Showing 111 open source projects for "network data speed"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Smart Business Texting that Generates Pipeline Icon
    Smart Business Texting that Generates Pipeline

    Create and convert pipeline at scale through industry leading SMS campaigns, automation, and conversation management.

    TextUs is the leading text messaging service provider for businesses that want to engage in real-time conversations with customers, leads, employees and candidates. Text messaging is one of the most engaging ways to communicate with customers, candidates, employees and leads. 1:1, two-way messaging encourages response and engagement. Text messages help teams get 10x the response rate over phone and email. Business text messaging has become a more viable form of communication than traditional mediums. The TextUs user experience is intentionally designed to resemble the familiar SMS inbox, allowing users to easily manage contacts, conversations, and campaigns. Work right from your desktop with the TextUs web app or use the Chrome extension alongside your ATS or CRM. Leverage the mobile app for on-the-go sending and responding.
    Learn More
  • 1
    Arraymancer

    Arraymancer

    A fast, ergonomic and portable tensor library in Nim

    Arraymancer is a tensor and deep learning library for the Nim programming language, designed for high-performance numerical computations and machine learning applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Minkowski Engine

    Minkowski Engine

    Auto-diff neural network library for high-dimensional sparse tensors

    ...Compressing a neural network to speed up inference and minimize memory footprint has been studied widely. One of the popular techniques for model compression is pruning the weights in convnets, is also known as sparse convolutional networks. Such parameter-space sparsity used for model compression compresses networks that operate on dense tensors and all intermediate activations of these networks are also dense tensors.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    speedtest-cli

    speedtest-cli

    Command line interface for testing internet bandwidth using speedtest

    ...Latency reported by this tool should not be relied on as a value indicative of ICMP style latency. It is a relative value used for determining the lowest latency server for performing the actual speed test against. Speedtest CLI brings the trusted technology and global server network behind Speedtest to the command line. Measure internet connection performance metrics like download, upload, latency and packet loss natively without relying on a web browser. Test the internet connection of your Linux desktop, a remote server or even lower-powered devices such as the Raspberry Pi with the Speedtest Server Network. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    PyTorch SimCLR

    PyTorch SimCLR

    PyTorch implementation of SimCLR: A Simple Framework

    ...These large models are trained on huge supervised corpora, like the ImageNet. And most important, their features are known to adapt well to new problems. This is particularly interesting when annotated training data is scarce. In situations like this, we take the models’ pre-trained weights, append a new classifier layer on top of it, and retrain the network. This is called transfer learning, and is one of the most used techniques in CV. Aside from a few tricks when performing fine-tuning (if the case), it has been shown (many times) that if training for a new task, models initialized with pre-trained weights tend to learn faster and be more accurate then training from scratch using random initialization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 5
    CNN for Image Retrieval
    cnn-for-image-retrieval is a research-oriented project that demonstrates the use of convolutional neural networks (CNNs) for image retrieval tasks. The repository provides implementations of CNN-based methods to extract feature representations from images and use them for similarity-based retrieval. It focuses on applying deep learning techniques to improve upon traditional handcrafted descriptors by learning features directly from data. The code includes training and evaluation scripts that...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    NLP Architect

    NLP Architect

    A model library for exploring state-of-the-art deep learning

    ...The library includes our past and ongoing NLP research and development efforts as part of Intel AI Lab. NLP Architect is designed to be flexible for adding new models, neural network components, data handling methods, and for easy training and running models. NLP Architect is a model-oriented library designed to showcase novel and different neural network optimizations. The library contains NLP/NLU-related models per task, different neural network topologies (which are used in models), procedures for simplifying workflows in the library, pre-defined data processors and dataset loaders and misc utilities. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    TFLearn

    TFLearn

    Deep learning library featuring a higher-level API for TensorFlow

    TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed up experimentations while remaining fully transparent and compatible with it. Easy-to-use and understand high-level API for implementing deep neural networks, with tutorials and examples. Fast prototyping through highly modular built-in neural network layers, regularizers, optimizers, and metrics. Full transparency over Tensorflow. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    fastNLP

    fastNLP

    fastNLP: A Modularized and Extensible NLP Framework

    fastNLP is a lightweight framework for natural language processing (NLP), the goal is to quickly implement NLP tasks and build complex models. A unified Tabular data container simplifies the data preprocessing process. Built-in Loader and Pipe for multiple datasets, eliminating the need for preprocessing code. Various convenient NLP tools, such as Embedding loading (including ELMo and BERT), intermediate data cache, etc.. Provide a variety of neural network components and recurrence models (covering tasks such as Chinese word segmentation, named entity recognition, syntactic analysis, text classification, text matching, metaphor resolution, summarization, etc.). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Forecasting Best Practices

