Showing 25 open source projects for "map"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Powerful cloud-based licensing solution designed for fast-growing software businesses. Icon
    Powerful cloud-based licensing solution designed for fast-growing software businesses.

    A single-point of license control for desktop, SaaS, and mobile applications, APIs, VMs and devices.

    10Duke Enterprise is a cloud-based, scalable and flexible software licensing solution enabling software vendors to easily configure, manage and monetize the licenses they provide to their customers in real-time.
    Learn More
  • 1
    MiniSom

    MiniSom

    MiniSom is a minimalistic implementation of the Self Organizing Maps

    ...Minisom is designed to allow researchers to easily build on top of it and to give students the ability to quickly grasp its details. The project initially aimed for a minimalistic implementation of the Self-Organizing Map (SOM) algorithm, focusing on simplicity in features, dependencies, and code style. Although it has expanded in terms of features, it remains minimalistic by relying only on the numpy library and emphasizing vectorization in coding style.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    segment-geospatial

    segment-geospatial

    A Python package for segmenting geospatial data with the SAM

    The segment-geospatial package draws its inspiration from segment-anything-eo repository authored by Aliaksandr Hancharenka. To facilitate the use of the Segment Anything Model (SAM) for geospatial data, I have developed the segment-anything-py and segment-geospatial Python packages, which are now available on PyPI and conda-forge. My primary objective is to simplify the process of leveraging SAM for geospatial data analysis by enabling users to achieve this with minimal coding effort. I...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    ViZDoom

    ViZDoom

    Doom-based AI research platform for reinforcement learning

    ...Customizable resolution and rendering parameters. Access to the depth buffer (3D vision). Automatic labeling of game objects visible in the frame. Access to the list of actors/objects and map geometry.ViZDoom API is reinforcement learning friendly (suitable also for learning from demonstration, apprenticeship learning or apprenticeship via inverse reinforcement learning.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    SSD in PyTorch 1.0

    SSD in PyTorch 1.0

    High quality, fast, modular reference implementation of SSD in PyTorch

    This repository implements SSD (Single Shot MultiBox Detector). The implementation is heavily influenced by the projects ssd.pytorch, pytorch-ssd and maskrcnn-benchmark. This repository aims to be the code base for research based on SSD. Multi-GPU training and inference: We use DistributedDataParallel, you can train or test with arbitrary GPU(s), the training schema will change accordingly. Add your own modules without pain. We abstract backbone, Detector, BoxHead, BoxPredictor, etc. You can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Leverage AI to Automate Medical Coding Icon
    Leverage AI to Automate Medical Coding

    Medical Coding Solution

    As a healthcare provider, you should be paid promptly for the services you provide to patients. Slow, inefficient, and error-prone manual coding keeps you from the financial peace you deserve. XpertDox’s autonomous coding solution accelerates the revenue cycle so you can focus on providing great healthcare.
    Learn More
  • 5
    Keras Attention Mechanism

    Keras Attention Mechanism

    Attention mechanism Implementation for Keras

    ...Both have the same number of parameters for a fair comparison (250K). The attention is expected to be the highest after the delimiters. An overview of the training is shown below, where the top represents the attention map and the bottom the ground truth. As the training progresses, the model learns the task and the attention map converges to the ground truth. We consider many 1D sequences of the same length. The task is to find the maximum of each sequence. We give the full sequence processed by the RNN layer to the attention layer. We expect the attention layer to focus on the maximum of each sequence.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    NanoDet-Plus

    NanoDet-Plus

    Lightweight anchor-free object detection model

    ...We also introduce a light feature pyramid called Ghost-PAN to enhance multi-layer feature fusion. These improvements boost previous NanoDet's detection accuracy by 7 mAP on COCO dataset. NanoDet provide multi-backend C++ demo including ncnn, OpenVINO and MNN. There is also an Android demo based on ncnn library. Supports various backends including ncnn, MNN and OpenVINO. Also provide Android demo based on ncnn inference framework.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 7
    handson-ml2

    handson-ml2

    Jupyter notebooks that walk you through the fundamentals of ML

    This repository contains the Jupyter notebooks and code for the second edition of a popular hands-on machine learning book that teaches both classical ML and deep learning using modern tooling. The notebooks emphasize end-to-end workflows: data preparation, model selection, tuning, and reliable evaluation. Deep learning sections use the contemporary Keras/TensorFlow 2 ecosystem, highlighting clean APIs and eager execution to make experiments easier to reason about. Traditional ML topics...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    DeepCTR

