MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
Start Free
Test your software product anywhere in the world
Get feedback from real people across 190+ countries with the devices, environments, and payment instruments you need for your perfect test.
Global App Testing is a managed pool of freelancers used by Google, Meta, Microsoft, and other world-beating software companies.
A collection of reference Jupyter notebooks and demo AI/ML application
TensorHouse is a scalable reinforcement learning (RL) platform that focuses on high-throughput experience generation and distributed training. It is designed to efficiently train agents across multiple environments and compute resources. TensorHouse enables flexible experiment management, making it suitable for large-scale RL experiments in both research and applied settings.
Reinforced Recommendation toolkit built around pytorch 1.7
This is my school project. It focuses on Reinforcement Learning for personalized news recommendation. The main distinction is that it tries to solve online off-policy learning with dynamically generated item embeddings. I want to create a library with SOTA algorithms for reinforcement learning recommendation, providing the level of abstraction you like.