Showing 58 open source projects for "data collection algorithm"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 1
    LangChain

    LangChain

    ⚡ Building applications with LLMs through composability ⚡

    Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. But using these LLMs in isolation is often not enough to create a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge. This library is aimed at assisting in the development of those types of applications.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 2
    Tongyi DeepResearch

    Tongyi DeepResearch

    Tongyi Deep Research, the Leading Open-source Deep Research Agent

    DeepResearch (Tongyi DeepResearch) is an open-source “deep research agent” developed by Alibaba’s Tongyi Lab designed for long-horizon, information-seeking tasks. It’s built to act like a research agent: synthesizing, reasoning, retrieving information via the web and documents, and backing its outputs with evidence. The model is about 30.5 billion parameters in size, though at any given token only ~3.3B parameters are active. It uses a mix of synthetic data generation, fine-tuning...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    Deepchecks

    Deepchecks

    Test Suites for validating ML models & data

    Deepchecks is the leading tool for testing and for validating your machine learning models and data, and it enables doing so with minimal effort. Deepchecks accompany you through various validation and testing needs such as verifying your data’s integrity, inspecting its distributions, validating data splits, evaluating your model and comparing between different models. While you’re in the research phase, and want to validate your data, find potential methodological problems, and/or validate...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    DeepLabCut

    DeepLabCut

    Implementation of DeepLabCut

    DeepLabCut™ is an efficient method for 2D and 3D markerless pose estimation based on transfer learning with deep neural networks that achieves excellent results (i.e. you can match human labeling accuracy) with minimal training data (typically 50-200 frames). We demonstrate the versatility of this framework by tracking various body parts in multiple species across a broad collection of behaviors. The package is open source, fast, robust, and can be used to compute 3D pose estimates...
    Downloads: 4 This Week
    Last Update:
    See Project
  • Connect every part of your business to one bank account Icon
    Connect every part of your business to one bank account

    North One is a business banking app that integrates cash flow, payments, and budgeting to turn your North One Account into one Connected Bank Account

    North One is proudly built for small businesses, startups and freelancers across America. Make payments easily, keep tabs on your money and put your finances on autopilot through smart integrations with the tools you’re already using. North One was built to make managing money easy so you can focus on running your business. No more branches. No more lines. No more paperwork. Get complete access to your North One Account from your phone or computer, wherever your business takes you. Create Envelopes for taxes, payroll, rent, and anything else automatically.
    Get started for free.
  • 5
    Interpretable machine learning

    Interpretable machine learning

    Book about interpretable machine learning

    This book is about interpretable machine learning. Machine learning is being built into many products and processes of our daily lives, yet decisions made by machines don't automatically come with an explanation. An explanation increases the trust in the decision and in the machine learning model. As the programmer of an algorithm you want to know whether you can trust the learned model. Did it learn generalizable features? Or are there some odd artifacts in the training data which...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    OpenAssistant

    OpenAssistant

    Chat-based assistant that understands tasks

    ... the world interested in bringing this technology to everyone. The code and models are licensed under the Apache 2.0 license. Open Assistant will be free to use and modify. There will be versions which will be runnable on consumer hardware. You do not need to run the project locally unless you are contributing to the development process. The website link above will take you to the public website where you can use the data collection app.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    NVIDIA NeMo, part of the NVIDIA AI platform, is a toolkit for building new state-of-the-art conversational AI models. NeMo has separate collections for Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and Text-to-Speech (TTS) models. Each collection consists of prebuilt modules that include everything needed to train on your data. Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    We are working on new way for visual programming. We developed a desktop application called MLJAR Studio. It is a notebook-based development environment with interactive code recipes and a managed Python environment. All running locally on your machine. We are waiting for your feedback. The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. It is designed to save time for a data scientist. It abstracts the common way to preprocess the data, construct...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    NannyML

    NannyML

    Detecting silent model failure. NannyML estimates performance

    ... science, empowering data scientist to quickly understand and automatically detect silent model failure. By using NannyML, data scientists can finally maintain complete visibility and trust in their deployed machine learning models. When the actual outcome of your deployed prediction models is delayed, or even when post-deployment target labels are completely absent, you can use NannyML's CBPE-algorithm to estimate model performance.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    PyTorch Image Models

    PyTorch Image Models

    The largest collection of PyTorch image encoders / backbones

    timm (PyTorch Image Models) is a premier library hosting a vast collection of state-of-the-art image classification models and backbones such as ResNet, EfficientNet, NFNet, Vision Transformer, ConvNeXt, and more. Created by Ross Wightman and now maintained by Hugging Face, it includes pretrained weights, data loaders, augmentations, optimizers, schedulers, and reference scripts for training, evaluation, inference, and model export. It's an essential toolkit for vision research and production...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    fugue

    fugue

    A unified interface for distributed computing

    Fugue is a unified interface for distributed computing that lets users execute Python, Pandas, and SQL code on Spark, Dask, and Ray with minimal rewrites.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    Recommenders

    Recommenders

    Best practices on recommendation systems

    The Recommenders repository provides examples and best practices for building recommendation systems, provided as Jupyter notebooks. The module reco_utils contains functions to simplify common tasks used when developing and evaluating recommender systems. Several utilities are provided in reco_utils to support common tasks such as loading datasets in the format expected by different algorithms, evaluating model outputs, and splitting training/test data. Implementations of several state...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    HDBSCAN