    DeepCTR

    Package of deep-learning based CTR models

    ...The data in CTR estimation task usually includes high sparse,high cardinality categorical features and some dense numerical features. Since DNN are good at handling dense numerical features,we usually map the sparse categorical features to dense numerical through embedding technique.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    BEVFormer

    BEVFormer

    Implementation of BEVFormer, a camera-only framework

    3D visual perception tasks, including 3D detection and map segmentation based on multi-camera images, are essential for autonomous driving systems. In this work, we present a new framework termed BEVFormer, which learns unified BEV representations with spatiotemporal transformers to support multiple autonomous driving perception tasks. In a nutshell, BEVFormer exploits both spatial and temporal information by interacting with spatial and temporal space through predefined grid-shaped BEV queries. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • AI-First Supply Chain Management Icon
    AI-First Supply Chain Management

    Supply chain managers, executives, and businesses seeking AI-powered solutions to optimize planning, operations, and decision-making across the supply

    Logility is a market-leading provider of AI-first supply chain management solutions engineered to help organizations build sustainable digital supply chains that improve people’s lives and the world we live in. The company’s approach is designed to reimagine supply chain planning by shifting away from traditional “what happened” processes to an AI-driven strategy that combines the power of humans and machines to predict and be ready for what’s coming. Logility’s fully integrated, end-to-end platform helps clients know faster, turn uncertainty into opportunity, and transform the supply chain from a cost center to an engine for growth.
    Learn More
  • 10
    PromptSource

    PromptSource

    Toolkit for creating, sharing and using natural language prompts

    ...A common denominator in these works is the use of prompts which has gained interest among NLP researchers and engineers. This emphasizes the need for new tools to create, share and use natural language prompts. Prompts are functions that map an example from a dataset to a natural language input and target output. PromptSource contains a growing collection of prompts (which we call P3: Public Pool of Prompts). As of January 20, 2022, there are ~2'000 English prompts for 170+ English datasets in P3.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Minkowski Engine

    Minkowski Engine

    Auto-diff neural network library for high-dimensional sparse tensors

    The Minkowski Engine is an auto-differentiation library for sparse tensors. It supports all standard neural network layers such as convolution, pooling, unspooling, and broadcasting operations for sparse tensors. The Minkowski Engine supports various functions that can be built on a sparse tensor. We list a few popular network architectures and applications here. To run the examples, please install the package and run the command in the package root directory. Compressing a neural network to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Machine Learning Beginner

    Machine Learning Beginner

    Machine Learning Beginner Public Account Works

    Machine Learning Beginner targets newcomers who are just getting started with machine learning and need a gentle, guided path. It introduces the core vocabulary and the mental map of supervised and unsupervised learning before moving into simple algorithms. The materials prioritize conceptual clarity, then progressively add code to solidify understanding. Step-by-step examples help learners see how data preparation, model training, evaluation, and iteration fit together. Because the scope is intentionally beginner-friendly, it’s an approachable springboard to more advanced resources. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    GluonNLP

    GluonNLP

    NLP made easy

    GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you load the text data, process the text data, and train models. To facilitate both the engineers and researchers, we provide command-line-toolkits for downloading and processing the NLP datasets. Gluon NLP makes it easy to evaluate and train word embeddings. Here are examples to evaluate the pre-trained embeddings included in the Gluon NLP toolkit as well as example scripts for training...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    imgaug

    imgaug

    Image augmentation for machine learning experiments

    ...Affine transformations, perspective transformations, contrast changes, gaussian noise, dropout of regions, hue/saturation changes, cropping/padding, blurring, etc. Rotate image and segmentation map on it by the same value sampled. Convert keypoints to distance maps, extract pixels within bounding boxes from images, clip polygon to the image plane, etc. Scale segmentation maps, average/max pool of images/maps, pad images to aspect ratios (e.g. to square them). Draw heatmaps, segmentation maps, keypoints, bounding boxes, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    mAP

    mAP

    Evaluates the performance of your neural net for object recognition

    In practice, a higher mAP value indicates a better performance of your neural net, given your ground truth and set of classes. The performance of your neural net will be judged using the mAP criteria defined in the PASCAL VOC 2012 competition. We simply adapted the official Matlab code into Python (in our tests they both give the same results). First, your neural net detection-results are sorted by decreasing confidence and are assigned to ground-truth objects.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    SSD Keras

