Open Source Python Machine Learning Software - Page 5

Python Machine Learning Software

View 447 business solutions

Browse free open source Python Machine Learning Software and projects below. Use the toggles on the left to filter open source Python Machine Learning Software by OS, license, language, programming language, and project status.

  • Zenflow- The AI Workflow Engine for Software Devs Icon
    Zenflow- The AI Workflow Engine for Software Devs

    Parallel agents. Multi-agent orchestration. Specs that turn into shipped code. Zenflow automates planning, coding, testing, and verification.

    Zenflow is the AI workflow engine built for real teams. Parallel agents plan, code, test, and verify in one workflow. With spec-driven development and deep context, Zenflow turns requirements into production-ready output so teams ship faster and stay in flow.
    Try free now
  • Auth0 for AI Agents now in GA Icon
    Auth0 for AI Agents now in GA

    Ready to implement AI with confidence (without sacrificing security)?

    Connect your AI agents to apps and data more securely, give users control over the actions AI agents can perform and the data they can access, and enable human confirmation for critical agent actions.
    Start building today
  • 1
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    Initially, this project started as the 4th edition of Python Machine Learning. However, after putting so much passion and hard work into the changes and new topics, we thought it deserved a new title. So, what’s new? There are many contents and additions, including the switch from TensorFlow to PyTorch, new chapters on graph neural networks and transformers, a new section on gradient boosting, and many more that I will detail in a separate blog post. For those who are interested in knowing what this book covers in general, I’d describe it as a comprehensive resource on the fundamental concepts of machine learning and deep learning. The first half of the book introduces readers to machine learning using scikit-learn, the defacto approach for working with tabular datasets. Then, the second half of this book focuses on deep learning, including applications to natural language processing and computer vision.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Machine-Learning

    Machine-Learning

    kNN, decision tree, Bayesian, logistic regression, SVM

    Machine-Learning is a repository focused on practical machine learning implementations in Python, covering classic algorithms like k-Nearest Neighbors, decision trees, naive Bayes, logistic regression, support vector machines, linear and tree-based regressions, and likely corresponding code examples and documentation. It targets learners or practitioners who want to understand and implement ML algorithms from scratch or via standard libraries, gaining hands-on experience rather than relying solely on black-box frameworks. This makes the repo suitable for students, hobbyists, or developers who want to deeply understand how ML algorithms work under the hood and experiment with parameter tuning or custom data. Because it's part of the author’s learning-path repositories, it likely is integrated with tutorials, sample datasets, and contextual guidance, which helps users bridge theory.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    MiniSom

    MiniSom

    MiniSom is a minimalistic implementation of the Self Organizing Maps

    MiniSom is a minimalistic and Numpy-based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial Neural Network able to convert complex, nonlinear statistical relationships between high-dimensional data items into simple geometric relationships on a low-dimensional display. Minisom is designed to allow researchers to easily build on top of it and to give students the ability to quickly grasp its details. The project initially aimed for a minimalistic implementation of the Self-Organizing Map (SOM) algorithm, focusing on simplicity in features, dependencies, and code style. Although it has expanded in terms of features, it remains minimalistic by relying only on the numpy library and emphasizing vectorization in coding style.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    OpenBB

    OpenBB

    Investment Research for Everyone, Everywhere

    Customize and speed up your analysis, bring your own data, and create instant reports to gain a competitive edge. Whether it’s a CSV file, a private endpoint, an RSS feed, or even embed an SEC filing directly. Chat with financial data using large language models. Don’t waste time reading, create summaries in seconds and ask how that impacts investments. Create your dashboard with your favorite widgets. Create charts directly from raw data in seconds. Create charts directly from raw data in seconds. Customize your dashboards to build your dream terminal, integrate with your private datasets and bring your own fine-tuned AI copilots.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 5
    OpenPrompt

    OpenPrompt

    An Open-Source Framework for Prompt-Learning

    Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modifies the input text with a textual template and directly uses PLMs to conduct pre-trained tasks. OpenPrompt is a library built upon PyTorch and provides a standard, flexible and extensible framework to deploy the prompt-learning pipeline. OpenPrompt supports loading PLMs directly from huggingface transformers. In the future, we will also support PLMs implemented by other libraries. The template is one of the most important modules in prompt learning, which wraps the original input with textual or soft-encoding sequence. Use the implementations of current prompt-learning approaches.* We have implemented various of prompting methods, including templating, verbalizing and optimization strategies under a unified standard. You can easily call and understand these methods.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Orion

