Open Source Python Machine Learning Software - Page 8

Python Machine Learning Software

View 441 business solutions

Browse free open source Python Machine Learning Software and projects below. Use the toggles on the left to filter open source Python Machine Learning Software by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Turn Your Content into Interactive Magic - For Free Icon
    Turn Your Content into Interactive Magic - For Free

    From Canva to Slides, Desmos to YouTube, Lumio works with the tech tools you are already using.

    Transform anything you share into an engaging digital experience - for free. Instantly convert your PDFs, slides, and files into dynamic, interactive sessions with built-in collaboration tools, activities, and real-time assessment. From teaching to training to team building, make every presentation unforgettable. Used by millions for education, business, and professional development.
    Start Free Forever
  • 1
    AWS Step Functions Data Science SDK

    AWS Step Functions Data Science SDK

    For building machine learning (ML) workflows and pipelines on AWS

    The AWS Step Functions Data Science SDK is an open-source library that allows data scientists to easily create workflows that process and publish machine learning models using Amazon SageMaker and AWS Step Functions. You can create machine learning workflows in Python that orchestrate AWS infrastructure at scale, without having to provision and integrate the AWS services separately. The best way to quickly review how the AWS Step Functions Data Science SDK works is to review the related example notebooks. These notebooks provide code and descriptions for creating and running workflows in AWS Step Functions Using the AWS Step Functions Data Science SDK. In Amazon SageMaker, example Jupyter notebooks are available in the example notebooks portion of a notebook instance. To run the AWS Step Functions Data Science SDK example notebooks locally, download the sample notebooks and open them in a working Jupyter instance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Adversarial Robustness Toolbox

    Adversarial Robustness Toolbox

    Adversarial Robustness Toolbox (ART) - Python Library for ML security

    Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to evaluate, defend, certify and verify Machine Learning models and applications against the adversarial threats of Evasion, Poisoning, Extraction, and Inference. ART supports all popular machine learning frameworks (TensorFlow, Keras, PyTorch, MXNet, sci-kit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types (images, tables, audio, video, etc.) and machine learning tasks (classification, object detection, generation, certification, etc.).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection. Albumentations supports different computer vision tasks such as classification, semantic segmentation, instance segmentation, object detection, and pose estimation. Albumentations works well with data from different domains: photos, medical images, satellite imagery, manufacturing and industrial applications, Generative Adversarial Networks. Albumentations can work with various deep learning frameworks such as PyTorch and Keras.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Alibi Detect

    Alibi Detect

    Algorithms for outlier, adversarial and drift detection

    Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline detectors for tabular data, text, images and time series. Both TensorFlow and PyTorch backends are supported for drift detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    Alibi Explain

    Alibi Explain

    Algorithms for explaining machine learning models

    Alibi is a Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-quality implementations of black-box, white-box, local and global explanation methods for classification and regression models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    AliceMind

    AliceMind

    ALIbaba's Collection of Encoder-decoders from MinD

    This repository provides pre-trained encoder-decoder models and its related optimization techniques developed by Alibaba's MinD (Machine IntelligeNce of Damo) Lab. Pre-trained models for natural language understanding (NLU). We extend BERT to a new model, StructBERT, by incorporating language structures into pre-training. Specifically, we pre-train StructBERT with two auxiliary tasks to make the most of the sequential order of words and sentences, which leverage language structures at the word and sentence levels, respectively. Pre-trained models for natural language generation (NLG). We propose a novel scheme that jointly pre-trains an autoencoding and autoregressive language model on a large unlabeled corpus, specifically designed for generating new text conditioned on context. It achieves new SOTA results in several downstream tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Alphafold2

    Alphafold2

    Unofficial Pytorch implementation / replication of Alphafold2

    To eventually become an unofficial working Pytorch implementation of Alphafold2, the breathtaking attention network that solved CASP14. Will be gradually implemented as more details of the architecture is released. Once this is replicated, I intend to fold all available amino acid sequences out there in-silico and release it as an academic torrent, to further science. Deepmind has open sourced the official code in Jax, along with the weights! This repository will now be geared towards a straight pytorch translation with some improvements on positional encoding. lhatsk has reported training a modified trunk of this repository, using the same setup as trRosetta, with competitive results. The underlying assumption is that the trunk works on the residue level, and then constitutes to atomic level for the structure module, whether it be SE3 Transformers, E(n)-Transformer, or EGNN doing the refinement.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    AmpliGraph

