Showing 33 open source projects for "core"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Lightspeed golf course management software Icon
    Lightspeed golf course management software

    Lightspeed Golf is all-in-one golf course management software to help courses simplify operations, drive revenue and deliver amazing golf experiences.

    From tee sheet management, point of sale and payment processing to marketing, automation, reporting and more—Lightspeed is built for the pro shop, restaurant, back office, beverage cart and beyond.
    Learn More
  • 1
    Seldon Core

    Seldon Core

    An MLOps framework to package, deploy, monitor and manage models

    The de facto standard open-source platform for rapidly deploying machine learning models on Kubernetes. Seldon Core, our open-source framework, makes it easier and faster to deploy your machine learning models and experiments at scale on Kubernetes. Seldon Core serves models built in any open-source or commercial model building framework. You can make use of powerful Kubernetes features like custom resource definitions to manage model graphs. And then connect your continuous integration and deployment (CI/CD) tools to scale and update your deployment. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Core ML Tools

    Core ML Tools

    Core ML tools contain supporting tools for Core ML model conversion

    Use Core ML Tools (coremltools) to convert machine learning models from third-party libraries to the Core ML format. This Python package contains the supporting tools for converting models from training libraries. Core ML is an Apple framework to integrate machine learning models into your app. Core ML provides a unified representation for all models.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 3
    zvt

    zvt

    Modular quant framework

    ...Once you are familiar with the core concepts of the system, you can apply it to any target in the market.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    gensim

    gensim

    Topic Modelling for Humans

    Gensim is a Python library for topic modeling, document indexing, and similarity retrieval with large corpora. The target audience is the natural language processing (NLP) and information retrieval (IR) community.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 5
    SageMaker Python SDK

    SageMaker Python SDK

    Training and deploying machine learning models on Amazon SageMaker

    ...With the SDK, you can train and deploy models using popular deep learning frameworks Apache MXNet and TensorFlow. You can also train and deploy models with Amazon algorithms, which are scalable implementations of core machine learning algorithms that are optimized for SageMaker and GPU training. If you have your own algorithms built into SageMaker-compatible Docker containers, you can train and host models using these as well.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    Ray

    Ray

    A unified framework for scalable computing

    ...Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO. Easily build out scalable, distributed systems in Python with simple and composable primitives in Ray Core.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    EconML

    EconML

    Python Package for ML-Based Heterogeneous Treatment Effects Estimation

    ...This package was designed and built as part of the ALICE project at Microsoft Research with the goal of combining state-of-the-art machine learning techniques with econometrics to bring automation to complex causal inference problems. One of the biggest promises of machine learning is to automate decision-making in a multitude of domains. At the core of many data-driven personalized decision scenarios is the estimation of heterogeneous treatment effects: what is the causal effect of an intervention on an outcome of interest for a sample with a particular set of features? In a nutshell, this toolkit is designed to measure the causal effect of some treatment variable(s) T on an outcome variable Y, controlling for a set of features X, W and how does that effect vary as a function of X.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    snorkel

    snorkel

    A system for quickly generating training data with weak supervision

    The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI application development platform based on the core ideas behind Snorkel. The Snorkel project started at Stanford in 2016 with a simple technical bet: that it would increasingly be the training data, not the models, algorithms, or infrastructure, that decided whether a machine learning project succeeded or failed. Given this premise, we set out to explore the radical idea that you could bring mathematical and systems structure to the messy and often entirely manual process of training data creation and management, starting by empowering users to programmatically label, build, and manage training data. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    Alibi Detect

    Alibi Detect

    Algorithms for outlier, adversarial and drift detection

    Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline detectors for tabular data, text, images and time series. Both TensorFlow and PyTorch backends are supported for drift detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 10
    MONAI

    MONAI

    AI Toolkit for Healthcare Imaging

    The MONAI framework is the open-source foundation being created by Project MONAI. MONAI is a freely available, community-supported, PyTorch-based framework for deep learning in healthcare imaging. It provides domain-optimized foundational capabilities for developing healthcare imaging training workflows in a native PyTorch paradigm. Project MONAI also includes MONAI Label, an intelligent open source image labeling and learning tool that helps researchers and clinicians collaborate, create...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 11
    PennyLane

    PennyLane

    A cross-platform Python library for differentiable programming

    A cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural network. Built-in automatic differentiation of quantum circuits, using the near-term quantum devices directly. You can combine multiple quantum devices with classical processing arbitrarily! Support for hybrid quantum and classical models, and compatible with existing machine learning libraries. Quantum circuits can be set up to interface with either NumPy,...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 12
    Haiku

    Haiku

    JAX-based neural network library

    Haiku is a library built on top of JAX designed to provide simple, composable abstractions for machine learning research. Haiku is a simple neural network library for JAX that enables users to use familiar object-oriented programming models while allowing full access to JAX’s pure function transformations. Haiku is designed to make the common things we do such as managing model parameters and other model state simpler and similar in spirit to the Sonnet library that has been widely used...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    Kornia

    Kornia

    Open Source Differentiable Computer Vision Library

    Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer vision problems. At its core, the package uses PyTorch as its main backend both for efficiency and to take advantage of the reverse-mode auto-differentiation to define and compute the gradient of complex functions. Inspired by existing packages, this library is composed by a subset of packages containing operators that can be inserted within neural networks to train models to perform image transformations, epipolar geometry, depth estimation, and low-level image processing such as filtering and edge detection that operate directly on tensors. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    Optax