    Orion

    A machine learning library for detecting anomalies in signals

    Orion is a machine-learning library built for unsupervised time series anomaly detection. Such signals are generated by a wide variety of systems, few examples include telemetry data generated by satellites, signals from wind turbines, and even stock market price tickers. We built this to provide one place where users can find the latest and greatest in machine learning and deep learning world including our own innovations. Abstract away from the users the nitty-gritty about preprocessing, finding the best pipeline, and postprocessing. We want to provide a systematic way to evaluate the latest and greatest machine learning methods via our benchmarking effort. Build time series anomaly detection platforms custom to their workflows through our backend database and rest API. A way for machine learning researchers to contribute in a scaffolded way so their innovations are immediately available to the end users.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    PaddlePaddle models

    PaddlePaddle models

    Pre-trained and Reproduced Deep Learning Models

    Pre-trained and Reproduced Deep Learning Models ("Flying Paddle" official model library, including a variety of academic frontier and industrial scene verification of deep learning models) Flying Paddle's industrial-level model library includes a large number of mainstream models that have been polished by industrial practice for a long time and models that have won championships in international competitions; it provides many scenarios for semantic understanding, image classification, target detection, image segmentation, text recognition, speech synthesis, etc. An end-to-end development kit that meets the needs of enterprises for low-cost development and rapid integration. The model library of Flying Paddle is an industrial-level model library tailored around the actual R&D process of domestic enterprises, serving enterprises in many fields such as energy, finance, industry, and agriculture.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    PennyLane

    PennyLane

    A cross-platform Python library for differentiable programming

    A cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural network. Built-in automatic differentiation of quantum circuits, using the near-term quantum devices directly. You can combine multiple quantum devices with classical processing arbitrarily! Support for hybrid quantum and classical models, and compatible with existing machine learning libraries. Quantum circuits can be set up to interface with either NumPy, PyTorch, JAX, or TensorFlow, allowing hybrid CPU-GPU-QPU computations. The same quantum circuit model can be run on different devices. Install plugins to run your computational circuits on more devices, including Strawberry Fields, Amazon Braket, Qiskit and IBM Q, Google Cirq, Rigetti Forest, and the Microsoft QDK.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Petastorm

    Petastorm

    Petastorm library enables single machine or distributed training

    Petastorm library enables single machine or distributed training and evaluation of deep learning models from datasets in Apache Parquet format. It supports ML frameworks such as Tensorflow, Pytorch, and PySpark and can be used from pure Python code. Petastorm is an open-source data access library developed at Uber ATG. This library enables single machine or distributed training and evaluation of deep learning models directly from datasets in Apache Parquet format. Petastorm supports popular Python-based machine learning (ML) frameworks such as Tensorflow, PyTorch, and PySpark. It can also be used from pure Python code. A dataset created using Petastorm is stored in Apache Parquet format. On top of a Parquet schema, petastorm also stores higher-level schema information that makes multidimensional arrays into a native part of a petastorm dataset. Petastorm supports extensible data codecs. These enable a user to use one of the standard data compressions (jpeg, png) or implement her own.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 10
    PyTorch Forecasting

    PyTorch Forecasting

    Time series forecasting with PyTorch

    PyTorch Forecasting aims to ease state-of-the-art time series forecasting with neural networks for both real-world cases and research alike. The goal is to provide a high-level API with maximum flexibility for professionals and reasonable defaults for beginners. A time series dataset class that abstracts handling variable transformations, missing values, randomized subsampling, multiple history lengths, etc. A base model class that provides basic training of time series models along with logging in tensorboard and generic visualizations such actual vs predictions and dependency plots. Multiple neural network architectures for timeseries forecasting that have been enhanced for real-world deployment and come with in-built interpretation capabilities. The package is built on PyTorch Lightning to allow training on CPUs, single and multiple GPUs out-of-the-box.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Qlib

    Qlib

    Qlib is an AI-oriented quantitative investment platform

    Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment. With Qlib, you can easily try your ideas to create better Quant investment strategies. An increasing number of SOTA Quant research works/papers are released in Qlib. With Qlib, users can easily try their ideas to create better Quant investment strategies. At the module level, Qlib is a platform that consists of above components. The components are designed as loose-coupled modules and each component could be used stand-alone.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Ray

