DeepSWEAgentica Project
|
DeepScaleRAgentica Project
|
|||||
Related Products
|
||||||
About
DeepSWE is a fully open source, state-of-the-art coding agent built on top of the Qwen3-32B foundation model and trained exclusively via reinforcement learning (RL), without supervised finetuning or distillation from proprietary models. It is developed using rLLM, Agentica’s open source RL framework for language agents. DeepSWE operates as an agent; it interacts with a simulated development environment (via the R2E-Gym environment) using a suite of tools (file editor, search, shell-execution, submit/finish), enabling it to navigate codebases, edit multiple files, compile/run tests, and iteratively produce patches or complete engineering tasks. DeepSWE exhibits emergent behaviors beyond simple code generation; when presented with bugs or feature requests, the agent reasons about edge cases, seeks existing tests in the repository, proposes patches, writes extra tests for regressions, and dynamically adjusts its “thinking” effort.
|
About
DeepScaleR is a 1.5-billion-parameter language model fine-tuned from DeepSeek-R1-Distilled-Qwen-1.5B using distributed reinforcement learning and a novel iterative context-lengthening strategy that gradually increases its context window from 8K to 24K tokens during training. It was trained on ~40,000 carefully curated mathematical problems drawn from competition-level datasets like AIME (1984–2023), AMC (pre-2023), Omni-MATH, and STILL. DeepScaleR achieves 43.1% accuracy on AIME 2024, a roughly 14.3 percentage point boost over the base model, and surpasses the performance of the proprietary O1-Preview model despite its much smaller size. It also posts strong results on a suite of math benchmarks (e.g., MATH-500, AMC 2023, Minerva Math, OlympiadBench), demonstrating that small, efficient models tuned with RL can match or exceed larger baselines on reasoning tasks.
|
|||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
|||||
Audience
Software engineers, researchers, and developers seeking a solution to assist with real-world coding tasks such as bug-fixing, pull-request automation, and multi-file code edits
|
Audience
Researchers, students, and developers interested in an AI model capable of mathematical reasoning and logic tasks without requiring heavy hardware
|
|||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
|||||
API
Offers API
|
API
Offers API
|
|||||
Screenshots and Videos |
Screenshots and Videos |
|||||
Pricing
Free
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
|||||
Reviews/
|
Reviews/
|
|||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
|||||
Company InformationAgentica Project
Founded: 2025
United States
agentica-project.com
|
Company InformationAgentica Project
Founded: 2025
United States
agentica-project.com
|
|||||
Alternatives |
Alternatives |
|||||
|
|
|
|||||
|
|
|
|||||
|
|
|
|||||
|
|
|
|||||
Categories |
Categories |
|||||
Integrations
Together AI
|
||||||
|
|
|