Showing 123 open source projects for "xray-core"

View related business solutions
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    Audiogen Codec

    Audiogen Codec

    48khz stereo neural audio codec for general audio

    ...These codecs, being low compression, outperform Meta's EnCodec and DAC on general audio as validated from internal blind ELO games. We trained (relatively) very low compression codecs in the pursuit of solving a core issue regarding general music and audio generation, low acoustic quality, and audible artifacts, which hinder industry use for these models. Our hope is to encourage researchers to build hierarchical generative audio models that can efficiently use high sequence length representations without sacrificing semantic abilities.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Optax

    Optax

    Optax is a gradient processing and optimization library for JAX

    Optax is a gradient processing and optimization library for JAX. It is designed to facilitate research by providing building blocks that can be recombined in custom ways in order to optimize parametric models such as, but not limited to, deep neural networks. We favor focusing on small composable building blocks that can be effectively combined into custom solutions. Others may build upon these basic components in more complicated abstractions. Whenever reasonable, implementations prioritize...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Haiku Sonnet for JAX

    Haiku Sonnet for JAX

    JAX-based neural network library

    ...Haiku is a simple neural network library for JAX that enables users to use familiar object-oriented programming models while allowing full access to JAX's pure function transformations. Haiku provides two core tools: a module abstraction, hk.Module, and a simple function transformation, hk.transform. hk.Modules are Python objects that hold references to their own parameters, other modules, and methods that apply functions on user inputs. hk.transform turns functions that use these object-oriented, functionally "impure" modules into pure functions that can be used with jax.jit, jax.grad, jax.pmap, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Luna AI

    Luna AI

    Virtual AI anchor that combines state-of-the-art technology

    Luna AI is a virtual AI streamer framework designed to power an interactive VTuber that can go live on major platforms and chat with viewers in real time. It is built around a core assistant persona called “Luna AI,” which can be driven by a wide range of large language models and platforms, including GPT-style APIs, Claude, LangChain-based backends, ChatGLM, Kimi, Ollama, and many others. The project supports multiple rendering backends for the avatar, such as Live2D, Unreal Engine (UE), and “xuniren,” and can output to streaming platforms like Bilibili, Douyin, Kuaishou, WeChat Channels, Pinduoduo, Douyu, YouTube, Twitch, and TikTok. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 5
    Bert-VITS2

    Bert-VITS2

    VITS2 backbone with multilingual-bert

    Bert-VITS2 is a neural text-to-speech project that combines a VITS2 backbone with a multilingual BERT front-end to produce high-quality speech in multiple languages. The core idea is to use BERT-style contextual embeddings for text encoding while relying on a refined VITS2 architecture for acoustic generation and vocoding. The repository includes everything needed to train, fine-tune, and run the model, from configuration files to preprocessing scripts, spectrogram utilities, and training entrypoints for multi-GPU and multi-node setups. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Perception Models

    Perception Models

    State-of-the-art Image & Video CLIP, Multimodal Large Language Models

    Perception Models is a state-of-the-art framework developed by Facebook Research for advanced image and video perception tasks. It introduces two primary components: the Perception Encoder (PE) for visual feature extraction and the Perception Language Model (PLM) for multimodal decoding and reasoning. The PE module is a family of vision encoders designed to excel in image and video understanding, surpassing models like SigLIP2, InternVideo2, and DINOv2 across multiple benchmarks. Meanwhile,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    SurfSense

    SurfSense

    Connect any LLM to your internal knowledge sources

    ...Built as an alternative to proprietary tools like NotebookLM, Perplexity, and Glean, SurfSense allows integrations with a wide range of external data sources including Slack, Notion, Google Drive, GitHub, YouTube, and many enterprise systems, making it possible to interact with documents, chat logs, and structured data using natural language. Team collaboration is a core focus, with real-time shared chats, role-based access control, and comment threads enabling organized workflows. The platform also supports advanced retrieval augmented generation (RAG) capabilities, enabling powerful search and citation features that help answer questions with contextually relevant data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Qwen3-VL-Embedding