    Forecasting Best Practices

    Time Series Forecasting Best Practices & Examples

    Time series forecasting is one of the most important topics in data science. Almost every business needs to predict the future in order to make better decisions and allocate resources more effectively. This repository provides examples and best practice guidelines for building forecasting solutions. The goal of this repository is to build a comprehensive set of tools and examples that leverage recent advances in forecasting algorithms to build solutions and operationalize them. Rather than...
    Downloads: 0 This Week
    Last Update:
    See Project
  • The Original Buy Center Software. Icon
    The Original Buy Center Software.

    Never Go To The Auction Again.

    VAN sources private-party vehicles from over 20 platforms and provides all necessary tools to communicate with sellers and manage opportunities. Franchise and Independent dealers can boost their buy center strategies with our advanced tools and an experienced Acquisition Coaching™ team dedicated to your success.
    Learn More
  • 10
    Pretty Damn Quick (PDQ) analytically solves queueing network models of computer and manufacturing systems, data networks, etc., written in conventional programming languages. Generic or customized reports of predicted performance measures are output.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    MMdnn

    MMdnn

    Tools to help users inter-operate among deep learning frameworks

    MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML. MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model management, and "dnn" is the acronym of deep neural network. We implement a universal converter to convert DL models between frameworks,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Brand new cheatsheets and handouts

    Brand new cheatsheets and handouts

    Matplotlib 3.1 cheat sheet

    ...It lays out common use cases (plot types, styling, figure configuration, saving/exporting, subplot layout, etc.) in a concise and organized format — often serving as a “cheat sheet” for rapid look-up. For practitioners working on data-heavy projects, dashboards, or research code where plotting is frequent, it helps speed up development by reducing context-switching and documentation navigation overhead. It is especially useful when you know roughly what you want (e.g. “I need a scatter + histogram marginal plot”) but don’t remember the exact Matplotlib call.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    CrypTen

    CrypTen

    A framework for Privacy Preserving Machine Learning

    CrypTen is a research framework developed by Facebook Research for privacy-preserving machine learning built directly on top of PyTorch. It provides a secure and intuitive environment for performing computations on encrypted data using Secure Multiparty Computation (SMPC). Designed to make secure computation accessible to machine learning practitioners, CrypTen introduces a CrypTensor object that behaves like a regular PyTorch tensor, allowing users to seamlessly apply automatic differentiation and neural network operations. Its design mirrors PyTorch’s modular and library-based structure, enabling flexible experimentation, debugging, and model development. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Graph Nets library

    Graph Nets library

    Build Graph Nets in Tensorflow

    Graph Nets, developed by Google DeepMind, is a Python library designed for constructing and training graph neural networks (GNNs) using TensorFlow and Sonnet. It provides a high-level, flexible framework for building neural architectures that operate directly on graph-structured data. A graph network takes graphs as inputs, consisting of edges, nodes, and global attributes, and produces updated graphs with modified feature representations at each level. This library implements the foundational ideas from DeepMind’s paper “Relational Inductive Biases, Deep Learning, and Graph Networks”, offering tools to explore relational reasoning and message-passing neural networks. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    Python basic brick interface
    This project is a set of usefull classes to manage data from de database to the user interface. Based on a dictionary who match the DB table, the panel will be created.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16

    Python DB-API 2.0 module for ADO

    Use Microsoft ADO to read/write most data bases.

