Showing 152 open source projects for "data collection algorithm"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    LRSLibrary

    LRSLibrary

    Low-Rank and Sparse Tools for Background Modeling and Subtraction

    ...The algorithms can also be adapted to other computer vision or machine learning problems beyond video. Large algorithm collection: > 100 matrix- and tensor-based low-rank + sparse methods. Open-source license, documentation and references included.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    D4RL

    D4RL

    Collection of reference environments, offline reinforcement learning

    ...Researchers can load a dataset for a given task (e.g., maze navigation, manipulation) and apply their algorithm without the need to collect fresh transitions, which accelerates experimentation and comparison. The API is based on Gymnasium (via gym.make) and each environment also exposes a method get_dataset() that returns the offline data to learn from. The repository emphasizes open science, reproducibility, and benchmarking at scale, making it easier to compare algorithms on equal footing.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    openTSNE

    openTSNE

    Extensible, parallel implementations of t-SNE

    openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1], a popular dimensionality-reduction algorithm for visualizing high-dimensional data sets. openTSNE incorporates the latest improvements to the t-SNE algorithm, including the ability to add new data points to existing embeddings [2], massive speed improvements [3] [4] [5], enabling t-SNE to scale to millions of data points, and various tricks to improve the global alignment of the resulting visualizations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Deepchecks

    Deepchecks

    Test Suites for validating ML models & data

    Deepchecks is the leading tool for testing and for validating your machine learning models and data, and it enables doing so with minimal effort. Deepchecks accompany you through various validation and testing needs such as verifying your data’s integrity, inspecting its distributions, validating data splits, evaluating your model and comparing between different models. While you’re in the research phase, and want to validate your data, find potential methodological problems, and/or validate your model and evaluate it. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • The CRM you will want to use every day Icon
    The CRM you will want to use every day

    With CRM, Sales, and Marketing Automation in one, Act! gives you everything you need for happier clients, more revenue, and less stress.

    Act! Premium is perfect for small and midsize businesses looking to market better, sell more, and create customers for life. With unparalleled flexibility and freedom of choice, Act! Premium accommodates the unique ways you do business. Whether it’s customizations to fit your specific business or industry processes or your preferences for deployment and access, the possibilities with Act! Premium are limitless.
    Learn More
  • 5
    CUTLASS

    CUTLASS

    CUDA Templates for Linear Algebra Subroutines

    CUTLASS is a collection of CUDA C++ template abstractions for implementing high-performance matrix-multiplication (GEMM) and related computations at all levels and scales within CUDA. It incorporates strategies for hierarchical decomposition and data movement similar to those used to implement cuBLAS and cuDNN. CUTLASS decomposes these "moving parts" into reusable, modular software components abstracted by C++ template classes.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Interpretable machine learning

    Interpretable machine learning

    Book about interpretable machine learning

    ...Machine learning is being built into many products and processes of our daily lives, yet decisions made by machines don't automatically come with an explanation. An explanation increases the trust in the decision and in the machine learning model. As the programmer of an algorithm you want to know whether you can trust the learned model. Did it learn generalizable features? Or are there some odd artifacts in the training data which the algorithm picked up? This book will give an overview over techniques that can be used to make black boxes as transparent as possible and explain decisions. In the first chapter algorithms that produce simple, interpretable models are introduced together with instructions how to interpret the output. ...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 7
    DataFrame

    DataFrame

    C++ DataFrame for statistical, Financial, and ML analysis

    ...You can multi-column sort, custom pick, and delete the data. DataFrame also includes a large collection of analytical algorithms in the form of visitors. These are from basic stats such as Mean, and Std Deviation and return, … to more involved analysis such as Affinity Propagation, Polynomial Fit, and Fast Fourier transform of arbitrary length … including a good collection of trading indicators.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    TensorHouse

