Search Results for "data collection algorithm"

Showing 220 open source projects for "data collection algorithm"

View related business solutions
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 1
    X's Recommendation Algorithm

    X's Recommendation Algorithm

    Source code for the X Recommendation Algorithm

    The Algorithm is Twitter’s open source release of the core ranking system that powers the platform’s home timeline. It provides transparency into how tweets are selected, prioritized, and surfaced to users, reflecting Twitter’s move toward openness in recommendation algorithms. The repository contains the recommendation pipeline, which incorporates signals such as engagement, relevance, and content features, and demonstrates how they combine to form ranked outputs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    harmonypy

    harmonypy

    Integrate multiple high-dimensional datasets with fuzzy k-means

    Harmony is an algorithm for integrating multiple high-dimensional datasets. harmonypy is a port of the harmony R package by Ilya Korsunsky. Harmony is a general-purpose R package with an efficient algorithm for integrating multiple data sets. It is especially useful for large single-cell datasets such as single-cell RNA-seq.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    TikZ

    TikZ

    TikZ figures for concepts in physics/chemistry/ML

    Collection of 111 standalone TikZ figures for illustrating concepts in physics, chemistry, and machine learning. Check out janosh.github.io to search, sort, open in Overleaf, and download figures (PDF/SVG/PNG) from this collection.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    Deepchecks

    Deepchecks

    Test Suites for validating ML models & data

    Deepchecks is the leading tool for testing and for validating your machine learning models and data, and it enables doing so with minimal effort. Deepchecks accompany you through various validation and testing needs such as verifying your data’s integrity, inspecting its distributions, validating data splits, evaluating your model and comparing between different models. While you’re in the research phase, and want to validate your data, find potential methodological problems, and/or validate your model and evaluate it. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • The All-in-One Commerce Platform for Businesses - Shopify Icon
    The All-in-One Commerce Platform for Businesses - Shopify

    Shopify offers plans for anyone that wants to sell products online and build an ecommerce store, small to mid-sized businesses as well as enterprise

    Shopify is a leading all-in-one commerce platform that enables businesses to start, build, and grow their online and physical stores. It offers tools to create customized websites, manage inventory, process payments, and sell across multiple channels including online, in-person, wholesale, and global markets. The platform includes integrated marketing tools, analytics, and customer engagement features to help merchants reach and retain customers. Shopify supports thousands of third-party apps and offers developer-friendly APIs for custom solutions. With world-class checkout technology, Shopify powers over 150 million high-intent shoppers worldwide. Its reliable, scalable infrastructure ensures fast performance and seamless operations at any business size.
    Learn More
  • 5
    AI Hedge Fund

    AI Hedge Fund

    An AI Hedge Fund Team

    This repository demonstrates how to build a simplified, automated hedge fund strategy powered by AI/ML. It integrates financial data collection, preprocessing, feature engineering, and predictive modeling to simulate decision-making in trading. The code shows workflows for pulling stock or market data, applying machine learning algorithms to forecast trends, and generating buy/sell/hold signals based on the predictions. Its structure is educational: intended more as a proof-of-concept than a ready-to-use financial product, giving learners insight into the mechanics of quantitative finance automation. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    openTSNE

    openTSNE

    Extensible, parallel implementations of t-SNE

    openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1], a popular dimensionality-reduction algorithm for visualizing high-dimensional data sets. openTSNE incorporates the latest improvements to the t-SNE algorithm, including the ability to add new data points to existing embeddings [2], massive speed improvements [3] [4] [5], enabling t-SNE to scale to millions of data points, and various tricks to improve the global alignment of the resulting visualizations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    We are working on new way for visual programming. We developed a desktop application called MLJAR Studio. It is a notebook-based development environment with interactive code recipes and a managed Python environment. All running locally on your machine. We are waiting for your feedback. The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. It is designed to save time for a data scientist. It abstracts the common way to preprocess the data,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    latexcv

    latexcv

    A collection of cv and resume templates written in LaTeX

    A collection of user-friendly LaTeX CV and résumé templates (packaged within the R Markdown vitae ecosystem), offering simple themes and templates for creating professional CVs without heavy TeX coding. Supports multiple display themes such as classic, modern, sidebar layouts.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    TensorHouse

