• Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    DeepSeek R1

    DeepSeek R1

    Open-source, high-performance AI model with advanced reasoning

    DeepSeek-R1 is an open-source large language model developed by DeepSeek, designed to excel in complex reasoning tasks across domains such as mathematics, coding, and language. DeepSeek R1 offers unrestricted access for both commercial and academic use. The model employs a Mixture of Experts (MoE) architecture, comprising 671 billion total parameters with 37 billion active parameters per token, and supports a context length of up to 128,000 tokens. DeepSeek-R1's training regimen uniquely...
    Downloads: 53 This Week
    Last Update:
    See Project
  • 2
    DeepSeek-V3

    DeepSeek-V3

    Powerful AI language model (MoE) optimized for efficiency/performance

    DeepSeek-V3 is a robust Mixture-of-Experts (MoE) language model developed by DeepSeek, featuring a total of 671 billion parameters, with 37 billion activated per token. It employs Multi-head Latent Attention (MLA) and the DeepSeekMoE architecture to enhance computational efficiency. The model introduces an auxiliary-loss-free load balancing strategy and a multi-token prediction training objective to boost performance. Trained on 14.8 trillion diverse, high-quality tokens, DeepSeek-V3...
    Downloads: 45 This Week
    Last Update:
    See Project
  • 3
    AgentUniverse

    AgentUniverse

    agentUniverse is a LLM multi-agent framework

    AgentUniverse is a multi-agent AI framework that enables coordination between multiple intelligent agents for complex task execution and automation.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Multi-Agent Orchestrator

    Multi-Agent Orchestrator

    Flexible and powerful framework for managing multiple AI agents

    Multi-Agent Orchestrator is an AI coordination framework that enables multiple intelligent agents to work together to complete complex, multi-step workflows.
    Downloads: 1 This Week
    Last Update:
    See Project
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 5
    Agent S2

    Agent S2

    Agent S: an open agentic framework that uses computers like a human

    Simular's Agent S2 represents a leap forward in the development of computer-use agents, capable of autonomously interacting with a range of devices and interfaces. By integrating specialized AI models, Agent S2 delivers state-of-the-art performance, whether on desktop systems or smartphones. Through modular architecture, it efficiently handles complex tasks, such as navigating UIs, performing low-level actions like text selection, and executing high-level strategies like planning. Additionally...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    TaskWeaver

    TaskWeaver

    A code-first agent framework for seamlessly planning analytics tasks

    TaskWeaver is a multi-agent AI framework designed for orchestrating autonomous agents that collaborate to complete complex tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Habitat-Lab

    Habitat-Lab

    A modular high-level library to train embodied AI agents

    Habitat-Lab is a modular high-level library for end-to-end development in embodied AI. It is designed to train agents to perform a wide variety of embodied AI tasks in indoor environments, as well as develop agents that can interact with humans in performing these tasks. Allowing users to train agents in a wide variety of single and multi-agent tasks (e.g. navigation, rearrangement, instruction following, question answering, human following), as well as define novel tasks. Configuring...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    PaLM + RLHF - Pytorch

    PaLM + RLHF - Pytorch

    Implementation of RLHF (Reinforcement Learning with Human Feedback)

    PaLM-rlhf-pytorch is a PyTorch implementation of Pathways Language Model (PaLM) with Reinforcement Learning from Human Feedback (RLHF). It is designed for fine-tuning large-scale language models with human preference alignment, similar to OpenAI’s approach for training models like ChatGPT.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    VectorizedMultiAgentSimulator (VMAS)

    VectorizedMultiAgentSimulator (VMAS)

    VMAS is a vectorized differentiable simulator

    VectorizedMultiAgentSimulator is a high-performance, vectorized simulator for multi-agent systems, focusing on large-scale agent interactions in shared environments. It is designed for research in multi-agent reinforcement learning, robotics, and autonomous systems where thousands of agents need to be simulated efficiently.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Simply solve complex auth. Easy for devs to set up. Easy for non-devs to use. Icon
    Simply solve complex auth. Easy for devs to set up. Easy for non-devs to use.

    Transform user access with Frontegg CIAM: login box, SSO, MFA, multi-tenancy, and 99.99% uptime.

    Custom auth drains 25% of dev time and risks 62% more breaches, stalling enterprise deals. Frontegg platform delivers a simple login box, seamless authentication (SSO, MFA, passwordless), robust multi-tenancy, and a customizable Admin Portal. Integrate fast with the React SDK, meet compliance needs, and focus on innovation.
    Start for Free
  • 10
    RWARE

    RWARE

    MuA multi-agent reinforcement learning environment

    robotic-warehouse is a simulation environment and framework for robotic warehouse automation, enabling research and development of AI and robotic agents to manage warehouse logistics, such as item picking and transport.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    OSWorld

    OSWorld

    Benchmarking Multimodal Agents for Open-Ended Tasks

    OSWorld is an open-source synthetic world environment designed for embodied AI research and multi-agent learning. It provides a richly simulated 3D world where multiple agents can interact, perform tasks, and learn complex behaviors. OSWorld emphasizes multi-modal interaction, enabling agents to process visual, auditory, and symbolic data for grounded learning in a simulated world.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    DI-engine

