Showing 41 open source projects for "network graph analysis"

View related business solutions
  • Auth0 for AI Agents now in GA Icon
    Auth0 for AI Agents now in GA

    Ready to implement AI with confidence (without sacrificing security)?

    Connect your AI agents to apps and data more securely, give users control over the actions AI agents can perform and the data they can access, and enable human confirmation for critical agent actions.
    Start building today
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    NetworkX

    NetworkX

    Network analysis in Python

    NetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks. Data structures for graphs, digraphs, and multigraphs. Many standard graph algorithms. Network structure and analysis measures. Generators for classic graphs, random graphs, and synthetic networks. Nodes can be "anything" (e.g., text, images, XML records). Edges can hold arbitrary data (e.g., weights, time-series). Open source 3-clause BSD license. Well tested with over 90% code coverage. Additional benefits from Python include fast prototyping, easy to teach, and multi-platform. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Dshell

    Dshell

    Dshell is a network forensic analysis framework

    An extensible network forensic analysis framework. Enables rapid development of plugins to support the dissection of network packet captures. This is a major framework update to Dshell. Plugins written for the previous version are not compatible with this version, and vice versa. By extension, dpkt and pypcap have been replaced with Python3-friendly pypacker and pcapy (respectively).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-support, DataPipe support,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Stanza

    Stanza

    Stanford NLP Python library for many human languages

    Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Stanza is a Python natural language analysis package. It contains tools, which can be used in a pipeline, to convert a string containing human language text into lists of sentences and words, to generate base forms of those words, their parts of speech and morphological features, to give a syntactic structure dependency parse, and to recognize named entities. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • Inventors: Validate Your Idea, Protect It and Gain Market Advantages Icon
    Inventors: Validate Your Idea, Protect It and Gain Market Advantages

    SenseIP is ideal for individual inventors, startups, and businesses

    senseIP is an AI innovation platform for inventors, automating any aspect of IP from the moment you have an idea. You can have it researched for uniqueness and protected; quickly and effortlessly, without expensive attorneys. Built for business success while securing your competitive edge.
    Learn More
  • 5
    Volatility

    Volatility

    An advanced memory forensics framework

    Volatility is a widely used open-source framework for analyzing memory captures (RAM dumps) from Windows, Linux, and macOS systems. It enables investigators and malware analysts to extract process lists, network connections, DLLs, strings, artifacts, and more. Volatility supports many plugins for detecting hidden processes, malware, rootkits, and event tracing. It’s essential in digital forensics and incident response workflows.
    Downloads: 42 This Week
    Last Update:
    See Project
  • 6
    Graphtage

    Graphtage

    A semantic diff utility and library for tree-like files such as JSON

    Graphtage is a command-line utility and underlying library for semantically comparing and merging tree-like structures, such as JSON, XML, HTML, YAML, plist, and CSS files. Its name is a portmanteau of “graph” and “graftage”, the latter being the horticultural practice of joining two trees together such that they grow as one. Graphtage performs an analysis on an intermediate representation of the trees that is divorced from the filetypes of the input files. This means, for example, that you can diff a JSON file against a YAML file. Also, the output format can be different from the input format(s). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    GenAI Processors

    GenAI Processors

    GenAI Processors is a lightweight Python library

    ...The library offers built-in processors for classic turn-based Gemini calls as well as Live API streaming, so you can mix “batch” and real-time interactions in the same graph. It leans on Python’s asyncio to coordinate concurrency, handle network I/O, and juggle background compute threads without blocking.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    SageMaker Spark Container

    SageMaker Spark Container

    Docker image used to run data processing workloads

    Apache Spark™ is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Structured Streaming for stream processing. The SageMaker Spark Container is a Docker image used to run batch data processing workloads on Amazon SageMaker using the Apache Spark framework. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    FlowLens MCP

    FlowLens MCP

    Open-source MCP server that gives your coding agent

    FlowLens MCP Server is an open-source tool designed to give AI-powered coding agents (like Claude Code, Cursor, GitHub Copilot / Codex, and others) full, replayable browser context to dramatically improve debugging, bug reporting, and regression testing for web applications. It works together with a companion browser extension: when a user reproduces a bug or a complicated UI interaction, the extension captures a rich session log, including screen/video recording, network traffic, console...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 10
    Neural Tangents

    Neural Tangents

    Fast and Easy Infinite Neural Networks in Python

    Neural Tangents is a high-level neural network API for specifying complex, hierarchical models at both finite and infinite width, built in Python on top of JAX and XLA. It lets researchers define architectures from familiar building blocks—convolutions, pooling, residual connections, and nonlinearities—and obtain not only the finite network but also the corresponding Gaussian Process (GP) kernel of its infinite-width limit. With a single specification, you can compute NNGP and NTK kernels,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    hloc

    hloc

    Visual localization made easy with hloc

    ...It implements Hierarchical Localization, leveraging image retrieval and feature matching, and is fast, accurate, and scalable. This codebase won the indoor/outdoor localization challenges at CVPR 2020 and ECCV 2020, in combination with SuperGlue, our graph neural network for feature matching. We provide step-by-step guides to localize with Aachen, InLoc, and to generate reference poses for your own data using SfM. Just download the datasets and you're reading to go! The notebook pipeline_InLoc.ipynb shows the steps for localizing with InLoc. It's much simpler since a 3D SfM model is not needed. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    whiteboxgui

    whiteboxgui

    An interactive GUI for WhiteboxTools in a Jupyter-based environment

    ...WhiteboxTools also contains advanced tooling for spatial hydrological analysis (e.g. flow-accumulation, watershed delineation, stream network analysis, sink removal), terrain analysis (e.g. common terrain indices such as slope, curvatures, wetness index, hillshading; hypsometric analysis; etc.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    Jraph