    TensorHouse

    A collection of reference Jupyter notebooks and demo AI/ML application

    TensorHouse is a scalable reinforcement learning (RL) platform that focuses on high-throughput experience generation and distributed training. It is designed to efficiently train agents across multiple environments and compute resources. TensorHouse enables flexible experiment management, making it suitable for large-scale RL experiments in both research and applied settings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    We are working on new way for visual programming. We developed a desktop application called MLJAR Studio. It is a notebook-based development environment with interactive code recipes and a managed Python environment. All running locally on your machine. We are waiting for your feedback. The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. It is designed to save time for a data scientist. It abstracts the common way to preprocess the data,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Zinrelo is a modern-day, enterprise grade loyalty rewards platform that enables businesses to launch a custom rewards program for their users. Icon
    Zinrelo is a modern-day, enterprise grade loyalty rewards platform that enables businesses to launch a custom rewards program for their users.

    For Online retailers and ecommerce companies that want to repeat customers.

    A modern-day, loyalty rewards platform, Zinrelo helps maximize repeat sales and per-customer revenue through 360-degree customer engagement. Zinrelo encourages multiple dimensions of loyalty including transactional, social, advocacy, engagement and behavioral loyalty. It supports omni-channel deployments that span across desktop, mobile and physical stores.
    Learn More
  • 10
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    homemade-machine-learning is a repository by Oleksii Trekhleb containing Python implementations of classic machine-learning algorithms done “from scratch”, meaning you don’t rely heavily on high-level libraries but instead write the logic yourself to deepen understanding. Each algorithm is accompanied by mathematical explanations, visualizations (often via Jupyter notebooks), and interactive demos so you can tweak parameters, data, and observe outcomes in real time. The purpose is pedagogical: you’ll see linear regression, logistic regression, k-means clustering, neural nets, decision trees, etc., built in Python using fundamentals like NumPy and Matplotlib, not hidden behind API calls. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    ReinforcementLearning.jl

    ReinforcementLearning.jl

    A reinforcement learning package for Julia

    A collection of tools for doing reinforcement learning research in Julia. Provide elaborately designed components and interfaces to help users implement new algorithms. Make it easy for new users to run benchmark experiments, compare different algorithms, and evaluate and diagnose agents. Facilitate reproducibility from traditional tabular methods to modern deep reinforcement learning algorithms. Make it easy for new users to run benchmark experiments, compare different algorithms, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Argilla

    Argilla

    The open-source data curation platform for LLMs

    ...Argilla is free, open-source, and 100% compatible with major NLP libraries (Hugging Face transformers, spaCy, Stanford Stanza, Flair, etc.). In fact, you can use and combine your preferred libraries without implementing any specific interface. Most annotation tools treat data collection as a one-off activity at the beginning of each project. In real-world projects, data collection is a key activity of the iterative process of ML model development. Once a model goes into production, you want to monitor and analyze its predictions, and collect more data to improve your model over time. Argilla is designed to close this gap, enabling you to iterate as much as you need.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    MCP Mongo Server

    MCP Mongo Server

    A Model Context Protocol Server for MongoDB

    A Model Context Protocol server that provides access to MongoDB databases, enabling Large Language Models to inspect collection schemas and execute MongoDB operations. ​
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    CTGAN

    CTGAN

    Conditional GAN for generating synthetic tabular data

    CTGAN is a collection of Deep Learning based synthetic data generators for single table data, which are able to learn from real data and generate synthetic data with high fidelity. If you're just getting started with synthetic data, we recommend installing the SDV library which provides user-friendly APIs for accessing CTGAN. The SDV library provides wrappers for preprocessing your data as well as additional usability features like constraints. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    NannyML

    NannyML

    Detecting silent model failure. NannyML estimates performance

    ...By using NannyML, data scientists can finally maintain complete visibility and trust in their deployed machine learning models. When the actual outcome of your deployed prediction models is delayed, or even when post-deployment target labels are completely absent, you can use NannyML's CBPE-algorithm to estimate model performance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    VikingDB MCP Server

    VikingDB MCP Server

    A mcp server for vikingdb store and search

    An MCP server that interfaces with VikingDB, a high-performance vector database developed by ByteDance, enabling efficient vector storage and search capabilities. ​
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    PyTorch Image Models

