Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud
Get back to your application and leave the database to us. Cloud SQL automatically handles backups, replication, and scaling.
Cloud SQL is a fully managed relational database for MySQL, PostgreSQL, and SQL Server. We handle patching, backups, replication, encryption, and failover—so you can focus on your app. Migrate from on-prem or other clouds with free Database Migration Service. IDC found customers achieved 246% ROI. New customers get $300 in credits plus a 30-day free trial.
Try Cloud SQL Free
Cut Cloud Costs with Google Compute Engine
Save up to 91% with Spot VMs and get automatic sustained-use discounts. One free VM per month, plus $300 in credits.
Save on compute costs with Compute Engine. Reduce your batch jobs and workload bill 60-91% with Spot VMs. Compute Engine's committed use offers customers up to 70% savings through sustained use discounts. Plus, you get one free e2-micro VM monthly and $300 credit to start.
The Teachingbox uses advanced machine learning techniques to relieve developers from the programming of hand-crafted sophisticated behaviors of autonomous agents (such as robots, game players etc...) In the current status we have implemented a well founded reinforcement learning core in Java with many popular usecases, environments, policies and learners.
Obtaining the teachingbox:
FOR USERS:
If you want to download the latest releases, please visit:
http://search.maven.org/#search|ga|1|teachingbox
FOR DEVELOPERS:
1) If you use Apache Maven, just add the following dependency to your pom.xml:
<dependency>
<groupId>org.sf.teachingbox</groupId>
<artifactId>teachingbox-core</artifactId>
<version>1.2.3</version>
</dependency>
2) If you want to check out the most recent source-code:
git clone https://git.code.sf.net/p/teachingbox/core teachingbox-core
Documentation:
https://sourceforge.net/p/teachingbox/documentation/HEAD/tree/trunk/manual/
Using reinforcement learning with relative input to train Ms. Pac-Man
This Java-application contains all required components to simulate a game of Ms. Pac-Man and let an agent learn intelligent playing behaviour using reinforcement learning and either Q-Learning or SARSA.
The framework was developed by Luuk Bom and Ruud Henken, under supervision of Marco Wiering, Department of Artificial Intelligence, University of Groningen. It formed the basis of a bachelor's thesis titled "Using reinforcement learning with relative input to train Ms. Pac-Man", L.A.M. Bom (2012).