    HDBSCAN

    A high performance implementation of HDBSCAN clustering

    ..., is intuitive and easy to select. HDBSCAN is ideal for exploratory data analysis; it's a fast and robust algorithm that you can trust to return meaningful clusters (if there are any).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Deep Lake

    Deep Lake

    Data Lake for Deep Learning. Build, manage, and query datasets

    ... Cross, Omdena, Yale, & Oxford. Use one API to upload, download, and stream datasets to/from AWS S3/S3-compatible storage, GCP, Activeloop cloud, or local storage. Store images, audios and videos in their native compression. Deeplake automatically decompresses them to raw data only when needed, e.g., when training a model. Treat your cloud datasets as if they are a collection of NumPy arrays in your system's memory. Slice them, index them, or iterate through them.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    PaddleX

    PaddleX

    PaddlePaddle End-to-End Development Toolkit

    ..., the validation set and the test set. Therefore, we need to divide the above data. Using the paddlex command, the data set can be randomly divided into 70% training set, 20% validation set and 10% test set. If you use the PaddleX visualization client for model training, the data set division function is integrated in the client, and you do not need to use command division by yourself.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    TorchMetrics

    TorchMetrics

    Machine learning metrics for distributed, scalable PyTorch application

    TorchMetrics is a collection of 80+ PyTorch metrics implementations and an easy-to-use API to create custom metrics. Your data will always be placed on the same device as your metrics. You can log Metric objects directly in Lightning to reduce even more boilerplate. The module-based metrics contain internal metric states (similar to the parameters of the PyTorch module) that automate accumulation and synchronization across devices! Automatic accumulation over multiple batches. Automatic...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    AWS MCP Servers

    AWS MCP Servers

    Helping you get the most out of AWS, wherever you use MCP

    AWS MCP Servers are a collection of remotely hosted, fully-managed Model Context Protocol (MCP) servers by AWS, providing AI applications with real-time access to AWS documentation, API references, best practices, and infrastructure-management capabilities via natural-language workflows. An MCP Server is a lightweight program that exposes specific capabilities through the standardized Model Context Protocol. Host applications (such as chatbots, IDEs, and other AI tools) have MCP clients...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    openTSNE

    openTSNE

    Extensible, parallel implementations of t-SNE

    openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1], a popular dimensionality-reduction algorithm for visualizing high-dimensional data sets. openTSNE incorporates the latest improvements to the t-SNE algorithm, including the ability to add new data points to existing embeddings [2], massive speed improvements [3] [4] [5], enabling t-SNE to scale to millions of data points, and various tricks to improve the global alignment of the resulting...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    TensorHouse

    TensorHouse

    A collection of reference Jupyter notebooks and demo AI/ML application

    TensorHouse is a scalable reinforcement learning (RL) platform that focuses on high-throughput experience generation and distributed training. It is designed to efficiently train agents across multiple environments and compute resources. TensorHouse enables flexible experiment management, making it suitable for large-scale RL experiments in both research and applied settings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    CTGAN

    CTGAN

    Conditional GAN for generating synthetic tabular data

    CTGAN is a collection of Deep Learning based synthetic data generators for single table data, which are able to learn from real data and generate synthetic data with high fidelity. If you're just getting started with synthetic data, we recommend installing the SDV library which provides user-friendly APIs for accessing CTGAN. The SDV library provides wrappers for preprocessing your data as well as additional usability features like constraints. When using the CTGAN library directly, you may...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    homemade-machine-learning is a repository by Oleksii Trekhleb containing Python implementations of classic machine-learning algorithms done “from scratch”, meaning you don’t rely heavily on high-level libraries but instead write the logic yourself to deepen understanding. Each algorithm is accompanied by mathematical explanations, visualizations (often via Jupyter notebooks), and interactive demos so you can tweak parameters, data, and observe outcomes in real time. The purpose is pedagogical...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    VikingDB MCP Server

    VikingDB MCP Server

    A mcp server for vikingdb store and search

    An MCP server that interfaces with VikingDB, a high-performance vector database developed by ByteDance, enabling efficient vector storage and search capabilities. ​
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Argilla

    Argilla

    The open-source data curation platform for LLMs

    ... libraries without implementing any specific interface. Most annotation tools treat data collection as a one-off activity at the beginning of each project. In real-world projects, data collection is a key activity of the iterative process of ML model development. Once a model goes into production, you want to monitor and analyze its predictions, and collect more data to improve your model over time. Argilla is designed to close this gap, enabling you to iterate as much as you need.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Milvus Bootcamp

    Milvus Bootcamp

    Dealing with all unstructured data, such as reverse image search

    Milvus Bootcamp is a collection of tutorials, examples, and best practices for using Milvus, an open-source vector database designed for AI-powered similarity search and retrieval applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    MiniSom

    MiniSom

    MiniSom is a minimalistic implementation of the Self Organizing Maps

    MiniSom is a minimalistic and Numpy-based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial Neural Network able to convert complex, nonlinear statistical relationships between high-dimensional data items into simple geometric relationships on a low-dimensional display. Minisom is designed to allow researchers to easily build on top of it and to give students the ability to quickly grasp its details. The project initially aimed for a minimalistic implementation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next