    Ray

    A unified framework for scalable computing

    Modern workloads like deep learning and hyperparameter tuning are compute-intensive and require distributed or parallel execution. Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. Find the best model and reduce training costs by using the latest optimization algorithms. Deploy your machine learning models at scale with Ray Serve, a Python-first and framework agnostic model serving framework. Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO. Easily build out scalable, distributed systems in Python with simple and composable primitives in Ray Core.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    RoboSat

    RoboSat

    Semantic segmentation on aerial and satellite imagery

    RoboSat is an end-to-end pipeline written in Python 3 for feature extraction from aerial and satellite imagery. Features can be anything visually distinguishable in the imagery for example: buildings, parking lots, roads, or cars.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Seldon Core

    Seldon Core

    An MLOps framework to package, deploy, monitor and manage models

    The de facto standard open-source platform for rapidly deploying machine learning models on Kubernetes. Seldon Core, our open-source framework, makes it easier and faster to deploy your machine learning models and experiments at scale on Kubernetes. Seldon Core serves models built in any open-source or commercial model building framework. You can make use of powerful Kubernetes features like custom resource definitions to manage model graphs. And then connect your continuous integration and deployment (CI/CD) tools to scale and update your deployment. Built on Kubernetes, runs on any cloud and on-premises. Framework agnostic, supports top ML libraries, toolkits and languages. Advanced deployments with experiments, ensembles and transformers. Our open-source framework makes it easier and faster to deploy your machine learning models and experiments at scale on Kubernetes. The Kubeflow project is dedicated to making deployments of machine learning (ML) workflows on Kubernetes.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Stable Baselines3

    Stable Baselines3

    PyTorch version of Stable Baselines

    Stable Baselines3 (SB3) is a set of reliable implementations of reinforcement learning algorithms in PyTorch. It is the next major version of Stable Baselines. You can read a detailed presentation of Stable Baselines3 in the v1.0 blog post or our JMLR paper. These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around which new ideas can be added, and as a tool for comparing a new approach against existing ones. We also hope that the simplicity of these tools will allow beginners to experiment with a more advanced toolset, without being buried in implementation details.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    TPOT

    TPOT

    A Python Automated Machine Learning tool that optimizes ML

    Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming. TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    TensorFlow Addons

    TensorFlow Addons

    Useful extra functionality for TensorFlow 2.x maintained by SIG-addons

    TensorFlow Addons is a repository of contributions that conform to well-established API patterns but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast-moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community). The maintainers of TensorFlow Addons can be found in the CODEOWNERS file of the repo. This file is parsed and pull requests will automatically tag the owners using a bot. If you would like to maintain something, please feel free to submit a PR. We encourage multiple owners for all submodules. TensorFlow Addons is actively working towards forward compatibility with TensorFlow 2.x.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    TensorFlow Object Counting API

    TensorFlow Object Counting API

    The TensorFlow Object Counting API is an open source framework

    The TensorFlow Object Counting API is an open source framework built on top of TensorFlow and Keras that makes it easy to develop object counting systems. Please contact if you need professional object detection & tracking & counting project with super high accuracy and reliability! You can train TensorFlow models with your own training data to built your own custom object counter system! If you want to learn how to do it, please check one of the sample projects, which cover some of the theory of transfer learning and show how to apply it in useful projects. The development is on progress! The API will be updated soon, the more talented and light-weight API will be available in this repo! Detailed API documentation and sample jupyter notebooks that explain basic usages of API will be added!
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Thinc

    Thinc

    A refreshing functional take on deep learning

    Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose, configure and deploy custom models built with their favorite framework. Switch between PyTorch, TensorFlow and MXNet models without changing your application, or even create mutant hybrids using zero-copy array interchange. Develop faster and catch bugs sooner with sophisticated type checking. Trying to pass a 1-dimensional array into a model that expects two dimensions? That’s a type error. Your editor can pick it up as the code leaves your fingers.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    TorchIO