    Jraph

    A Graph Neural Network Library in Jax

    Jraph (pronounced “giraffe”) is a lightweight JAX library developed by Google DeepMind for building and experimenting with graph neural networks (GNNs). It provides an efficient and flexible framework for representing, manipulating, and training models on graph-structured data. The core of Jraph is the GraphsTuple data structure, which enables users to define graphs with arbitrary node, edge, and global attributes, and to batch variable-sized graphs efficiently for JAX’s just-in-time...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Model Search

    Model Search

    Framework that implements AutoML algorithms

    Model Search is an AutoML research system for discovering neural network architectures with minimal human intervention. Instead of hand-crafting models, you define a search space and objectives, then the system explores candidate architectures using controllers and population-based strategies. It supports multiple tasks (such as vision or text) by letting you express reusable building blocks—layers, cells, and topologies—that the search can recombine. Training, evaluation, and promotion of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    TensorNetwork

    TensorNetwork

    A library for easy and efficient manipulation of tensor networks

    TensorNetwork is a high-level library for building and contracting tensor networks—graphical factorizations of large tensors that underpin many algorithms in physics and machine learning. It abstracts networks as nodes and edges, then compiles efficient contraction orders across multiple numeric backends so users can focus on model structure rather than index bookkeeping. Common network families (MPS/TT, PEPS, MERA, tree networks) are expressed with concise APIs that encourage...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Minkowski Engine

    Minkowski Engine

    Auto-diff neural network library for high-dimensional sparse tensors

    The Minkowski Engine is an auto-differentiation library for sparse tensors. It supports all standard neural network layers such as convolution, pooling, unspooling, and broadcasting operations for sparse tensors. The Minkowski Engine supports various functions that can be built on a sparse tensor. We list a few popular network architectures and applications here. To run the examples, please install the package and run the command in the package root directory. Compressing a neural network to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Awesome Graph Classification

    Awesome Graph Classification

    Graph embedding, classification and representation learning papers

    A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers with reference implementations. Relevant graph classification benchmark datasets are available. Similar collections about community detection, classification/regression tree, fraud detection, Monte Carlo tree search, and gradient boosting papers with implementations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    TFLearn

    TFLearn

    Deep learning library featuring a higher-level API for TensorFlow

    ...Easy-to-use and understand high-level API for implementing deep neural networks, with tutorials and examples. Fast prototyping through highly modular built-in neural network layers, regularizers, optimizers, and metrics. Full transparency over Tensorflow. All functions are built over tensors and can be used independently of TFLearn. Powerful helper functions to train any TensorFlow graph, with support of multiple inputs, outputs, and optimizers. Easy and beautiful graph visualization, with details about weights, gradients, activations, and more. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Neural Networks Collection

    Neural Networks Collection

    Neural Networks Collection

    This project implements in C++ a bunch of known Neural Networks. So far the project implements: LVQ in several variants, SOM in several variants, Hopfield network and Perceptron. Other neural network types are planned, but not implemented yet. The project can run in two modes: command line tool and Python 7.2 extension. Currently, Python version appears more functional, as it allows easy interaction with algorithms developed by other people.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    fastNLP

    fastNLP

    fastNLP: A Modularized and Extensible NLP Framework

    ...Built-in Loader and Pipe for multiple datasets, eliminating the need for preprocessing code. Various convenient NLP tools, such as Embedding loading (including ELMo and BERT), intermediate data cache, etc.. Provide a variety of neural network components and recurrence models (covering tasks such as Chinese word segmentation, named entity recognition, syntactic analysis, text classification, text matching, metaphor resolution, summarization, etc.). Trainer provides a variety of built-in Callback functions to facilitate experiment recording, exception capture, etc. Automatic download of some datasets and pre-trained models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Pretty Damn Quick (PDQ) analytically solves queueing network models of computer and manufacturing systems, data networks, etc., written in conventional programming languages. Generic or customized reports of predicted performance measures are output.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Frontend Regression Validator (FRED)

    Frontend Regression Validator (FRED)

    Visual regression tool used to compare baseline and updated instances

    Visual regression tool used to compare baseline and updated instances of a website in a deployment pipeline. FRED is an opensource visual regression tool used to compare two instances of a website. FRED is responsible for automatic visual regression testing, with the purpose of ensuring that functionality is not broken by comparing a current(baseline) and an updated version of a website. The visual analysis computes the Normalized Mean Squared error and the Structural Similarity Index on the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Graph Nets library

    Graph Nets library

    Build Graph Nets in Tensorflow

    Graph Nets, developed by Google DeepMind, is a Python library designed for constructing and training graph neural networks (GNNs) using TensorFlow and Sonnet. It provides a high-level, flexible framework for building neural architectures that operate directly on graph-structured data. A graph network takes graphs as inputs, consisting of edges, nodes, and global attributes, and produces updated graphs with modified feature representations at each level. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    Olex2 is visualisation software for small-molecule crystallography developed at Durham University/EPSRC. It provides comprehensive tools for crystallographic model manipulation for the end user and an extensible development framework for programmers. The project has been supported by Olexsys Ltd since 2010.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    This is the corresponding code for the book "The Deep Learning Framework PyTorch: Getting Started and Practical", but it can also be used as a standalone PyTorch Getting Started Guide and Tutorial. The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test. The new version of the code has not been fully tested, it has been tested...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next