Reinforcement Learning Algorithms for Windows

View 1 business solution

Browse free open source Reinforcement Learning Algorithms and projects for Windows below. Use the toggles on the left to filter open source Reinforcement Learning Algorithms by OS, license, language, programming language, and project status.

  • Simply solve complex auth. Easy for devs to set up. Easy for non-devs to use. Icon
    Simply solve complex auth. Easy for devs to set up. Easy for non-devs to use.

    Transform user access with Frontegg CIAM: login box, SSO, MFA, multi-tenancy, and 99.99% uptime.

    Custom auth drains 25% of dev time and risks 62% more breaches, stalling enterprise deals. Frontegg platform delivers a simple login box, seamless authentication (SSO, MFA, passwordless), robust multi-tenancy, and a customizable Admin Portal. Integrate fast with the React SDK, meet compliance needs, and focus on innovation.
    Start for Free
  • Crowdtesting That Delivers | Testeum Icon
    Crowdtesting That Delivers | Testeum

    Unfixed bugs delaying your launch? Test with real users globally – check it out for free, results in days.

    Testeum connects your software, app, or website to a worldwide network of testers, delivering detailed feedback in under 48 hours. Ensure functionality and refine UX on real devices, all at a fraction of traditional costs. Trusted by startups and enterprises alike, our platform streamlines quality assurance with actionable insights.
    Click to perfect your product now.
  • 1
    AirSim

    AirSim

    A simulator for drones, cars and more, built on Unreal Engine

    AirSim is an open-source, cross platform simulator for drones, cars and more vehicles, built on Unreal Engine with an experimental Unity release in the works. It supports software-in-the-loop simulation with popular flight controllers such as PX4 & ArduPilot and hardware-in-loop with PX4 for physically and visually realistic simulations. It is developed as an Unreal plugin that can simply be dropped into any Unreal environment. AirSim's development is oriented towards the goal of creating a platform for AI research to experiment with deep learning, computer vision and reinforcement learning algorithms for autonomous vehicles. For this purpose, AirSim also exposes APIs to retrieve data and control vehicles in a platform independent way. AirSim is fully enabled for multiple vehicles. This capability allows you to create multiple vehicles easily and use APIs to control them.
    Downloads: 47 This Week
    Last Update:
    See Project
  • 2
    Pwnagotchi

    Pwnagotchi

    Deep Reinforcement learning instrumenting bettercap for WiFi pwning

    Pwnagotchi is an A2C-based “AI” powered by bettercap and running on a Raspberry Pi Zero W that learns from its surrounding WiFi environment in order to maximize the crackable WPA key material it captures (either through passive sniffing or by performing deauthentication and association attacks). This material is collected on disk as PCAP files containing any form of handshake supported by hashcat, including full and half WPA handshakes as well as PMKIDs. Instead of merely playing Super Mario or Atari games like most reinforcement learning based “AI” (yawn), Pwnagotchi tunes its own parameters over time to get better at pwning WiFi things in the real world environments you expose it to. To give hackers an excuse to learn about reinforcement learning and WiFi networking, and have a reason to get out for more walks.
    Downloads: 14 This Week
    Last Update:
    See Project
  • 3
    Ray

    Ray

    A unified framework for scalable computing

    Modern workloads like deep learning and hyperparameter tuning are compute-intensive and require distributed or parallel execution. Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. Find the best model and reduce training costs by using the latest optimization algorithms. Deploy your machine learning models at scale with Ray Serve, a Python-first and framework agnostic model serving framework. Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO. Easily build out scalable, distributed systems in Python with simple and composable primitives in Ray Core.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 4
    Bullet Physics SDK

