Showing 13 open source projects for "parallel"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    Brax

    Brax

    Massively parallel rigidbody physics simulation

    Brax is a fast and fully differentiable physics engine for large-scale rigid body simulations, built on JAX. It is designed for research in reinforcement learning and robotics, enabling efficient simulations and gradient-based optimization.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    TensorHouse

    TensorHouse

    A collection of reference Jupyter notebooks and demo AI/ML application

    TensorHouse is a scalable reinforcement learning (RL) platform that focuses on high-throughput experience generation and distributed training. It is designed to efficiently train agents across multiple environments and compute resources. TensorHouse enables flexible experiment management, making it suitable for large-scale RL experiments in both research and applied settings.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Mctx

    Mctx

    Monte Carlo tree search in JAX

    mctx is a Monte Carlo Tree Search (MCTS) library developed by Google DeepMind for reinforcement learning research. It enables efficient and flexible implementation of MCTS algorithms, including those used in AlphaZero and MuZero.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    VectorizedMultiAgentSimulator (VMAS)

    VectorizedMultiAgentSimulator (VMAS)

    VMAS is a vectorized differentiable simulator

    VectorizedMultiAgentSimulator is a high-performance, vectorized simulator for multi-agent systems, focusing on large-scale agent interactions in shared environments. It is designed for research in multi-agent reinforcement learning, robotics, and autonomous systems where thousands of agents need to be simulated efficiently.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Rezku Point of Sale Icon
    Rezku Point of Sale

    Designed for Real-World Restaurant Operations

    Rezku is an all-inclusive ordering platform and management solution for all types of restaurant and bar concepts. You can now get a fully custom branded downloadable smartphone ordering app for your restaurant exclusively from Rezku.
    Learn More
  • 5
    Atropos

    Atropos

    Language Model Reinforcement Learning Environments frameworks

    ...It provides foundational tooling for asynchronous RL loops where environment services communicate with trainers and inference engines, enabling complex workflow orchestration in distributed and parallel setups. This framework facilitates experimentation with RLHF (Reinforcement Learning from Human Feedback), RLAIF, or multi-turn training approaches by abstracting environment logic, scoring, and logging into reusable components.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Ray

    Ray

    A unified framework for scalable computing

    Modern workloads like deep learning and hyperparameter tuning are compute-intensive and require distributed or parallel execution. Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    EnvPool

    EnvPool

    C++-based high-performance parallel environment execution engine

    EnvPool is a fast, asynchronous, and parallel RL environment library designed for scaling reinforcement learning experiments. Developed by SAIL at Singapore, it leverages C++ backend and Python frontend for extremely high-speed environment interaction, supporting thousands of environments running in parallel on a single machine. It's compatible with Gymnasium API and RLlib, making it suitable for scalable training pipelines.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    ElegantRL

    ElegantRL

    Massively Parallel Deep Reinforcement Learning

    ElegantRL is an efficient and flexible deep reinforcement learning framework designed for researchers and practitioners. It focuses on simplicity, high performance, and supporting advanced RL algorithms.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    RecNN

    RecNN

    Reinforced Recommendation toolkit built around pytorch 1.7

    This is my school project. It focuses on Reinforcement Learning for personalized news recommendation. The main distinction is that it tries to solve online off-policy learning with dynamically generated item embeddings. I want to create a library with SOTA algorithms for reinforcement learning recommendation, providing the level of abstraction you like.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Create and run cloud-based virtual machines. Icon
    Create and run cloud-based virtual machines.

    Secure and customizable compute service that lets you create and run virtual machines.

    Computing infrastructure in predefined or custom machine sizes to accelerate your cloud transformation. General purpose (E2, N1, N2, N2D) machines provide a good balance of price and performance. Compute optimized (C2) machines offer high-end vCPU performance for compute-intensive workloads. Memory optimized (M2) machines offer the highest memory and are great for in-memory databases. Accelerator optimized (A2) machines are based on the A100 GPU, for very demanding applications.
    Try for free
  • 10
    Tensorpack

    Tensorpack

    A Neural Net Training Interface on TensorFlow, with focus on speed

    ...Uses TensorFlow in the efficient way with no extra overhead. On common CNNs, it runs training 1.2~5x faster than the equivalent Keras code. Your training can probably gets faster if written with Tensorpack. Scalable data-parallel multi-GPU / distributed training strategy is off-the-shelf to use. Squeeze the best data loading performance of Python with tensorpack.dataflow. Symbolic programming (e.g. tf.data) does not offer the data processing flexibility needed in research. Tensorpack squeezes the most performance out of pure Python with various auto parallelization strategies. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    ...The Intel Math Kernel Library takes advantages of the parallelization and vectorization capabilities of Intel Xeon and Xeon Phi systems. When hyperthreading is enabled on the system, we recommend the following KMP_AFFINITY setting to make sure parallel threads are 1:1 mapped to the available physical cores.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12

    iget

    Adaptive Parallel Data Retrieval Mechanism

    Adaptive Synchronous-Retrieval mechanism with Concurrent I/O using Reinforcement Learning. A data retrieval mechanism that can adapt to the continuous contraction and expansion of the network bottleneck so that an optimal concurrency index can be maintained at any time during the data retrieval process. Sample usage: python iget.py <target url> <output file>
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Parallel Reinforcement Evolutionary Artificial Neural Networks (PREANN) is a framework of flexible multi-layer ANN's with reinforcement learning based on genetic algorithms and a parallel implementation (using XMM registers and NVIDIA's CUDA).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next