A collection of tools for doing reinforcement learning research in Julia. Provide elaborately designed components and interfaces to help users implement new algorithms. Make it easy for new users to run benchmark experiments, compare different algorithms, and evaluate and diagnose agents. Facilitate reproducibility from traditional tabular methods to modern deep reinforcement learning algorithms. Make it easy for new users to run benchmark experiments, compare different algorithms, and evaluate and diagnose agents. Facilitate reproducibility from traditional tabular methods to modern deep reinforcement learning algorithms. Provide elaborately designed components and interfaces to help users implement new algorithms. A number of built-in environments and third-party environment wrappers are provided to evaluate algorithms in various scenarios.

Features

  • Easy experimentation
  • Reproducibility
  • Reusability and extensibility
  • Feature-rich Environments
  • ReinforcementLearning.jl is a wrapper package which contains a collection of different packages
  • You can simply run many built-in experiments in 3 lines

Project Samples

Project Activity

See All Activity >

License

MIT License

Follow ReinforcementLearning.jl

ReinforcementLearning.jl Web Site

Other Useful Business Software
Crowdtesting That Delivers | Testeum Icon
Crowdtesting That Delivers | Testeum

Unfixed bugs delaying your launch? Test with real users globally – check it out for free, results in days.

Testeum connects your software, app, or website to a worldwide network of testers, delivering detailed feedback in under 48 hours. Ensure functionality and refine UX on real devices, all at a fraction of traditional costs. Trusted by startups and enterprises alike, our platform streamlines quality assurance with actionable insights.
Click to perfect your product now.
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of ReinforcementLearning.jl!