Multi-categorization Recommendation Adjusting (MRA) is to optimize the results of recommendation based on traditional(basic) recommendation models, through introducing objective category information and taking use of the feature that users always get the habits of preferring certain categories. Besides this, there are two advantages of this improved model: 1) it can be easily applied to any kind of existing recommendation models. And 2) a controller is set in this improved model to provide controllable adjustment range, which thereby makes it possible to provide optional modes of recommendation aiming different kinds of users.
Features
- recommender system
- data mining
- CF-I,CF-U,SLOPE_ONE,MRA
- adjusting algorithm
- improved model
License
Creative Commons Attribution LicenseFollow MRA
Other Useful Business Software
Gen AI apps are built with MongoDB Atlas
MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
Rate This Project
Login To Rate This Project
User Reviews
-
excellent!!
-
Welcome to share this new model for study! :) And finding partners and cooperation.