Showing 278 open source projects for "self"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Ship AI Apps Faster with Vertex AI Icon
    Ship AI Apps Faster with Vertex AI

    Go from idea to deployed AI app without managing infrastructure. Vertex AI offers one platform for the entire AI development lifecycle.

    Ship AI apps and features faster with Vertex AI—your end-to-end AI platform. Access Gemini 3 and 200+ foundation models, fine-tune for your needs, and deploy with enterprise-grade MLOps. Build chatbots, agents, or custom models. New customers get $300 in free credit.
    Try Vertex AI Free
  • 1
    Simple StyleGan2 for Pytorch

    Simple StyleGan2 for Pytorch

    Simplest working implementation of Stylegan2

    Simple Pytorch implementation of Stylegan2 that can be completely trained from the command-line, no coding needed. You will need a machine with a GPU and CUDA installed. You can also specify the location where intermediate results and model checkpoints should be stored. You can increase the network capacity (which defaults to 16) to improve generation results, at the cost of more memory. By default, if the training gets cut off, it will automatically resume from the last checkpointed file....
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    PyTorch Lightning

    PyTorch Lightning

    The lightweight PyTorch wrapper for high-performance AI research

    ...PyTorch Lightning can be used for just about any type of research, and was built for the fast inference needed in AI research and production. When you need to scale up things like BERT and self-supervised learning, Lightning responds accordingly by automatically exporting to ONNX or TorchScript. PyTorch Lightning can easily be applied for any use case. With just a quick refactor you can run your code on any hardware, run distributed training, perform logging, metrics, visualization and so much more!
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    LangExtract

    LangExtract

    A Python library for extracting structured information

    LangExtract is a Python library developed by Google that leverages large language models (LLMs) to extract structured information from unstructured text—such as clinical notes, research papers, or literary works—based on user-defined instructions. It is designed to transform free-form text into reliable, schema-constrained data while maintaining traceability back to the source material. Each extracted entity is precisely grounded in its original context, allowing visual inspection and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Mem0

    Mem0

    The Memory layer for AI Agents

    Mem0 is a self-improving memory layer designed for Large Language Model (LLM) applications, enabling personalized AI experiences that save costs and delight users. It remembers user preferences, adapts to individual needs, and continuously improves over time. Key features include enhancing future conversations by building smarter AI that learns from every interaction, reducing LLM costs by up to 80% through intelligent data filtering, delivering more accurate and personalized AI outputs by leveraging historical context, and offering easy integration compatible with platforms like OpenAI and Claude. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Go from Data Warehouse to Data and AI platform with BigQuery Icon
    Go from Data Warehouse to Data and AI platform with BigQuery

    Build, train, and run ML models with simple SQL. Automate data prep, analysis, and predictions with built-in AI assistance from Gemini.

    BigQuery is more than a data warehouse—it's an autonomous data-to-AI platform. Use familiar SQL to train ML models, run time-series forecasts, and generate AI-powered insights with native Gemini integration. Built-in agents handle data engineering and data science workflows automatically. Get $300 in free credit, query 1 TB, and store 10 GB free monthly.
    Try BigQuery Free
  • 5
    MemMachine

    MemMachine

    Universal memory layer for AI Agents

    MemMachine is a universal memory layer designed for AI agents that provides persistent, rich memory storage and retrieval capabilities so autonomous agent systems can recall context, personal preferences, and long-term interaction history across sessions, models, and use cases. Unlike ephemeral LLM prompt state, MemMachine supports distinct memory types—short-term conversational context, long-term persistent knowledge, and profile memory for personalized facts—persisted in optimized stores...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    AWorld

    AWorld

    Build, evaluate and train General Multi-Agent Assistance with ease

    AWorld (Agent World) is an agent runtime/framework. It supports building, evaluating, and training self-improving intelligent agents and multi-agent systems (MAS). It is designed to provide infrastructure for agent orchestration, iterative learning, and environment interaction at scale. Scalable training across environments and distributed setups. Support for multi-agent collaboration/orchestration (MAS). The system is intended to help agents evolve via experience.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Hamilton DAGWorks

    Hamilton DAGWorks

    Helps scientists define testable, modular, self-documenting dataflow

    Hamilton is a lightweight Python library for directed acyclic graphs (DAGs) of data transformations. Your DAG is portable; it runs anywhere Python runs, whether it's a script, notebook, Airflow pipeline, FastAPI server, etc. Your DAG is expressive; Hamilton has extensive features to define and modify the execution of a DAG (e.g., data validation, experiment tracking, remote execution). To create a DAG, write regular Python functions that specify their dependencies with their parameters. As...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Aim