    Qwen3-VL-Embedding

    Multimodal embedding and reranking models built on Qwen3-VL

    Qwen3-VL-Embedding (with its companion Qwen3-VL-Reranker) is a state-of-the-art multimodal embedding and reranking model suite built on the open-sourced Qwen3-VL foundation, developed to handle diverse inputs including text, images, screenshots, and videos. The core embedding model maps such inputs into semantically rich vectors in a unified representation space, enabling similarity search, clustering, and cross-modal retrieval. The reranking model then precisely scores relevance between a given query and candidate documents, enhancing retrieval accuracy in complex multimodal tasks. Together, they support advanced information retrieval workflows such as image-text search, visual question answering (VQA), and video-text matching, while providing out-of-the-box support for more than 30 languages.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    AutoCoder

    AutoCoder

    A long-running autonomous coding agent powered by the Claude Agent

    ...It is built to support iterative refinement: after generating an initial draft, you can provide feedback or corrections, and the system will adjust the output to match evolving intentions. The core idea is to accelerate software production while preserving correctness and readability, minimizing the cognitive overhead that comes from switching between concept and implementation. Its architecture typically integrates language models with static analysis and template logic so that generated code is not only syntactically valid but also idiomatic and testable.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    Hiera

    Hiera

    A fast, powerful, and simple hierarchical vision transformer

    Hiera is a hierarchical vision transformer designed to be fast, simple, and strong across image and video recognition tasks. The core idea is to use straightforward hierarchical attention with a minimal set of architectural “bells and whistles,” achieving competitive or superior accuracy while being markedly faster at inference and often faster to train. The repository provides installation options (from source or Torch Hub), a model zoo with pre-trained checkpoints, and code for evaluation and fine-tuning on standard benchmarks. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    NeMo Curator

    NeMo Curator

    Scalable data pre processing and curation toolkit for LLMs

    ...The library provides a customizable and modular interface, simplifying pipeline expansion and accelerating model convergence through the preparation of high-quality tokens. At the core of the NeMo Curator is the DocumentDataset which serves as the the main dataset class. It acts as a straightforward wrapper around a Dask DataFrame. The Python library offers easy-to-use methods for expanding the functionality of your curation pipeline while eliminating scalability concerns.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    snorkel

    snorkel

    A system for quickly generating training data with weak supervision

    The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI application development platform based on the core ideas behind Snorkel. The Snorkel project started at Stanford in 2016 with a simple technical bet: that it would increasingly be the training data, not the models, algorithms, or infrastructure, that decided whether a machine learning project succeeded or failed. Given this premise, we set out to explore the radical idea that you could bring mathematical and systems structure to the messy and often entirely manual process of training data creation and management, starting by empowering users to programmatically label, build, and manage training data. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    PaddleX

    PaddleX

    PaddlePaddle End-to-End Development Toolkit

    PaddleX is a deep learning full-process development tool based on the core framework, development kit, and tool components of Paddle. It has three characteristics opening up the whole process, integrating industrial practice, and being easy to use and integrate. Image classification and labeling is the most basic and simplest labeling task. Users only need to put pictures belonging to the same category in the same folder.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    MuJoCo MPC

    MuJoCo MPC

    Real-time behaviour synthesis with MuJoCo, using Predictive Control

    ...The system supports multi-shooting optimization, enabling precise motion planning across diverse domains like quadruped locomotion, humanoid tracking, and dexterous manipulation. In addition to its C++ core, MJPC includes an experimental Python API, enabling integration with custom models and MuJoCo tasks for flexible scripting and experimentation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    ML Ferret

    ML Ferret

    Refer and Ground Anything Anywhere at Any Granularity

    Ferret is Apple’s end-to-end multimodal large language model designed specifically for flexible referring and grounding: it can understand references of any granularity (boxes, points, free-form regions) and then ground open-vocabulary descriptions back onto the image. The core idea is a hybrid region representation that mixes discrete coordinates with continuous visual features, so the model can fluidly handle “any-form” referring while maintaining precise spatial localization. The repo presents the vision-language pipeline, model assets, and paper resources that show how Ferret answers questions, follows instructions, and returns grounded outputs rather than just text. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    MoCo (Momentum Contrast)

    MoCo (Momentum Contrast)