    Bullet Physics SDK

    Real-time collision detection and multi-physics simulation for VR

    This is the official C++ source code repository of the Bullet Physics SDK: real-time collision detection and multi-physics simulation for VR, games, visual effects, robotics, machine learning etc. We are developing a new differentiable simulator for robotics learning, called Tiny Differentiable Simulator, or TDS. The simulator allows for hybrid simulation with neural networks. It allows different automatic differentiation backends, for forward and reverse mode gradients. TDS can be trained using Deep Reinforcement Learning, or using Gradient based optimization (for example LFBGS). In addition, the simulator can be entirely run on CUDA for fast rollouts, in combination with Augmented Random Search. This allows for 1 million simulation steps per second. It is highly recommended to use PyBullet Python bindings for improved support for robotics, reinforcement learning and VR. Use pip install pybullet and checkout the PyBullet Quickstart Guide.
    Downloads: 6 This Week
    Last Update:
    See Project
  • Sales CRM and Pipeline Management Software | Pipedrive Icon
    Sales CRM and Pipeline Management Software | Pipedrive

    The easy and effective CRM for closing deals

    Pipedrive’s simple interface empowers salespeople to streamline workflows and unite sales tasks in one workspace. Unlock instant sales insights with Pipedrive’s visual sales pipeline and fine-tune your strategy with robust reporting features and a personalized AI Sales Assistant.
    Try it for free
  • 5
    Unity ML-Agents Toolkit

    Unity ML-Agents Toolkit

    Unity machine learning agents toolkit

    Train and embed intelligent agents by leveraging state-of-the-art deep learning technology. Creating responsive and intelligent virtual players and non-playable game characters is hard. Especially when the game is complex. To create intelligent behaviors, developers have had to resort to writing tons of code or using highly specialized tools. With Unity Machine Learning Agents (ML-Agents), you are no longer “coding” emergent behaviors, but rather teaching intelligent agents to “learn” through a combination of deep reinforcement learning and imitation learning. Using ML-Agents allows developers to create more compelling gameplay and an enhanced game experience. Advancement of artificial intelligence (AI) research depends on figuring out tough problems in existing environments using current benchmarks for training AI models. Using Unity and the ML-Agents toolkit, you can create AI environments that are physically, visually, and cognitively rich.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 6
    Best-of Machine Learning with Python

    Best-of Machine Learning with Python

    A ranked list of awesome machine learning Python libraries

    This curated list contains 900 awesome open-source projects with a total of 3.3M stars grouped into 34 categories. All projects are ranked by a project-quality score, which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml. Contributions are very welcome! General-purpose machine learning and deep learning frameworks.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    H2O LLM Studio

    H2O LLM Studio

    Framework and no-code GUI for fine-tuning LLMs

    Welcome to H2O LLM Studio, a framework and no-code GUI designed for fine-tuning state-of-the-art large language models (LLMs). You can also use H2O LLM Studio with the command line interface (CLI) and specify the configuration file that contains all the experiment parameters. To finetune using H2O LLM Studio with CLI, activate the pipenv environment by running make shell. With H2O LLM Studio, training your large language model is easy and intuitive. First, upload your dataset and then start training your model. Start by creating an experiment. You can then monitor and manage your experiment, compare experiments, or push the model to Hugging Face to share it with the community.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    TorchRL

    TorchRL

    A modular, primitive-first, python-first PyTorch library

    TorchRL is an open-source Reinforcement Learning (RL) library for PyTorch. TorchRL provides PyTorch and python-first, low and high-level abstractions for RL that are intended to be efficient, modular, documented, and properly tested. The code is aimed at supporting research in RL. Most of it is written in Python in a highly modular way, such that researchers can easily swap components, transform them, or write new ones with little effort.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    Brax

    Brax

    Massively parallel rigidbody physics simulation

    Brax is a fast and fully differentiable physics engine for large-scale rigid body simulations, built on JAX. It is designed for research in reinforcement learning and robotics, enabling efficient simulations and gradient-based optimization.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Test your software product anywhere in the world Icon
    Test your software product anywhere in the world

    Get feedback from real people across 190+ countries with the devices, environments, and payment instruments you need for your perfect test.