    SSD Keras

    A Keras port of single shot MultiBox detector

    ...Ports of the trained weights of all the original models are provided below. This implementation is accurate, meaning that both the ported weights and models trained from scratch produce the same mAP values as the respective models of the original Caffe implementation. The main goal of this project is to create an SSD implementation that is well documented for those who are interested in a low-level understanding of the model. The provided tutorials, documentation and detailed comments hopefully make it a bit easier to dig into the code and adapt or build upon the model than with most other implementations out there (Keras or otherwise) that provide little to no documentation and comments. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    DeepLearn

    DeepLearn

    Implementation of research papers on Deep Learning+ NLP+ CV in Python

    Welcome to DeepLearn. This repository contains an implementation of the following research papers on NLP, CV, ML, and deep learning. The required dependencies are mentioned in requirement.txt. I will also use dl-text modules for preparing the datasets. If you haven't use it, please do have a quick look at it. CV, transfer learning, representation learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    GNAT

    GNAT

    GNAT recognizes gene names in text and maps them to NCBI Entrez Gene

    GNAT is a BioNLP/text mining tool to recognize and identify gene/protein names in natural language text. It will detect mentions of genes in text, such as PubMed/Medline abstracts, and disambiguate them to remove false positives and map them to the correct entry in the NCBI Entrez Gene database by gene ID. March 2017: We started to upload GNAT output on Medline. See files/results/medline/.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Lip Reading

    Lip Reading

    Cross Audio-Visual Recognition using 3D Architectures

    ...The essential problem is to find the correspondence between the audio and visual streams, which is the goal of this work. We proposed the utilization of a coupled 3D Convolutional Neural Network (CNN) architecture that can map both modalities into a representation space to evaluate the correspondence of audio-visual streams using the learned multimodal features.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20

    SPAWNN

    SPatial Analysis With self-organizing Neural Networks

    The SPAWNN toolkit is an innovative toolkit for spatial analysis with self-organizing neural networks which is particularily useful for spatial analysis, visualization and geographical data mining. To run the toolkit, simply download and execute (double-click) the jar-file. Please cite: - Hagenauer, J., & Helbich, M. (2016). SPAWNN: A Toolkit for SPatial Analysis With Self-Organizing Neural Networks. Transactions in GIS, 20(5), 755-775. Other related publications: - Hagenauer, J....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Intelligent Keyword Miner

    Intelligent Keyword Miner

    Intelligent SEO keyword miner and predicing tool

    ...Difference is, this program is intelligent and it accepts your input data and then predicts keywords based on your likes or dislikes. As the main engine, it uses the SMOReg algorithm to analyze and map the keyword frequencies of your data. This can be a great SEO tool to help increase the traffic of any website featuring a product.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    HW SOM

    HW SOM

    SOM - Self-Organizing Maps of Teuvo Kohonen

    It's a "Hello World" implementation of SOM (Self-Organizing Map) of Teuvo Kohonen, otherwise called as the Kohonen map or Kohonen artificial neural networks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    WAP RSSI 2 ARFF

    WAP RSSI 2 ARFF

    This program scans WAP RSSI readings and turns then into an ARFF file.

    This program runs on a laptop with a wireless card. It scan for wireless access points (WAPs) and notes their Base Station ID or BSSID and their Received Signal Strength Indicator or RSSI. This data, along with an identifier for the physical location or 'ROOM', and the name of the computer it is being run on are stored as an ARFF file, which is compatible with programs such as WEKA and RAPIDMINER.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Example of using Neural networks to implement chase between mouses and cats. Mouses search for cheese on map, while cats are chasing mouses. Goal of the project is to see will both sides learn some new behavior over time using genetic algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    SmartMap

    SmartMap

    SmartMap is an easy desktop random world creator.

    SmartMap (C# cross-platform) is a procedural style world-map creation utility or "Desktop World." A simple scene manager is included using plugin style building blocks and object pathfinding. Also included is a 2D world editor with graphical features. SmartMap is currently built in conjunction with the Axiom 3D rendering engine.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next