    Self-supervised visual learning using momentum contrast in PyTorch

    MoCo is an open source PyTorch implementation developed by Facebook AI Research (FAIR) for the papers “Momentum Contrast for Unsupervised Visual Representation Learning” (He et al., 2019) and “Improved Baselines with Momentum Contrastive Learning” (Chen et al., 2020). It introduces Momentum Contrast (MoCo), a scalable approach to self-supervised learning that enables visual representation learning without labeled data. The core idea of MoCo is to maintain a dynamic dictionary with a momentum-updated encoder, allowing efficient contrastive learning across large batches. The repository includes implementations for both MoCo v1 and MoCo v2, the latter improving training stability and performance through architectural and augmentation enhancements. Training is optimized for distributed multi-GPU environments, using DistributedDataParallel for speed and simplicity.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Tiktoken

    Tiktoken

    tiktoken is a fast BPE tokeniser for use with OpenAI's models

    ...“cl100k_base”) and lets users switch encoding names to match different model contexts. It also offers extension mechanisms so that custom encodings can be registered. Internally, it includes the core tokenizer logic (often implemented in Rust or efficient lower-level code), APIs for encoding, decoding, and counting tokens, and binding layers to Python (and sometimes other languages) for easy use.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Haiku

    Haiku

    JAX-based neural network library

    Haiku is a library built on top of JAX designed to provide simple, composable abstractions for machine learning research. Haiku is a simple neural network library for JAX that enables users to use familiar object-oriented programming models while allowing full access to JAX’s pure function transformations. Haiku is designed to make the common things we do such as managing model parameters and other model state simpler and similar in spirit to the Sonnet library that has been widely used...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    NoneBot

    NoneBot

    Asynchronous multi-platform robot framework written in Python

    ...NoneBot2 provides an easy-to-use, interactive command-line tool -- nb-cli, making it easier to get started with NoneBot2 for the first time. The plug-in system is the core of NoneBot2, through which the modularization and function expansion of the robot can be realized, which is convenient for maintenance and management.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    MiniMax-01

    MiniMax-01

    Large-language-model & vision-language-model based on Linear Attention

    ...It has 456 billion total parameters with 45.9 billion activated per token and is trained with advanced parallel strategies such as LASP+, varlen ring attention, and Expert Tensor Parallelism, enabling a training context of 1 million tokens and up to 4 million tokens at inference. MiniMax-VL-01 extends this core by adding a 303M-parameter Vision Transformer and a two-layer MLP projector in a ViT–MLP–LLM framework, allowing the model to process images at dynamic resolutions up to 2016×2016.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    Griptape

    Griptape

    Python framework for AI workflows and pipelines with chain of thought

    The Griptape framework provides developers with the ability to create AI systems that operate across two dimensions: predictability and creativity. For predictability, Griptape enforces structures like sequential pipelines, DAG-based workflows, and long-term memory. To facilitate creativity, Griptape safely prompts LLMs with tools (keeping output data off prompt by using short-term memory), which connects them to external APIs and data stores. The framework allows developers to transition...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    PaddleNLP

    PaddleNLP

    Easy-to-use and powerful NLP library with Awesome model zoo

    PaddleNLP It is a natural language processing development library for flying paddles, with Easy-to-use text area API, Examples of applications for multiple scenarios, and High-performance distributed training Three major features, aimed at improving the modeling efficiency of the flying oar developer's text field, aiming to improve the developer's development efficiency in the text field, and provide rich examples of NLP applications. Provide rich industry-level pre-task capabilities...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    PennyLane

    PennyLane

    A cross-platform Python library for differentiable programming

    A cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural network. Built-in automatic differentiation of quantum circuits, using the near-term quantum devices directly. You can combine multiple quantum devices with classical processing arbitrarily! Support for hybrid quantum and classical models, and compatible with existing machine learning libraries. Quantum circuits can be set up to interface with either NumPy,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    GluonTS

    GluonTS

    Probabilistic time series modeling in Python

    GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models. GluonTS requires Python 3.6 or newer, and the easiest way to install it is via pip. We train a DeepAR-model and make predictions using the simple "airpassengers" dataset. The dataset consists of a single time-series, containing monthly international passengers between the years 1949 and 1960, a total of 144 values (12 years * 12 months). We split the dataset into train and test parts,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Recommenders

    Recommenders

    Best practices on recommendation systems

    ...Please see the setup guide for more details on setting up your machine locally, on a data science virtual machine (DSVM) or on Azure Databricks. Independent or incubating algorithms and utilities are candidates for the contrib folder. This will house contributions which may not easily fit into the core repository or need time to refactor or mature the code and add necessary tests.
    Downloads: 0 This Week
    Last Update:
    See Project