    Python module that makes it easy to use Microsoft ADO for connecting with databases and other data sources. For CPython users, this module is included as part of pywin32 (https://github.com/mhammond/pywin32), and continued support will take place there. This fork will be maintained for Iron Python users. * Documentation at http://adodbapi.sourceforge.net/quick_reference.pdf or quick_reference.odb in the .zip
    Leader badge
    Downloads: 4 This Week
    Last Update:
    See Project
  • 17
    I3D models trained on Kinetics

    I3D models trained on Kinetics

    Convolutional neural network model for video classification

    Kinetics-I3D, developed by Google DeepMind, provides trained models and implementation code for the Inflated 3D ConvNet (I3D) architecture introduced in the paper “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset” (CVPR 2017). The I3D model extends the 2D convolutional structure of Inception-v1 into 3D, allowing it to capture spatial and temporal information from videos for action recognition. This repository includes pretrained I3D models on the Kinetics dataset, with...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 18
    Olex2 is visualisation software for small-molecule crystallography developed at Durham University/EPSRC. It provides comprehensive tools for crystallographic model manipulation for the end user and an extensible development framework for programmers. The project has been supported by Olexsys Ltd since 2010.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Nebula worker

    Nebula worker

    The worker node manager container which manages nebula nodes

    Nebula is a open source distributed Docker orchestrator designed for massive scales (tens of thousands of servers/worker devices), unlike Mesos/Swarm/Kubernetes it has the ability to have workers distributed on high latency connections (such as the internet) yet have the pods(containers) be managed centrally with changes taking affect (almost) immediately, this makes Nebula ideal for managing a vast cluster of servers\devices across the globe, some example use cases are IoT devices, appliances\virtual appliances located at clients data centers, and edge computing. Nebula imposes no limits on the scale of the cluster, each component in it is designed to scale out to allow millions of workers to be managed by it. Designed to connect to devices that are spread around the globe Nebula is tolerant of network connection issues and will resync the device when it reconnects. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    The Google Cloud Developer's Cheat Sheet

    The Google Cloud Developer's Cheat Sheet

    Cheat sheet for Google Cloud developers

    Every product in the Google Cloud family described in <=4 words (with liberal use of hyphens and slashes) by the Google Developer Relations Team. This list only includes products that are publicly available. There are several products in pre-release/private-alpha that will not be included until they go public beta or GA. Many of these products have a free tier. There is also a free trial that will enable you try almost everything. API platforms and ecosystems, developer and management tools,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    captcha_break

    captcha_break

    Identification codes

    This project will use Keras to build a deep convolutional neural network to identify the captcha verification code. It is recommended to use a graphics card to run the project. The following visualization codes are jupyter notebookall done in . If you want to write a python script, you can run it normally with a little modification. Of course, you can also remove these visualization codes. captcha is a library written in python to generate verification codes. It supports image verification...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    SFD

    SFD

    S³FD: Single Shot Scale-invariant Face Detector, ICCV, 2017

    ...It includes training scripts, evaluation code, and pre-trained models that achieve strong results on popular benchmarks such as AFW, PASCAL Face, FDDB, and WIDER FACE. The framework is optimized for speed and accuracy, making it suitable for both academic research and practical applications in computer vision.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 23
    Mixup-CIFAR10

    Mixup-CIFAR10

    mixup: Beyond Empirical Risk Minimization

    mixup-cifar10 is the official PyTorch implementation of “mixup: Beyond Empirical Risk Minimization” (Zhang et al., ICLR 2018), a foundational paper introducing mixup, a simple yet powerful data augmentation technique for training deep neural networks. The core idea of mixup is to generate synthetic training examples by taking convex combinations of pairs of input samples and their labels. By interpolating both data and labels, the model learns smoother decision boundaries and becomes more...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    Zhao

    Zhao

    A compilation of "The Princely Party Relationship Network"

    zhao is a repository that consolidates research, data, and insights related to Zhao, which is likely an individual’s research collection, notes, or curated resources on deep learning, AI, or computational topics (name and content context suggest specialized study). The project may include code examples, experiment results, references to academic papers, mathematical notes, and supporting scripts to explore specific ML methods, benchmarks, or theoretical findings. Because it aggregates...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    Tangent

    Tangent

    Source-to-source debuggable derivatives in pure Python

    ...Tangent is useful to researchers and students who not only want to write their models in Python, but also read and debug automatically-generated derivative code without sacrificing speed and flexibility. Tangent works on a large and growing subset of Python, provides extra autodiff features other Python ML libraries don't have, has reasonable performance, and is compatible with TensorFlow and NumPy.
    Downloads: 0 This Week
    Last Update:
    See Project