    TensorHouse

    A collection of reference Jupyter notebooks and demo AI/ML application

    TensorHouse is a scalable reinforcement learning (RL) platform that focuses on high-throughput experience generation and distributed training. It is designed to efficiently train agents across multiple environments and compute resources. TensorHouse enables flexible experiment management, making it suitable for large-scale RL experiments in both research and applied settings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Enterprise and Small Business CRM Solution | Clear C2 C2CRM Icon
    Enterprise and Small Business CRM Solution | Clear C2 C2CRM

    Voted Best CRM System with Top Ranked Customer Support. CRM Management includes Sales, Marketing, Relationship Management, and Help Desk.

    C2CRM consists of four modules that integrate to provide a comprehensive CRM solution: Relationship Management, Sales Automation, Marketing Automation, and Customer Service. Only buy what each user needs.
    Learn More
  • 10
    spyder

    spyder

    The scientific Python development environment

    Spyder is a free and open source scientific environment written in Python, for Python, and designed by and for scientists, engineers and data analysts. It features a unique combination of the advanced editing, analysis, debugging, and profiling functionality of a comprehensive development tool with the data exploration, interactive execution, deep inspection, and beautiful visualization capabilities of a scientific package. Spyder’s multi-language Editor integrates a number of powerful tools...
    Downloads: 165 This Week
    Last Update:
    See Project
  • 11
    Interpretable machine learning

    Interpretable machine learning

    Book about interpretable machine learning

    ...Machine learning is being built into many products and processes of our daily lives, yet decisions made by machines don't automatically come with an explanation. An explanation increases the trust in the decision and in the machine learning model. As the programmer of an algorithm you want to know whether you can trust the learned model. Did it learn generalizable features? Or are there some odd artifacts in the training data which the algorithm picked up? This book will give an overview over techniques that can be used to make black boxes as transparent as possible and explain decisions. In the first chapter algorithms that produce simple, interpretable models are introduced together with instructions how to interpret the output. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    homemade-machine-learning is a repository by Oleksii Trekhleb containing Python implementations of classic machine-learning algorithms done “from scratch”, meaning you don’t rely heavily on high-level libraries but instead write the logic yourself to deepen understanding. Each algorithm is accompanied by mathematical explanations, visualizations (often via Jupyter notebooks), and interactive demos so you can tweak parameters, data, and observe outcomes in real time. The purpose is pedagogical: you’ll see linear regression, logistic regression, k-means clustering, neural nets, decision trees, etc., built in Python using fundamentals like NumPy and Matplotlib, not hidden behind API calls. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    NannyML

    NannyML

    Detecting silent model failure. NannyML estimates performance

    ...By using NannyML, data scientists can finally maintain complete visibility and trust in their deployed machine learning models. When the actual outcome of your deployed prediction models is delayed, or even when post-deployment target labels are completely absent, you can use NannyML's CBPE-algorithm to estimate model performance.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    Helium Browser

    Helium Browser

    Private, fast, and honest web browser

    ...Helium blocks ads and trackers by default through an integrated, unbiased uBlock Origin extension prepackaged as a native browser component. Its UI and feature set emphasize minimalism, no “smart” recommendations, account sync, or background data collection, resulting in a distraction-free browsing experience that respects user autonomy. The browser is available across macOS, Linux, and Windows, each version built from a fully open source pipeline for reproducibility and trust. Development focuses on maintaining compatibility with modern web standards while decoupling Chromium from its Google dependencies and services.
    Downloads: 96 This Week
    Last Update:
    See Project
  • 15
    Argilla

