• Vibes don’t ship, Retool does Icon
    Vibes don’t ship, Retool does

    Start from a prompt and build production-ready apps on your data—with security, permissions, and compliance built in.

    Vibe coding tools create cool demos, but Retool helps you build software your company can actually use. Generate internal apps that connect directly to your data—deployed in your cloud with enterprise security from day one. Build dashboards, admin panels, and workflows with granular permissions already in place. Stop prototyping and ship on a platform that actually passes security review.
    Build apps that ship
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    Tensorforce

    Tensorforce

    A TensorFlow library for applied reinforcement learning

    Tensorforce is an open-source deep reinforcement learning framework built on TensorFlow, emphasizing modularized design and straightforward usability for applied research and practice.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    LightZero

    LightZero

    [NeurIPS 2023 Spotlight] LightZero

    LightZero is an efficient, scalable, and open-source framework implementing MuZero, a powerful model-based reinforcement learning algorithm that learns to predict rewards and transitions without explicit environment models. Developed by OpenDILab, LightZero focuses on providing a highly optimized and user-friendly platform for both academic research and industrial applications of MuZero and similar algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    EvoTorch

    EvoTorch

    Advanced evolutionary computation library built on top of PyTorch

    EvoTorch is an evolutionary optimization framework built on top of PyTorch, developed by NNAISENSE. It is designed for large-scale optimization problems, particularly those that require evolutionary algorithms rather than gradient-based methods.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Gymnasium

    Gymnasium

    An API standard for single-agent reinforcement learning environments

    Gymnasium is a fork of OpenAI Gym, maintained by the Farama Foundation, that provides a standardized API for reinforcement learning environments. It improves upon Gym with better support, maintenance, and additional features while maintaining backward compatibility.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 5
    PaLM + RLHF - Pytorch

    PaLM + RLHF - Pytorch

    Implementation of RLHF (Reinforcement Learning with Human Feedback)

    PaLM-rlhf-pytorch is a PyTorch implementation of Pathways Language Model (PaLM) with Reinforcement Learning from Human Feedback (RLHF). It is designed for fine-tuning large-scale language models with human preference alignment, similar to OpenAI’s approach for training models like ChatGPT.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Brax

    Brax

    Massively parallel rigidbody physics simulation

    Brax is a fast and fully differentiable physics engine for large-scale rigid body simulations, built on JAX. It is designed for research in reinforcement learning and robotics, enabling efficient simulations and gradient-based optimization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    OpenRLHF

    OpenRLHF

    An Easy-to-use, Scalable and High-performance RLHF Framework

    OpenRLHF is an easy-to-use, scalable, and high-performance framework for Reinforcement Learning with Human Feedback (RLHF). It supports various training techniques and model architectures.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    ManiSkill

    ManiSkill

    SAPIEN Manipulation Skill Framework

    ManiSkill is a benchmark platform for training and evaluating reinforcement learning agents on dexterous manipulation tasks using physics-based simulations. Developed by Hao Su Lab, it focuses on robotic manipulation with diverse, high-quality 3D tasks designed to challenge perception, control, and planning in robotics. ManiSkill provides both low-level control and visual observation spaces for realistic learning scenarios.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    TaskWeaver

    TaskWeaver

    A code-first agent framework for seamlessly planning analytics tasks

    TaskWeaver is a multi-agent AI framework designed for orchestrating autonomous agents that collaborate to complete complex tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Financial reporting cloud-based software. Icon
    Financial reporting cloud-based software.

    For companies looking to automate their consolidation and financial statement function

    The software is cloud based and automates complexities around consolidating and reporting for groups with multiple year ends, currencies and ERP systems with a slice and dice approach to reporting. While retaining the structure, control and validation needed in a financial reporting tool, we’ve managed to keep things flexible.
    Learn More
  • 10
    Habitat-Lab

    Habitat-Lab

    A modular high-level library to train embodied AI agents

    Habitat-Lab is a modular high-level library for end-to-end development in embodied AI. It is designed to train agents to perform a wide variety of embodied AI tasks in indoor environments, as well as develop agents that can interact with humans in performing these tasks. Allowing users to train agents in a wide variety of single and multi-agent tasks (e.g. navigation, rearrangement, instruction following, question answering, human following), as well as define novel tasks. Configuring and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    AgentUniverse

    AgentUniverse

    agentUniverse is a LLM multi-agent framework

    AgentUniverse is a multi-agent AI framework that enables coordination between multiple intelligent agents for complex task execution and automation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Multi-Agent Orchestrator

    Multi-Agent Orchestrator

    Flexible and powerful framework for managing multiple AI agents

    Multi-Agent Orchestrator is an AI coordination framework that enables multiple intelligent agents to work together to complete complex, multi-step workflows.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Atropos

