Protect your business with AI policies and data loss prevention in the browser
Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
Download Chrome
Our Free Plans just got better! | Auth0
With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.
You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
EnvPool is a fast, asynchronous, and parallel RL environment library designed for scaling reinforcement learning experiments. Developed by SAIL at Singapore, it leverages C++ backend and Python frontend for extremely high-speed environment interaction, supporting thousands of environments running in parallel on a single machine. It's compatible with Gymnasium API and RLlib, making it suitable for scalable training pipelines.
The Teachingbox uses advanced machinelearning techniques to relieve developers from the programming of hand-crafted sophisticated behaviors of autonomous agents (such as robots, game players etc...) In the current status we have implemented a well founded reinforcement learning core in Java with many popular usecases, environments, policies and learners.
Obtaining the teachingbox:
FOR USERS:
If you want to download the latest releases, please visit:
http://search.maven.org/#search|ga|1|teachingbox
FOR DEVELOPERS:
1) If you use Apache Maven, just add the following dependency to your pom.xml:
<dependency>
<groupId>org.sf.teachingbox</groupId>
<artifactId>teachingbox-core</artifactId>
<version>1.2.3</version>
</dependency>
2) If you want to check out the most recent source-code:
git clone https://git.code.sf.net/p/teachingbox/core teachingbox-core
Documentation:
https://sourceforge.net/p/teachingbox/documentation/HEAD/tree/trunk/manual/
PIQLE is a Platform Implementing Q-LEarning (and other Reinforcement Learning) algorithms in JAVA. Version 2 is a major refactoring. The core data structures and algorithms are in piqle-coreVersion2. Examples are in piqle-examplesVersion2. A complete doc
It's a modern take on desktop management that can be scaled as per organizational needs.
Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.