    TorchIO

    Medical imaging toolkit for deep learning

    TorchIO is an open-source Python library for efficient loading, preprocessing, augmentation and patch-based sampling of 3D medical images in deep learning, following the design of PyTorch. It includes multiple intensity and spatial transforms for data augmentation and preprocessing. These transforms include typical computer vision operations such as random affine transformations and also domain-specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity (bias) or k-space motion artifacts. TorchIO is a Python package containing a set of tools to efficiently read, preprocess, sample, augment, and write 3D medical images in deep learning applications written in PyTorch, including intensity and spatial transforms for data augmentation and preprocessing. Transforms include typical computer vision operations such as random affine transformations and also domain-specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    Transformer Engine

    Transformer Engine

    A library for accelerating Transformer models on NVIDIA GPUs

    Transformer Engine (TE) is a library for accelerating Transformer models on NVIDIA GPUs, including using 8-bit floating point (FP8) precision on Hopper GPUs, to provide better performance with lower memory utilization in both training and inference. TE provides a collection of highly optimized building blocks for popular Transformer architectures and an automatic mixed precision-like API that can be used seamlessly with your framework-specific code. TE also includes a framework-agnostic C++ API that can be integrated with other deep-learning libraries to enable FP8 support for Transformers. As the number of parameters in Transformer models continues to grow, training and inference for architectures such as BERT, GPT, and T5 become very memory and compute-intensive. Most deep learning frameworks train with FP32 by default. This is not essential, however, to achieve full accuracy for many deep learning models.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Triton Inference Server

    Triton Inference Server

    The Triton Inference Server provides an optimized cloud

    Triton Inference Server is an open-source inference serving software that streamlines AI inferencing. Triton enables teams to deploy any AI model from multiple deep learning and machine learning frameworks, including TensorRT, TensorFlow, PyTorch, ONNX, OpenVINO, Python, RAPIDS FIL, and more. Triton supports inference across cloud, data center, edge, and embedded devices on NVIDIA GPUs, x86 and ARM CPU, or AWS Inferentia. Triton delivers optimized performance for many query types, including real-time, batched, ensembles, and audio/video streaming. Provides Backend API that allows adding custom backends and pre/post-processing operations. Model pipelines using Ensembling or Business Logic Scripting (BLS). HTTP/REST and GRPC inference protocols based on the community-developed KServe protocol. A C API and Java API allow Triton to link directly into your application for edge and other in-process use cases.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    UMAP

    UMAP

    Uniform Manifold Approximation and Projection

    Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualization similarly to t-SNE, but also for general non-linear dimension reduction. It is possible to model the manifold with a fuzzy topological structure. The embedding is found by searching for a low-dimensional projection of the data that has the closest possible equivalent fuzzy topological structure. First of all UMAP is fast. It can handle large datasets and high dimensional data without too much difficulty, scaling beyond what most t-SNE packages can manage. This includes very high dimensional sparse datasets. UMAP has successfully been used directly on data with over a million dimensions. Second, UMAP scales well in the embedding dimension—it isn't just for visualization. You can use UMAP as a general-purpose dimension reduction technique as a preliminary step to other machine learning tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    fastai

    fastai

    Deep learning library

    fastai is a deep learning library which provides practitioners with high-level components that can quickly and easily provide state-of-the-art results in standard deep learning domains, and provides researchers with low-level components that can be mixed and matched to build new approaches. It aims to do both things without substantial compromises in ease of use, flexibility, or performance. This is possible thanks to a carefully layered architecture, which expresses common underlying patterns of many deep learning and data processing techniques in terms of decoupled abstractions. These abstractions can be expressed concisely and clearly by leveraging the dynamism of the underlying Python language and the flexibility of the PyTorch library. fastai is organized around two main design goals: to be approachable and rapidly productive, while also being deeply hackable and configurable. It is built on top of a hierarchy of lower-level APIs which provide composable building blocks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    flair

    flair

    A very simple framework for state-of-the-art NLP

    A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. A powerful NLP library. Flair allows you to apply our state-of-the-art natural language processing (NLP) models to your text, such as named entity recognition (NER), sentiment analysis, part-of-speech tagging (PoS), special support for biomedical texts, sense disambiguation and classification, with support for a rapidly growing number of languages. A text embedding library. Flair has simple interfaces that allow you to use and combine different word and document embeddings, including our proposed Flair embeddings and various transformers. A PyTorch NLP framework. Our framework builds directly on PyTorch, making it easy to train your own models and experiment with new approaches using Flair embeddings and classes.
    Downloads: 1 This Week
    Last Update:
    See Project