    AmpliGraph

    Python library for Representation Learning on Knowledge Graphs

    Open source library based on TensorFlow that predicts links between concepts in a knowledge graph. AmpliGraph is a suite of neural machine learning models for relational Learning, a branch of machine learning that deals with supervised learning on knowledge graphs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Apache MXNet (incubating)

    Apache MXNet (incubating)

    A flexible and efficient library for deep learning

    Apache MXNet is an open source deep learning framework designed for efficient and flexible research prototyping and production. It contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations. On top of this is a graph optimization layer, overall making MXNet highly efficient yet still portable, lightweight and scalable.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    Asteroid

    Asteroid

    The PyTorch-based audio source separation toolkit for researchers

    The PyTorch-based audio source separation toolkit for researchers. Pytorch-based audio source separation toolkit that enables fast experimentation on common datasets. It comes with a source code thats supports a large range of datasets and architectures, and a set of recipes to reproduce some important papers. Building blocks are thought and designed to be seamlessly plugged together. Filterbanks, encoders, maskers, decoders and losses are all common building blocks that can be combined in a flexible way to create new systems. Extending the toolkit with new features is simple. Add a new filterbank, separator architecture, dataset or even recipe very easily. Recipes provide an easy way to reproduce results with data preparation, system design, training and evaluation in a single script. This is an essential tool for the community! The default logger is TensorBoard in all the recipes. From the recipe folder, you can run the following to visualize the logs of all your runs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Audiomentations

    Audiomentations

    A Python library for audio data augmentation

    A Python library for audio data augmentation. Inspired by albumentations. Useful for deep learning. Runs on CPU. Supports mono audio and multichannel audio. Can be integrated in training pipelines in e.g. Tensorflow/Keras or Pytorch. Has helped people get world-class results in Kaggle competitions. Is used by companies making next-generation audio products. Mix in another sound, e.g. a background noise. Useful if your original sound is clean and you want to simulate an environment where background noise is present. A folder of (background noise) sounds to be mixed in must be specified. These sounds should ideally be at least as long as the input sounds to be transformed. Otherwise, the background sound will be repeated, which may sound unnatural. Note that the gain of the added noise is relative to the amount of signal in the input. This implies that if the input is completely silent, no noise will be added.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Auto-PyTorch

    Auto-PyTorch

    Automatic architecture search and hyperparameter optimization

    While early AutoML frameworks focused on optimizing traditional ML pipelines and their hyperparameters, another trend in AutoML is to focus on neural architecture search. To bring the best of these two worlds together, we developed Auto-PyTorch, which jointly and robustly optimizes the network architecture and the training hyperparameters to enable fully automated deep learning (AutoDL). Auto-PyTorch is mainly developed to support tabular data (classification, regression) and time series data (forecasting). The newest features in Auto-PyTorch for tabular data are described in the paper "Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL" (see below for bibtex ref). Details about Auto-PyTorch for multi-horizontal time series forecasting tasks can be found in the paper "Efficient Automated Deep Learning for Time Series Forecasting" (also see below for bibtex ref).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    AutoKeras

    AutoKeras

    AutoML library for deep learning

    AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras is to make machine learning accessible to everyone. AutoKeras only support Python 3. If you followed previous steps to use virtualenv to install tensorflow, you can just activate the virtualenv. Currently, AutoKeras is only compatible with Python >= 3.7 and TensorFlow >= 2.8.0. AutoKeras supports several tasks with extremely simple interface. AutoKeras would search for the best detailed configuration for you. Moreover, you can override the base classes to create your own block.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    AutoMLOps

    AutoMLOps

    Build MLOps Pipelines in Minutes

    AutoMLOps is a service that generates, provisions, and deploys CI/CD integrated MLOps pipelines, bridging the gap between Data Science and DevOps. AutoMLOps provides a repeatable process that dramatically reduces the time required to build MLOps pipelines. The service generates a containerized MLOps codebase, provides infrastructure-as-code to provision and maintain the underlying MLOps infra, and provides deployment functionalities to trigger and run MLOps pipelines. AutoMLOps gives flexibility over the tools and technologies used in the MLOps pipelines, allowing users to choose from a wide range of options for artifact repositories, build tools, provisioning tools, orchestration frameworks, and source code repositories. AutoMLOps can be configured to either use existing infra, or provision new infra, including source code repositories for versioning the generated MLOps codebase, build configs and triggers, artifact repositories for storing docker containers, storage buckets, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Autodistill