    Global App Testing is a managed pool of freelancers used by Google, Meta, Microsoft, and other world-beating software companies.
    Try us today.
  • 10
    AgentUniverse

    AgentUniverse

    agentUniverse is a LLM multi-agent framework

    AgentUniverse is a multi-agent AI framework that enables coordination between multiple intelligent agents for complex task execution and automation.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    Initially, this project started as the 4th edition of Python Machine Learning. However, after putting so much passion and hard work into the changes and new topics, we thought it deserved a new title. So, what’s new? There are many contents and additions, including the switch from TensorFlow to PyTorch, new chapters on graph neural networks and transformers, a new section on gradient boosting, and many more that I will detail in a separate blog post. For those who are interested in knowing what this book covers in general, I’d describe it as a comprehensive resource on the fundamental concepts of machine learning and deep learning. The first half of the book introduces readers to machine learning using scikit-learn, the defacto approach for working with tabular datasets. Then, the second half of this book focuses on deep learning, including applications to natural language processing and computer vision.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Mctx

    Mctx

    Monte Carlo tree search in JAX

    mctx is a Monte Carlo Tree Search (MCTS) library developed by Google DeepMind for reinforcement learning research. It enables efficient and flexible implementation of MCTS algorithms, including those used in AlphaZero and MuZero.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Multi-Agent Orchestrator

    Multi-Agent Orchestrator

    Flexible and powerful framework for managing multiple AI agents

    Multi-Agent Orchestrator is an AI coordination framework that enables multiple intelligent agents to work together to complete complex, multi-step workflows.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    OpenSpiel

    OpenSpiel

    Environments and algorithms for research in general reinforcement

    OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and search/planning in games. OpenSpiel supports n-player (single- and multi- agent) zero-sum, cooperative and general-sum, one-shot and sequential, strictly turn-taking and simultaneous-move, perfect and imperfect information games, as well as traditional multiagent environments such as (partially- and fully- observable) grid worlds and social dilemmas. OpenSpiel also includes tools to analyze learning dynamics and other common evaluation metrics. Games are represented as procedural extensive-form games, with some natural extensions. The core API and games are implemented in C++ and exposed to Python. Algorithms and tools are written both in C++ and Python. To try OpenSpiel in Google Colaboratory, please refer to open_spiel/colabs subdirectory.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Project Malmo

    Project Malmo

    A platform for Artificial Intelligence experimentation on Minecraft

    How can we develop artificial intelligence that learns to make sense of complex environments? That learns from others, including humans, how to interact with the world? That learns transferable skills throughout its existence, and applies them to solve new, challenging problems? Project Malmo sets out to address these core research challenges, addressing them by integrating (deep) reinforcement learning, cognitive science, and many ideas from artificial intelligence. The Malmo platform is a sophisticated AI experimentation platform built on top of Minecraft, and designed to support fundamental research in artificial intelligence. The Project Malmo platform consists of a mod for the Java version, and code that helps artificial intelligence agents sense and act within the Minecraft environment. The two components can run on Windows, Linux, or Mac OS, and researchers can program their agents in any programming language they’re comfortable with.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Reinforcement Learning Course Materials

    Reinforcement Learning Course Materials

    Lecture notes, tutorial tasks including solutions

    Lecture notes, tutorial tasks including solutions as well as online videos for the reinforcement learning course hosted by Paderborn University. The source code for the entire course material is open and everyone is cordially invited to use it for self-learning (students) or to set up their own course (lecturers).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    SkyAI
    Highly modularized Reinforcement Learning library for real/simulation robots to learn behaviors. Our ultimate goal is to develop an artificial intelligence (AI) program with which the robots can learn to behave as their users wish.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18
    tic tac toe AI

    tic tac toe AI

    simplest AI programme of tic-tac-toe game

    This is a program of tic tac toe game it currently is the 1.0 version of this this is my program - an AI program which plays tic-tac-toe, it is an AI program which is given knowledge on the basis of my previous analysis and knowledge about playing tic-tac-toe. I have made it to be playable with players right now but I can make it for AI vs AI, AI vs player, player vs player as well. Using a settings option. I think this program has enough IQ to defeat a normal person. This is the update 1.1 of this game. My future visions about this program is: v 1.0.1 --> bug fixes v 1.1 --> (added) click interaction _______________________________________________________________________________________________________________________________________________ v 1.2 --> addition of reinforcement learning (cache data different for each computer unlike v1.3). v 1.3 --> addition of cloud reinforcement learning (optional; chosen from settings). ... & more
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    AI4U

