sensitive embeddings by processing the entire input sequence simultaneously, while the DAN-based model computes embeddings by averaging word embeddings, followed by a feedforward neural network. These embeddings facilitate efficient semantic similarity calculations and enhance performance on downstream tasks with minimal supervised training data. The USE is accessible via TensorFlow Hub, enabling seamless integration into various applications.

Platforms Supported

Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook

Platforms Supported

Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook

Audience

Machine learning developers interested in a powerful vector/embeddings database

Audience

Data scientists and machine learning engineers seeking a tool to optimize their natural language processing models with robust sentence embeddings

Support

Phone Support
24/7 Live Support
Online

Support

Phone Support
24/7 Live Support
Online

API

Offers API

API

Offers API

Screenshots and Videos

Screenshots and Videos

Pricing

Free
Free Version
Free Trial

Pricing

No information available.
Free Version
Free Trial

Reviews/Ratings

Overall 0.0 / 5
ease 0.0 / 5
features 0.0 / 5
design 0.0 / 5
support 0.0 / 5

This software hasn't been reviewed yet. Be the first to provide a review:

Review this Software

Reviews/Ratings

Overall 0.0 / 5
ease 0.0 / 5
features 0.0 / 5
design 0.0 / 5
support 0.0 / 5

This software hasn't been reviewed yet. Be the first to provide a review:

Review this Software

Training

Documentation
Webinars
Live Online
In Person

Training

Documentation
Webinars
Live Online
In Person

Company Information

Featureform
Founded: 2019
United States
www.featureform.com/embeddinghub

Company Information

Tensorflow
Founded: 2015
United States
www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder

Alternatives

Alternatives

word2vec

word2vec

Google
txtai

txtai

NeuML
Exa

Exa

Exa.ai

Categories

Categories

Integrations

Google Colab
TensorFlow

Integrations

Google Colab
TensorFlow
Claim Embeddinghub and update features and information
Claim Embeddinghub and update features and information
Claim Universal Sentence Encoder and update features and information
Claim Universal Sentence Encoder and update features and information