    Argilla

    The open-source data curation platform for LLMs

    ...Argilla is free, open-source, and 100% compatible with major NLP libraries (Hugging Face transformers, spaCy, Stanford Stanza, Flair, etc.). In fact, you can use and combine your preferred libraries without implementing any specific interface. Most annotation tools treat data collection as a one-off activity at the beginning of each project. In real-world projects, data collection is a key activity of the iterative process of ML model development. Once a model goes into production, you want to monitor and analyze its predictions, and collect more data to improve your model over time. Argilla is designed to close this gap, enabling you to iterate as much as you need.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Dataproc Templates

    Dataproc Templates

    Dataproc templates and pipelines for solving simple in-cloud data task

    Dataproc templates are designed to address various in-cloud data tasks, including data import/export/backup/restore and bulk API operations. These templates leverage the power of Google Cloud's Dataproc, supporting both Dataproc Serverless and Dataproc clusters. Google provides this collection of pre-implemented Dataproc templates as a reference and for easy customization.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    CTGAN

    CTGAN

    Conditional GAN for generating synthetic tabular data

    CTGAN is a collection of Deep Learning based synthetic data generators for single table data, which are able to learn from real data and generate synthetic data with high fidelity. If you're just getting started with synthetic data, we recommend installing the SDV library which provides user-friendly APIs for accessing CTGAN. The SDV library provides wrappers for preprocessing your data as well as additional usability features like constraints. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    PyTorch Image Models

    PyTorch Image Models

    The largest collection of PyTorch image encoders / backbones

    timm (PyTorch Image Models) is a premier library hosting a vast collection of state-of-the-art image classification models and backbones such as ResNet, EfficientNet, NFNet, Vision Transformer, ConvNeXt, and more. Created by Ross Wightman and now maintained by Hugging Face, it includes pretrained weights, data loaders, augmentations, optimizers, schedulers, and reference scripts for training, evaluation, inference, and model export.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    IPyPlot

    IPyPlot

    Fast and efficient plotting of images inside Python Notebooks

    IPyPlot is a small python package offering fast and efficient plotting of images inside Python Notebooks. It's using IPython with HTML for faster, richer and more interactive way of displaying big numbers of images.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Recommenders

    Recommenders

    Best practices on recommendation systems

    The Recommenders repository provides examples and best practices for building recommendation systems, provided as Jupyter notebooks. The module reco_utils contains functions to simplify common tasks used when developing and evaluating recommender systems. Several utilities are provided in reco_utils to support common tasks such as loading datasets in the format expected by different algorithms, evaluating model outputs, and splitting training/test data. Implementations of several...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    VikingDB MCP Server

    VikingDB MCP Server

    A mcp server for vikingdb store and search

    An MCP server that interfaces with VikingDB, a high-performance vector database developed by ByteDance, enabling efficient vector storage and search capabilities. ​
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22

    Impacket

    A collection of Python classes for working with network protocols

    ...It features several protocols, including Ethernet, IP, TCP, UDP, ICMP, IGMP, ARP, NMB and SMB1, SMB2 and SMB3 and more. Impacket's object oriented API makes it easy to work with deep hierarchies of protocols. It can construct packets from scratch, as well as parse them from raw data.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 23
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    NVIDIA NeMo, part of the NVIDIA AI platform, is a toolkit for building new state-of-the-art conversational AI models. NeMo has separate collections for Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and Text-to-Speech (TTS) models. Each collection consists of prebuilt modules that include everything needed to train on your data. Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI architectures are typically large and require a lot of data and compute for training. NeMo uses PyTorch Lightning for easy and performant multi-GPU/multi-node mixed-precision training. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 24
    Bayesian Optimization

    Bayesian Optimization

    Python implementation of global optimization with gaussian processes

    This is a constrained global optimization package built upon bayesian inference and gaussian process, that attempts to find the maximum value of an unknown function in as few iterations as possible. This technique is particularly suited for optimization of high cost functions, situations where the balance between exploration and exploitation is important. More detailed information, other advanced features, and tips on usage/implementation can be found in the examples folder. Follow the basic...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    LangChain

    LangChain

    ⚡ Building applications with LLMs through composability ⚡

    Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. But using these LLMs in isolation is often not enough to create a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge. This library is aimed at assisting in the development of those types of applications.
    Downloads: 13 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next