    Autodistill

    Images to inference with no labeling

    Autodistill uses big, slower foundation models to train small, faster supervised models. Using autodistill, you can go from unlabeled images to inference on a custom model running at the edge with no human intervention in between. You can use Autodistill on your own hardware, or use the Roboflow hosted version of Autodistill to label images in the cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Avalanche

    Avalanche

    End-to-End Library for Continual Learning based on PyTorch

    Avalanche is an end-to-end Continual Learning library based on Pytorch, born within ContinualAI with the unique goal of providing a shared and collaborative open-source (MIT licensed) codebase for fast prototyping, training and reproducible evaluation of continual learning algorithms. Avalanche can help Continual Learning researchers in several ways. This module maintains a uniform API for data handling: mostly generating a stream of data from one or more datasets. It contains all the major CL benchmarks (similar to what has been done for torchvision). Provides all the necessary utilities concerning model training. This includes simple and efficient ways of implementing new continual learning strategies as well as a set of pre-implemented CL baselines and state-of-the-art algorithms you will be able to use for comparison! Avalanche the first experiment of an End-to-end Library for reproducible continual learning research & development where you can find benchmarks, algorithms, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Awesome AI-ML-DL

    Awesome AI-ML-DL

    Awesome Artificial Intelligence, Machine Learning and Deep Learning

    Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics. This repo is dedicated to engineers, developers, data scientists and all other professions that take interest in AI, ML, DL and related sciences. To make learning interesting and to create a place to easily find all the necessary material. Please contribute, watch, star, fork and share the repo with others in your community.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Awesome Community Detection Research

    Awesome Community Detection Research

    A curated list of community detection research papers

    A collection of community detection papers. A curated list of community detection research papers with implementations. Similar collections about graph classification, classification/regression tree, fraud detection, and gradient boosting papers with implementations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Awesome Decision Tree Papers

    Awesome Decision Tree Papers

    A collection of research papers on decision, classification, etc.

    A collection of research papers on decision, classification and regression trees with implementations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Awesome Fraud Detection Research Papers

    Awesome Fraud Detection Research Papers

    A curated list of data mining papers about fraud detection

    A curated list of data mining papers about fraud detection from several conferences.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    BCI Project Triathlon
    A three-step approach towards experimental brain-computer-interfaces, based on the OCZ nia device for EEG-data acquisition and artificial neural networks for signal-interpretation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    BERTScore

    BERTScore

    BERT score for text generation

    Automatic Evaluation Metric described in the paper BERTScore: Evaluating Text Generation with BERT (ICLR 2020). We now support about 130 models (see this spreadsheet for their correlations with human evaluation). Currently, the best model is Microsoft/debate-large-online, please consider using it instead of the default roberta-large in order to have the best correlation with human evaluation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    BEVFormer

    BEVFormer

    Implementation of BEVFormer, a camera-only framework

    3D visual perception tasks, including 3D detection and map segmentation based on multi-camera images, are essential for autonomous driving systems. In this work, we present a new framework termed BEVFormer, which learns unified BEV representations with spatiotemporal transformers to support multiple autonomous driving perception tasks. In a nutshell, BEVFormer exploits both spatial and temporal information by interacting with spatial and temporal space through predefined grid-shaped BEV queries. To aggregate spatial information, we design spatial cross-attention that each BEV query extracts the spatial features from the regions of interest across camera views. For temporal information, we propose temporal self-attention to recurrently fuse the history BEV information. Our approach achieves the new state-of-the-art 56.9\% in terms of NDS metric on the nuScenes \texttt{test} set, which is 9.0 points higher than previous best arts and on par with the performance of LiDAR-based baseline.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Bayesian machine learning notebooks

    Bayesian machine learning notebooks

    Notebooks about Bayesian methods for machine learning

    Notebooks about Bayesian methods for machine learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    BerryNet

    BerryNet

    Deep learning gateway on Raspberry Pi and other edge devices

    This project turns edge devices such as Raspberry Pi into an intelligent gateway with deep learning running on it. No internet connection is required, everything is done locally on the edge device itself. Further, multiple edge devices can create a distributed AIoT network. At DT42, we believe that bringing deep learning to edge devices is the trend towards the future. It not only saves costs of data transmission and storage but also makes devices able to respond according to the events shown in the images or videos without connecting to the cloud. One of the applications of this intelligent gateway is to use the camera to monitor the place you care about. For example, Figure 3 shows the analyzed results from the camera hosted in the DT42 office. The frames were captured by the IP camera and they were submitted into the AI engine. The output from the AI engine will be shown in the dashboard.
    Downloads: 0 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.