Liquid chromatography–high resolution mass spectrometry (LC-HRMS) is the most popular platform for untargeted metabolomics methods, but annotating LC-HRMS data is a long-standing bottleneck that we are facing since years ago in metabolomics research. A wide variety of methods have been established to deal with the annotation issue. To date, however, there is a scarcity of efficient, systematic, and easy-to-handle tools that are tailored for metabolomics and exposome community. So we developed a user-friendly and powerful software/webserver, MetEx, to both enable implementation of classical peak detection-based annotation and a new annotation method based on targeted extraction algorithms. The new annotation method based on targeted extraction algorithms can annotate more than 2 times metabolites than classical peak detection-based annotation method because it reduces the loss of metabolite signal in the data preprocessing process.

Project Activity

See All Activity >

License

MIT License

Follow MetEx

MetEx Web Site

Other Useful Business Software
Gen AI apps are built with MongoDB Atlas Icon
Gen AI apps are built with MongoDB Atlas

The database for AI-powered applications.

MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
Start Free
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of MetEx!

Additional Project Details

Operating Systems

Windows

Programming Language

R

Registered

2021-07-05