    Aim

    An easy-to-use & supercharged open-source experiment tracker

    ...The Aim standard package comes with all integrations. If you'd like to modify the integration and make it custom, create a new integration package and share with others. Aim is an open-source, self-hosted AI Metadata tracking tool designed to handle 100,000s of tracked metadata sequences. The two most famous AI metadata applications are: experiment tracking and prompt engineering. Aim provides a performant and beautiful UI for exploring and comparing training runs, and prompt sessions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Pymunk

    Pymunk

    Pymunk is a easy-to-use pythonic 2d physics library

    ...Pymunk has been used with success in many projects, big and small. For example: 3 Pyweek game competition winners, dozens of published scientific papers, and even in a self-driving car simulation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Run Any Workload on Compute Engine VMs Icon
    Run Any Workload on Compute Engine VMs

    From dev environments to AI training, choose preset or custom VMs with 1–96 vCPUs and industry-leading 99.95% uptime SLA.

    Compute Engine delivers high-performance virtual machines for web apps, databases, containers, and AI workloads. Choose from general-purpose, compute-optimized, or GPU/TPU-accelerated machine types—or build custom VMs to match your exact specs. With live migration and automatic failover, your workloads stay online. New customers get $300 in free credits.
    Try Compute Engine
  • 10
    Scikit-LLM

    Scikit-LLM

    Seamlessly integrate LLMs into scikit-learn

    ...Note: unlike in a typical supervised setting, the performance of a zero-shot classifier greatly depends on how the label itself is structured. It has to be expressed in natural language, descriptive, and self-explanatory.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    wger

    wger

    Self hosted FLOSS fitness/workout, nutrition and weight tracker

    wger Workout Manager is a free and open web application that manages your exercises, routines and nutrition. It started out as a personal project to replace my growing collection of spreadsheets but has turned into something that other people may find useful. You can create and manage flexible training routines for whatever goals you have. Select exactly what exercises you are going to do and how many repetitions, time or distance you want to do. You can also combine different workouts in...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    ChatGPT Academic

    ChatGPT Academic

    ChatGPT extension for scientific research work

    ChatGPT extension for scientific research work, specially optimized academic paper polishing experience, supports custom shortcut buttons, supports custom function plug-ins, supports markdown table display, double display of Tex formulas, complete code display function, new local Python/C++/Go project tree Analysis function/Project source code self-translation ability, newly added PDF and Word document batch summary function/PDF paper full-text translation function. All buttons are dynamically generated by reading functional.py, you can add custom functions at will, and liberate the pasteboard. Support for markdown tables output by GPT. If the output contains a formula, it will be displayed in tex form and rendered form at the same time, which is convenient for copying and reading.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Mistral Vibe CLI

    Mistral Vibe CLI

    Minimal CLI coding agent by Mistral

    Mistral Vibe is an AI-powered “vibe-coding” command-line interface (CLI) and coding-assistant framework built by Mistral AI to let developers write, refactor, search, and manage code through natural language and context-aware automation, rather than manual typing only. It aims to take developers out of repetitive boilerplate and let them stay “in the flow”: you can ask the tool to generate functions, refactor code, search across the codebase, manipulate files, commit changes via Git, or run...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    Hugging Face Skills

    Hugging Face Skills

    Definitions for AI/ML tasks like dataset creation

    Hugging Face Skills is a repository of standardized task definitions that package instructions, scripts, and resources so coding agents can reliably perform AI and machine learning workflows. Each skill is a self-contained folder with structured metadata and guidance that tells an agent how to execute tasks such as dataset creation, model training, evaluation, or Hub operations. The project is designed to be interoperable across major agent ecosystems, including Claude Code, OpenAI Codex, Gemini CLI, and Cursor, making it a cross-platform building block for agent automation. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    DevOps Exercises

    DevOps Exercises

    Linux, Jenkins, AWS, SRE, Prometheus, Docker, Python, Ansible, Git

    DevOps Exercises is a massive, community-maintained collection of questions, tasks, and mini-challenges that cover the breadth of modern DevOps and platform engineering. It spans Linux, networking, Docker, Kubernetes, CI/CD, monitoring, cloud providers, security, and even soft skills and troubleshooting. The idea is to give candidates and teams a realistic practice ground for interviews, certifications, and day-to-day operational work. Because it’s structured as Q&A and exercises, you can go...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Hello SQL

    Hello SQL

    Spanish-language course repository that teaches fundamentals of SQL

    hello-sql is a beginner-friendly, Spanish-language course repository that teaches the fundamentals of SQL and relational databases through practical examples. It focuses mainly on MySQL for lessons due to its ubiquity in education and professional environments, while also introducing PostgreSQL to broaden learners’ exposure to modern database tooling. The materials emphasize real-world query writing, schema design basics, and the mental model behind SELECT, JOIN, GROUP BY, and subqueries....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Ansible Automation Platform Workshops

