Showing 5 open source projects for "gpu processing"

View related business solutions
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • Leverage AI to Automate Medical Coding Icon
    Leverage AI to Automate Medical Coding

    Medical Coding Solution

    As a healthcare provider, you should be paid promptly for the services you provide to patients. Slow, inefficient, and error-prone manual coding keeps you from the financial peace you deserve. XpertDox’s autonomous coding solution accelerates the revenue cycle so you can focus on providing great healthcare.
    Learn More
  • 1
    darktable

    darktable

    darktable is an open source photography workflow application

    darktable is an open source photography workflow application and non-destructive raw developer. A virtual lighttable and darkroom for photographers. It manages your digital negatives in a database, lets you view them through a zoomable lighttable and enables you to develop raw images, enhance them and export them on local or remote storage.
    Downloads: 41 This Week
    Last Update:
    See Project
  • 2
    A GUI interface to a tool for generating SSBumps (Self Shadowed Bump Maps). Includes a CUDA GPU rendering extension.
    Leader badge
    Downloads: 16 This Week
    Last Update:
    See Project
  • 3
    HIPAcc

    HIPAcc

    Heterogeneous Image Processing Acceleration (HIPACC) Framework

    HIPAcc development has moved to github: https://github.com/hipacc HIPAcc allows to design image processing kernels and algorithms in a domain-specific language (DSL). From this high-level description, low-level target code for GPU accelerators is generated using source-to-source translation. As back ends, the framework supports CUDA, OpenCL, and Renderscript. HIPAcc allows programmers to develop imaging applications while providing high productivity, flexibility and portability as well as competitive performance: the same algorithm description serves as basis for targeting different GPU accelerators and low-level languages.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4

    LBP in multiple platforms

    LBP implementation in multiple computing platforms (ARM,GPU, DSP...)

    ...When selecting a suitable LBP implementation platform, the specific application and its requirements in terms of performance, size, energy efficiency, cost and developing time has to be carefully considered. This is a software toolbox that collects software implementations of the Local Binary Pattern operator in several platforms: - OpenCL for CPU & GPU - OpenCL for GPU (branchless) - C code optimized for ARM - OpenGL ES 2.0 shaders mobile GPUs - C code for TI C64x DSP core (branchless) - C code for TTA processor synthesis If you use the code somewhere, please cite: Bordallo López M., Nieto A., Boutellier J., Hannuksela J., and Silvén O. "Evaluation of real-time LBP computing in multiple architectures," Journal of Real Time Image Processing, 2014
    Downloads: 0 This Week
    Last Update:
    See Project
  • Create and run cloud-based virtual machines. Icon
    Create and run cloud-based virtual machines.

    Secure and customizable compute service that lets you create and run virtual machines.

    Computing infrastructure in predefined or custom machine sizes to accelerate your cloud transformation. General purpose (E2, N1, N2, N2D) machines provide a good balance of price and performance. Compute optimized (C2) machines offer high-end vCPU performance for compute-intensive workloads. Memory optimized (M2) machines offer the highest memory and are great for in-memory databases. Accelerator optimized (A2) machines are based on the A100 GPU, for very demanding applications.
    Try for free
  • 5
    A gathering of state-of-the-art tools for GPU based image processing. They are the sourcecode for related research articles, and provide the basis for own experimentation. All are being implemented forNVidia GPUs in Linux, hence the name "nvision" ;)
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next