    PyTorch Image Models

    The largest collection of PyTorch image encoders / backbones

    timm (PyTorch Image Models) is a premier library hosting a vast collection of state-of-the-art image classification models and backbones such as ResNet, EfficientNet, NFNet, Vision Transformer, ConvNeXt, and more. Created by Ross Wightman and now maintained by Hugging Face, it includes pretrained weights, data loaders, augmentations, optimizers, schedulers, and reference scripts for training, evaluation, inference, and model export.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    NVIDIA NeMo, part of the NVIDIA AI platform, is a toolkit for building new state-of-the-art conversational AI models. NeMo has separate collections for Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and Text-to-Speech (TTS) models. Each collection consists of prebuilt modules that include everything needed to train on your data. Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI architectures are typically large and require a lot of data and compute for training. NeMo uses PyTorch Lightning for easy and performant multi-GPU/multi-node mixed-precision training. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 19
    The Operator Splitting QP Solver

    The Operator Splitting QP Solver

    The Operator Splitting QP Solver

    OSQP uses a specialized ADMM-based first-order method with custom sparse linear algebra routines that exploit structure in problem data. The algorithm is absolutely division-free after the setup and it requires no assumptions on problem data (the problem only needs to be convex). It just works. OSQP has an easy interface to generate customized embeddable C code with no memory manager required. OSQP supports many interfaces including C/C++, Fortran, Matlab, Python, R, Julia, Rust.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    PaddleX

    PaddleX

    PaddlePaddle End-to-End Development Toolkit

    PaddleX is a deep learning full-process development tool based on the core framework, development kit, and tool components of Paddle. It has three characteristics opening up the whole process, integrating industrial practice, and being easy to use and integrate. Image classification and labeling is the most basic and simplest labeling task. Users only need to put pictures belonging to the same category in the same folder. When the model is trained, we need to divide the training set, the...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 21
    Recommenders

    Recommenders

    Best practices on recommendation systems

    The Recommenders repository provides examples and best practices for building recommendation systems, provided as Jupyter notebooks. The module reco_utils contains functions to simplify common tasks used when developing and evaluating recommender systems. Several utilities are provided in reco_utils to support common tasks such as loading datasets in the format expected by different algorithms, evaluating model outputs, and splitting training/test data. Implementations of several...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Qdrant

    Qdrant

    Vector Database for the next generation of AI applications

    Qdrant is a vector similarity engine & vector database. It deploys as an API service providing search for the nearest high-dimensional vectors. With Qdrant, embeddings or neural network encoders can be turned into full-fledged applications for matching, searching, recommending, and much more! Provides the OpenAPI v3 specification to generate a client library in almost any programming language. Alternatively, utilize ready-made client for Python or other programming languages with additional...
    Downloads: 27 This Week
    Last Update:
    See Project
  • 23
    DALI

    DALI

    A GPU-accelerated library containing highly optimized building blocks

    The NVIDIA Data Loading Library (DALI) is a library for data loading and pre-processing to accelerate deep learning applications. It provides a collection of highly optimized building blocks for loading and processing image, video and audio data. It can be used as a portable drop-in replacement for built-in data loaders and data iterators in popular deep learning frameworks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    LangChain

    LangChain

    ⚡ Building applications with LLMs through composability ⚡

    Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. But using these LLMs in isolation is often not enough to create a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge. This library is aimed at assisting in the development of those types of applications.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 25
    Tongyi DeepResearch

    Tongyi DeepResearch

    Tongyi Deep Research, the Leading Open-source Deep Research Agent

    DeepResearch (Tongyi DeepResearch) is an open-source “deep research agent” developed by Alibaba’s Tongyi Lab designed for long-horizon, information-seeking tasks. It’s built to act like a research agent: synthesizing, reasoning, retrieving information via the web and documents, and backing its outputs with evidence. The model is about 30.5 billion parameters in size, though at any given token only ~3.3B parameters are active. It uses a mix of synthetic data generation, fine-tuning and...
    Downloads: 6 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next