    DI-engine

    OpenDILab Decision AI Engine

    DI-engine is a unified reinforcement learning (RL) platform for reproducible and scalable RL research. It offers modular pipelines for various RL algorithms, with an emphasis on production-level training and evaluation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    PyBoy

    PyBoy

    Game Boy emulator written in Python

    It is highly recommended to read the report to get a light introduction to Game Boy emulation. But do be aware, that the Python implementation has changed a lot. The report is relevant, even though you want to contribute to another emulator or create your own. If you are looking to make a bot or AI, you can find all the external components in the PyBoy Documentation. There is also a short example on our Wiki page Scripts, AI and Bots as well as in the examples directory. If more features...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Godot RL Agents

    Godot RL Agents

    An Open Source package that allows video game creators

    godot_rl_agents is a reinforcement learning integration for the Godot game engine. It allows AI agents to learn how to interact with and play Godot-based games using RL algorithms. The toolkit bridges Godot with Python-based RL libraries like Stable-Baselines3, making it possible to create complex and visually rich RL environments natively in Godot.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    TensorHouse

    TensorHouse

    A collection of reference Jupyter notebooks and demo AI/ML application

    TensorHouse is a scalable reinforcement learning (RL) platform that focuses on high-throughput experience generation and distributed training. It is designed to efficiently train agents across multiple environments and compute resources. TensorHouse enables flexible experiment management, making it suitable for large-scale RL experiments in both research and applied settings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    MedicalGPT

    MedicalGPT

    MedicalGPT: Training Your Own Medical GPT Model with ChatGPT Training

    MedicalGPT training medical GPT model with ChatGPT training pipeline, implementation of Pretraining, Supervised Finetuning, Reward Modeling and Reinforcement Learning. MedicalGPT trains large medical models, including secondary pre-training, supervised fine-tuning, reward modeling, and reinforcement learning training.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    RLCard

    RLCard

    Reinforcement Learning / AI Bots in Card (Poker) Games

    RLCard is a toolkit for reinforcement learning research on card games. It includes several popular card games and focuses on learning algorithms for imperfect information games like poker and blackjack.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    Initially, this project started as the 4th edition of Python Machine Learning. However, after putting so much passion and hard work into the changes and new topics, we thought it deserved a new title. So, what’s new? There are many contents and additions, including the switch from TensorFlow to PyTorch, new chapters on graph neural networks and transformers, a new section on gradient boosting, and many more that I will detail in a separate blog post. For those who are interested in knowing what...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    DouZero

    DouZero

    [ICML 2021] DouZero: Mastering DouDizhu

    DouZero is a reinforcement learning-based AI for playing DouDizhu, a popular Chinese card game. It focuses on perfecting AI strategies for competitive play using value-based deep RL techniques.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Hands-on Unsupervised Learning

    Hands-on Unsupervised Learning

    Code for Hands-on Unsupervised Learning Using Python (O'Reilly Media)

    This repo contains the code for the O'Reilly Media, Inc. book "Hands-on Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data" by Ankur A. Patel. Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to the holy grail in AI research, the so-called general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    TensorLayer

    TensorLayer

    Deep learning and reinforcement learning library for scientists

    TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extensive collection of customizable neural layers to build advanced AI models quickly, based on this, the community open-sourced mass tutorials and applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society. This project can also be found at OpenI and Gitee. 3.0.0 has been pre-released, the current version...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    ChainerRL

    ChainerRL

    ChainerRL is a deep reinforcement learning library

    ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms in Python using Chainer, a flexible deep learning framework. PFRL is the PyTorch analog of ChainerRL. ChainerRL has a set of accompanying visualization tools in order to aid developers' ability to understand and debug their RL agents. With this visualization tool, the behavior of ChainerRL agents can be easily inspected from a browser UI. Environments...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Spinning Up in Deep RL

    Spinning Up in Deep RL

    Educational resource to help anyone learn deep reinforcement learning

    ... of powerful AI technology. To ensure that AI is safe, we have to come up with safety strategies and algorithms that are compatible with this paradigm. As a result, we encourage everyone who asks this question to study these fields. However, while there are many resources to help people quickly ramp up on deep learning, deep reinforcement learning is more challenging to break into.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    SMAC

    SMAC

    SMAC: The StarCraft Multi-Agent Challenge

    SMAC (StarCraft II Multi-Agent Challenge) is a benchmark environment for cooperative multi-agent reinforcement learning (MARL), based on real-time strategy (RTS) game scenarios in StarCraft II. It allows researchers to test algorithms where multiple units (agents) must collaborate to win battles against built-in game AI opponents. SMAC provides a controlled testbed for studying decentralized execution and centralized training paradigms in MARL.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Project Malmo

    Project Malmo

    A platform for Artificial Intelligence experimentation on Minecraft

    ... is a sophisticated AI experimentation platform built on top of Minecraft, and designed to support fundamental research in artificial intelligence. The Project Malmo platform consists of a mod for the Java version, and code that helps artificial intelligence agents sense and act within the Minecraft environment. The two components can run on Windows, Linux, or Mac OS, and researchers can program their agents in any programming language they’re comfortable with.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.