    Optax

    Optax is a gradient processing and optimization library for JAX

    Optax is a gradient processing and optimization library for JAX. It is designed to facilitate research by providing building blocks that can be recombined in custom ways in order to optimize parametric models such as, but not limited to, deep neural networks. We favor focusing on small composable building blocks that can be effectively combined into custom solutions. Others may build upon these basic components in more complicated abstractions. Whenever reasonable, implementations prioritize...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Haiku Sonnet for JAX

    Haiku Sonnet for JAX

    JAX-based neural network library

    ...Haiku is a simple neural network library for JAX that enables users to use familiar object-oriented programming models while allowing full access to JAX's pure function transformations. Haiku provides two core tools: a module abstraction, hk.Module, and a simple function transformation, hk.transform. hk.Modules are Python objects that hold references to their own parameters, other modules, and methods that apply functions on user inputs. hk.transform turns functions that use these object-oriented, functionally "impure" modules into pure functions that can be used with jax.jit, jax.grad, jax.pmap, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    GluonTS

    GluonTS

    Probabilistic time series modeling in Python

    GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models. GluonTS requires Python 3.6 or newer, and the easiest way to install it is via pip. We train a DeepAR-model and make predictions using the simple "airpassengers" dataset. The dataset consists of a single time-series, containing monthly international passengers between the years 1949 and 1960, a total of 144 values (12 years * 12 months). We split the dataset into train and test parts,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Raster Vision

    Raster Vision

    Open source framework for deep learning satellite and aerial imagery

    ...There is built-in support for chip classification, object detection, and semantic segmentation using PyTorch. Raster Vision allows engineers to quickly and repeatably configure pipelines that go through core components of a machine learning workflow: analyzing training data, creating training chips, training models, creating predictions, evaluating models, and bundling the model files and configuration for easy deployment. The input to a Raster Vision pipeline is a set of images and training data, optionally with Areas of Interest (AOIs) that describe where the images are labeled. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Lightly

    Lightly

    A python library for self-supervised learning on images

    ...Our solution can be applied before any data annotation step and the learned representations can be used to visualize and analyze datasets. This allows selecting the best core set of samples for model training through advanced filtering. We provide PyTorch, PyTorch Lightning and PyTorch Lightning distributed examples for each of the models to kickstart your project. Lightly requires Python 3.6+ but we recommend using Python 3.7+. We recommend installing Lightly in a Linux or OSX environment. With lightly, you can use the latest self-supervised learning methods in a modular way using the full power of PyTorch. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    PromptTools

    PromptTools

    Open-source tools for prompt testing and experimentation

    Welcome to prompttools created by Hegel AI! This repo offers a set of open-source, self-hostable tools for experimenting with, testing, and evaluating LLMs, vector databases, and prompts. The core idea is to enable developers to evaluate using familiar interfaces like code, notebooks, and a local playground.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    TensorFlow Addons

    TensorFlow Addons

    Useful extra functionality for TensorFlow 2.x maintained by SIG-addons

    TensorFlow Addons is a repository of contributions that conform to well-established API patterns but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast-moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    DeepCTR

    DeepCTR

    Package of deep-learning based CTR models

    DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can be used to easily build custom models. You can use any complex model with model.fit(), and model.predict(). Provide tf.keras.Model like interface for quick experiment. Provide tensorflow estimator interface for large scale data and distributed training. It is compatible with both tf 1.x and tf 2.x. With the great success of deep learning,DNN-based techniques have been widely used in CTR prediction task. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    DeepCTR-Torch

    DeepCTR-Torch

    Easy-to-use,Modular and Extendible package of deep-learning models

    DeepCTR-Torch is an easy-to-use, Modular and Extendible package of deep-learning-based CTR models along with lots of core components layers that can be used to build your own custom model easily.It is compatible with PyTorch.You can use any complex model with model.fit() and model.predict(). With the great success of deep learning, DNN-based techniques have been widely used in CTR estimation tasks. The data in the CTR estimation task usually includes high sparse,high cardinality categorical features and some dense numerical features. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    pyntcloud

    pyntcloud

    pyntcloud is a Python library for working with 3D point clouds

    This page will introduce the general concept of point clouds and illustrate the capabilities of pyntcloud as a point cloud processing tool. Point clouds are one of the most relevant entities for representing three dimensional data these days, along with polygonal meshes (which are just a special case of point clouds with connectivity graph attached). In its simplest form, a point cloud is a set of points in a cartesian coordinate system. Accurate 3D point clouds can nowadays be (easily and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    TorchGAN

    TorchGAN

    Research Framework for easy and efficient training of GANs

    The torchgan package consists of various generative adversarial networks and utilities that have been found useful in training them. This package provides an easy-to-use API which can be used to train popular GANs as well as develop newer variants. The core idea behind this project is to facilitate easy and rapid generative adversarial model research. TorchGAN is a Pytorch-based framework for designing and developing Generative Adversarial Networks. This framework has been designed to provide building blocks for popular GANs and also to allow customization for cutting-edge research. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Pytorch Points 3D

    Pytorch Points 3D

    Pytorch framework for doing deep learning on point clouds

    ...We aim to build a tool that can be used for benchmarking SOTA models, while also allowing practitioners to efficiently pursue research into point cloud analysis, with the end goal of building models which can be applied to real-life applications. Task driven implementation with dynamic model and dataset resolution from arguments. Core implementation of common components for point cloud deep learning - greatly simplifying the creation of new models. 4 Base Convolution base classes to simplify the implementation of new convolutions. Each base class supports a different data format.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next