    Ansible Automation Platform Workshops

    Training course for Ansible automation platform

    The Red Hat Ansible Automation Workshops project is intended for effectively demonstrating Ansible's capabilities through instructor-led workshops or self-paced exercises. These interactive learning scenarios provide you with a pre-configured Ansible Automation Platform environment to experiment, learn, and see how the platform can help you solve real-world problems. The environment runs entirely in your browser, enabling you to learn more about our technology at your pace and time. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Pythonic Data Structures and Algorithms

    Pythonic Data Structures and Algorithms

    Minimal examples of data structures and algorithms in Python

    ...It offers working, often well-commented code for many standard algorithmic problems — from sorting/searching to graph algorithms, dynamic programming, data structures, and more — making it a valuable resource for learning and reference. For students preparing for technical interviews, self-learners brushing up on fundamentals, or developers wanting to understand algorithm internals, this repository provides ready-to-run examples, and can serve as a sandbox to experiment, benchmark, or adapt code. Because it’s in pure Python, it’s easy to read and modify, making it accessible even to those with modest programming experience. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Python Zero to Hero for DevOps Engineers

    Python Zero to Hero for DevOps Engineers

    Learn Python from DevOps Engineer point of you

    Python Zero to Hero for DevOps Engineers is a structured “Python Zero to Hero for DevOps Engineers” course laid out as a day-by-day learning path. The repository is organized into Day-01 through Day-19 folders plus a small sample app, which makes it very easy to follow in sequence like a bootcamp. The curriculum starts with Python installation, environment setup, and writing your first script, then quickly moves into data types, strings, regular expressions, variables, and functions. It...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    AudioNotes

    AudioNotes

    Extract audio and video content and organize it into a Markdown note

    AudioNotes is an application (or proof-of-concept) that likely combines audio recording or playback with note-taking or annotation functionality — enabling users to record voice or audio and attach textual or timestamped notes, making it ideal for lectures, interviews, meetings, or personal memos. Such a tool offers a more expressive and flexible way to capture and revisit information: instead of just typed notes or raw audio, users get both audio context and structured notes. As an...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Courses (Anthropic)

    Courses (Anthropic)

    Anthropic's educational courses

    Anthropic’s courses repository is a growing collection of self-paced learning materials that teach practical AI skills using Claude and the Anthropic API. It’s organized as a sequence of hands-on courses—starting with API fundamentals and prompt engineering—so learners build capability step by step rather than in isolation. Each course mixes short readings with runnable notebooks and exercises, guiding you through concepts like model parameters, streaming, multimodal prompts, structured outputs, and evaluation. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Think Python 2

    Think Python 2

    LaTeX source and supporting code for Think Python, 2nd edition

    ThinkPython2 is the repository for the second edition of Allen Downey’s Think Python textbook, which teaches programming fundamentals in Python to beginners. The code includes all of the example programs, exercises, and supplementary files referenced in the book, allowing learners to run the examples, experiment, and extend them. The repository contains clean, well-commented Python scripts that are easy to follow and map directly to chapters of the text, covering topics like variables,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    cognee

    cognee

    Deterministic LLMs Outputs for AI Applications and AI Agents

    ...Cognee implements scalable, modular data pipelines that allow for creating the LLM-enriched data layer using graph and vector stores. Cognee acts a semantic memory layer, unveiling hidden connections within your data and infusing it with your company's language and principles. This self-optimizing process ensures ultra-relevant, personalized, and contextually aware LLM retrievals. Any kind of data works; unstructured text or raw media files, PDFs, tables, presentations, JSON files, and so many more. Add small or large files, or many files at once. We map out a knowledge graph from all the facts and relationships we extract from your data. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Kubeflow pipelines

    Kubeflow pipelines

    Machine Learning Pipelines for Kubeflow

    ...The pipeline includes the definition of the inputs (parameters) required to run the pipeline and the inputs and outputs of each component. A pipeline component is a self-contained set of user code, packaged as a Docker image, that performs one step in the pipeline. For example, a component can be responsible for data preprocessing, data transformation, model training, and so on.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    PML

    PML

    The easiest way to use deep metric learning in your application

    This library contains 9 modules, each of which can be used independently within your existing codebase, or combined together for a complete train/test workflow. To compute the loss in your training loop, pass in the embeddings computed by your model, and the corresponding labels. The embeddings should have size (N, embedding_size), and the labels should have size (N), where N is the batch size. The TripletMarginLoss computes all possible triplets within the batch, based on the labels you...
    Downloads: 0 This Week
    Last Update:
    See Project
MongoDB Logo MongoDB