    AI4U

    Multi-engine plugin to specify agents with reinforcement learning

    AI4U is a multi-engine plugin (Godot and Unity) that allows you to design Non-Player Characters (NPCs) of games using an agent abstraction. In addition, AI4U has a low-level API that allows you to connect the agent to any algorithm made available in Python by the reinforcement learning community specifically and by the Artificial Intelligence community in general. Reinforcement learning promises to overcome traditional navigation mesh mechanisms in games and to provide more autonomous characters. AI4U can be integrated into Imitation Learning through Behavioral Cloning or Generative Adversarial Imitation Learning present on stable-baslines. Train using multiple concurrent Unity/Godot environment instances. Unity/Godot environment partial control from Python. Wrap Unity/Godot learning environments as a gym.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Alibi Explain

    Alibi Explain

    Algorithms for explaining machine learning models

    Alibi is a Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-quality implementations of black-box, white-box, local and global explanation methods for classification and regression models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    BindsNET

    BindsNET

    Simulation of spiking neural networks (SNNs) using PyTorch

    A Python package used for simulating spiking neural networks (SNNs) on CPUs or GPUs using PyTorch Tensor functionality. BindsNET is a spiking neural network simulation library geared towards the development of biologically inspired algorithms for machine learning. This package is used as part of ongoing research on applying SNNs to machine learning (ML) and reinforcement learning (RL) problems in the Biologically Inspired Neural & Dynamical Systems (BINDS) lab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    ChainerRL

    ChainerRL

    ChainerRL is a deep reinforcement learning library

    ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms in Python using Chainer, a flexible deep learning framework. PFRL is the PyTorch analog of ChainerRL. ChainerRL has a set of accompanying visualization tools in order to aid developers' ability to understand and debug their RL agents. With this visualization tool, the behavior of ChainerRL agents can be easily inspected from a browser UI. Environments that support the subset of OpenAI Gym's interface (reset and step methods) can be used.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    CleanRL

    CleanRL

    High-quality single file implementation of Deep Reinforcement Learning

    CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation with research-friendly features. The implementation is clean and simple, yet we can scale it to run thousands of experiments using AWS Batch. CleanRL is not a modular library and therefore it is not meant to be imported. At the cost of duplicate code, we make all implementation details of a DRL algorithm variant easy to understand, so CleanRL comes with its own pros and cons. You should consider using CleanRL if you want to 1) understand all implementation details of an algorithm's variant or 2) prototype advanced features that other modular DRL libraries do not support (CleanRL has minimal lines of code so it gives you great debugging experience and you don't have to do a lot of subclassing like sometimes in modular DRL libraries).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    Coach is a python framework that models the interaction between an agent and an environment in a modular way. With Coach, it is possible to model an agent by combining various building blocks, and training the agent on multiple environments. The available environments allow testing the agent in different fields such as robotics, autonomous driving, games and more. It exposes a set of easy-to-use APIs for experimenting with new RL algorithms and allows simple integration of new environments to solve. Coach collects statistics from the training process and supports advanced visualization techniques for debugging the agent being trained. Coach supports many state-of-the-art reinforcement learning algorithms, which are separated into three main classes - value optimization, policy optimization, and imitation learning. Coach supports a large number of environments which can be solved using reinforcement learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    ConvNetJS

    ConvNetJS

    Deep learning in Javascript to train convolutional neural networks

    ConvNetJS is a Javascript library for training Deep Learning models (Neural Networks) entirely in your browser. Open a tab and you're training. No software requirements, no compilers, no installations, no GPUs, no sweat. ConvNetJS is an implementation of Neural networks, together with nice browser-based demos. It currently supports common Neural Network modules (fully connected layers, non-linearities), classification (SVM/Softmax) and Regression (L2) cost functions, ability to specify and train Convolutional Networks that process images, and experimental Reinforcement Learning modules, based on Deep Q Learning. The library allows you to formulate and solve Neural Networks in Javascript. If you would like to add features to the library, you will have to change the code in src/ and then compile the library into the build/ directory. The compilation script simply concatenates files in src/ and then minifies the result.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.