    Atropos

    Language Model Reinforcement Learning Environments frameworks

    Atropos is a comprehensive open-source framework for reinforcement learning (RL) environments tailored specifically to work with large language models (LLMs). Designed as a scalable ecosystem of environment microservices, Atropos allows researchers and developers to collect, evaluate, and manage trajectories (sequences of actions and outcomes) generated by LLMs across a variety of tasks—from static dataset benchmarks to dynamic interactive games and real-world scenario environments. It...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Stable Baselines3

    Stable Baselines3

    PyTorch version of Stable Baselines

    Stable Baselines3 (SB3) is a set of reliable implementations of reinforcement learning algorithms in PyTorch. It is the next major version of Stable Baselines. You can read a detailed presentation of Stable Baselines3 in the v1.0 blog post or our JMLR paper. These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    verl

    verl

    Volcano Engine Reinforcement Learning for LLMs

    VERL is a reinforcement-learning–oriented toolkit designed to train and align modern AI systems, from language models to decision-making agents. It brings together supervised fine-tuning, preference modeling, and online RL into one coherent training stack so teams can move from raw data to aligned policies with minimal glue code. The library focuses on scalability and efficiency, offering distributed training loops, mixed precision, and replay/buffering utilities that keep accelerators busy....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Weights and Biases

    Weights and Biases

    Tool for visualizing and tracking your machine learning experiments

    Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to production models. Quickly identify model regressions. Use W&B to visualize results in real time, all in a central dashboard. Focus on the interesting ML. Spend less time manually tracking results in spreadsheets and text files. Capture dataset versions with W&B Artifacts to identify how changing data affects your resulting models. Reproduce any model, with saved...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    AI4U

    AI4U

    Multi-engine plugin to specify agents with reinforcement learning

    ...Train using multiple concurrent Unity/Godot environment instances. Unity/Godot environment partial control from Python. Wrap Unity/Godot learning environments as a gym.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    TensorHouse

    TensorHouse

    A collection of reference Jupyter notebooks and demo AI/ML application

    TensorHouse is a scalable reinforcement learning (RL) platform that focuses on high-throughput experience generation and distributed training. It is designed to efficiently train agents across multiple environments and compute resources. TensorHouse enables flexible experiment management, making it suitable for large-scale RL experiments in both research and applied settings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    MedicalGPT

    MedicalGPT

    MedicalGPT: Training Your Own Medical GPT Model with ChatGPT Training

    MedicalGPT training medical GPT model with ChatGPT training pipeline, implementation of Pretraining, Supervised Finetuning, Reward Modeling and Reinforcement Learning. MedicalGPT trains large medical models, including secondary pre-training, supervised fine-tuning, reward modeling, and reinforcement learning training.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    ViZDoom

    ViZDoom

    Doom-based AI research platform for reinforcement learning

    ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is primarily intended for research in machine visual learning, and deep reinforcement learning, in particular. ViZDoom is based on ZDOOM, the most popular modern source-port of DOOM. This means compatibility with a huge range of tools and resources that can be used to create custom scenarios, availability of detailed documentation of the engine and tools and support of Doom community....
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21

    Astrape

    Optical-packet node transceiver frequency allocation

    In an optical network scenario which consists of multiple nodes (whiteboxes) at its edges and ROADMs in-between, the coherent transceiver average laser configuration time is improved. The process is evaluated according to a testbed setup. This is facilitated in the appropriate lab equipment (or via simulation when required). For that purpose, a software agent (Netconf server) residing at the whiteboxes, is developed receiving input from the Software-Defined Networking (SDN) packet...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    EnvPool

    EnvPool

    C++-based high-performance parallel environment execution engine

    EnvPool is a fast, asynchronous, and parallel RL environment library designed for scaling reinforcement learning experiments. Developed by SAIL at Singapore, it leverages C++ backend and Python frontend for extremely high-speed environment interaction, supporting thousands of environments running in parallel on a single machine. It's compatible with Gymnasium API and RLlib, making it suitable for scalable training pipelines.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    RL Games

    RL Games

    RL implementations

    rl_games is a high-performance reinforcement learning framework optimized for GPU-based training, particularly in environments like robotics and continuous control tasks. It supports advanced algorithms and is built with PyTorch.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    AnyTrading

    AnyTrading

    The most simple, flexible, and comprehensive OpenAI Gym trading

    gym-anytrading is an OpenAI Gym-compatible environment designed for developing and testing reinforcement learning algorithms on trading strategies. It simulates trading environments for financial markets, including stocks and forex.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    EasyRL

    EasyRL

    Reinforcement learning (RL) tutorial series

    easy-rl is a beginner-friendly reinforcement learning (RL) tutorial series and framework developed by Datawhale China. It provides educational resources and implementations of various RL algorithms to help new researchers and practitioners learn RL concepts.
    Downloads: 2 This Week
    Last Update:
    See Project