Showing 29 open source projects for "data flow"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • 1
    Claude-Flow

    Claude-Flow

    The leading agent orchestration platform for Claude

    Claude-Flow v2 Alpha is an advanced AI orchestration and automation framework designed for enterprise-grade, large-scale AI-driven development. It enables developers to coordinate multiple specialized AI agents in real time through a hive-mind architecture, combining swarm intelligence, neural reasoning, and a powerful set of 87 Modular Control Protocol (MCP) tools. The platform supports both quick swarm tasks and persistent multi-agent sessions known as hives, facilitating distributed AI...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    snorkel

    snorkel

    A system for quickly generating training data with weak supervision

    ...Given this premise, we set out to explore the radical idea that you could bring mathematical and systems structure to the messy and often entirely manual process of training data creation and management, starting by empowering users to programmatically label, build, and manage training data. Snorkel Flow, an end-to-end machine learning platform for developing and deploying AI applications. Snorkel Flow incorporates many of the concepts of the Snorkel project with a range of newer techniques around weak supervision modeling, data augmentation, multi-task learning, data slicing and structuring.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    DocArray

    DocArray

    The data structure for multimodal data

    ...The foundation data structure of Jina, CLIP-as-service, DALL·E Flow, DiscoArt etc. Data science powerhouse: greatly accelerate data scientists’ work on embedding, k-NN matching, querying, visualizing, evaluating via Torch/TensorFlow/ONNX/PaddlePaddle on CPU/GPU. Data in transit: optimized for network communication, ready-to-wire at anytime with fast and compressed serialization in Protobuf, bytes, base64, JSON, CSV, DataFrame.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    DeerFlow

    DeerFlow

    Deep Research framework, combining language models with tools

    ...It supports asynchronous task coordination, modular tool integration, and orchestrates the data flow between agents — making it suitable for large-scale or multi-stage research pipelines. Users can deploy it locally or on server infrastructure, integrate custom tools, and benefit from its flexible configuration.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cut Data Warehouse Costs up to 54% with BigQuery Icon
    Cut Data Warehouse Costs up to 54% with BigQuery

    Migrate from Snowflake, Databricks, or Redshift with free migration tools. Exabyte scale without the Exabyte price.

    BigQuery delivers up to 54% lower TCO than cloud alternatives. Migrate from legacy or competing warehouses using free BigQuery Migration Service with automated SQL translation. Get serverless scale with no infrastructure to manage, compressed storage, and flexible pricing—pay per query or commit for deeper discounts. New customers get $300 in free credit.
    Try BigQuery Free
  • 5
    ILLA Builder

    ILLA Builder

    Low-code platform allows you to build business apps

    ...Integrating AI agents into your app and empowering it with AI capabilities such as intelligent analysis, content generation, and more, without AI development skills. Use ILLA Flow to automate your workflow to ensure you always have the latest data and reduce repetitive tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    LLMs-from-scratch

    LLMs-from-scratch

    Implement a ChatGPT-like LLM in PyTorch from scratch, step by step

    LLMs-from-scratch is an educational codebase that walks through implementing modern large-language-model components step by step. It emphasizes building blocks—tokenization, embeddings, attention, feed-forward layers, normalization, and training loops—so learners understand not just how to use a model but how it works internally. The repository favors clear Python and NumPy or PyTorch implementations that can be run and modified without heavyweight frameworks obscuring the logic. Chapters...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    MCP Server Chart

    MCP Server Chart

    A visualization mcp contains 25+ visual charts

    mcp-server-chart is a TypeScript Model Context Protocol (MCP) server that turns AntV’s visualization stack into agent-callable tools for automatic chart generation and lightweight data analysis. Out of the box it exposes more than 20–25 chart generators—covering staples like bar, line, area, histogram and pie, plus advanced visuals such as dual-axes, heatmaps, radar, flow and fishbone diagrams—so an AI client can request a chart and receive an image URL in return. The server can run over stdio for desktop IDEs or via SSE/“streamable” HTTP transport, making it easy to plug into MCP-capable clients and platforms (including Dify) without custom glue code. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    HY-Motion 1.0

    HY-Motion 1.0

    HY-Motion model for 3D character animation generation

    HY-Motion 1.0 is an open-source, large-scale AI model suite developed by Tencent’s Hunyuan team that generates high-quality 3D human motion from simple text prompts, enabling the automatic production of fluid, diverse, and semantically accurate animations without manual keyframing or rigging. Built on advanced deep learning architectures that combine Diffusion Transformer (DiT) and flow matching techniques, HY-Motion scales these approaches to the billion-parameter level, resulting in strong instruction-following capabilities and richer motion outputs compared to existing open-source models. The training strategy for the HY-Motion series includes extensive pre-training on thousands of hours of varied motion data, fine-tuning on curated high-quality datasets, and reinforcement learning with human feedback, which improves both the plausibility and adaptability of generated motion sequences.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    Firecrawl MCP Server

    Firecrawl MCP Server

    Adds powerful web scraping and search to Cursor and Claude

    ...It exposes tools for single-page scrape, multi-URL batch jobs, site discovery, and search enrichment, returning cleaned, structured content suitable for downstream LLM reasoning. The server is designed to run with Firecrawl’s hosted API or self-hosted deployments, making it flexible for enterprise data-governance requirements. Built-in behaviors include JavaScript rendering, automatic retries, and streamable HTTP so long pages and large crawls can flow incrementally into agents. Because it’s an MCP server, clients get typed inputs/outputs and standardized error handling rather than ad-hoc prompt instructions. The repository is active, widely starred, and includes quick starts that make it easy to add web research to an agent stack.
    Downloads: 2 This Week
    Last Update:
    See Project
  • $300 in Free Credit for Your Google Cloud Projects Icon
    $300 in Free Credit for Your Google Cloud Projects

    Build, test, and explore on Google Cloud with $300 in free credit. No hidden charges. No surprise bills.

    Launch your next project with $300 in free Google Cloud credit—no hidden charges. Test, build, and deploy without risk. Use your credit across the Google Cloud platform to find what works best for your needs. After your credits are used, continue building with free monthly usage products. Only pay when you're ready to scale. Sign up in minutes and start exploring.
    Start Free Trial
  • 10
    FlowGram

    FlowGram

    Extensible workflow development framework

    FlowGram is an open-source, node-based workflow development framework and toolkit aimed at helping developers build custom AI-workflow platforms or automation systems through a visual, drag-and-drop interface. Instead of shipping as a ready-made product, it provides the building blocks — a canvas for wiring together nodes, a form engine for configuring node parameters, a variable-scope and type-inference engine, and a set of “materials” (pre-built node types such as code execution,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    FlowLens MCP

    FlowLens MCP

    Open-source MCP server that gives your coding agent

    ...It works together with a companion browser extension: when a user reproduces a bug or a complicated UI interaction, the extension captures a rich session log, including screen/video recording, network traffic, console logs, DOM events, storage changes, and more, and exports it. The MCP server then loads this captured “flow” and exposes it to the AI agent via the Model Context Protocol (MCP), letting the agent examine, search, filter, and reason about the session just as a human developer would, without needing the agent to re-run the flow or rely on minimal reproduction data (logs, screenshots).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Secret Llama

    Secret Llama

    Fully private LLM chatbot that runs entirely with a browser

    Secret Llama is a privacy-first large-language-model chatbot that runs entirely inside your web browser, meaning no server is required and your conversation data never leaves your device. It focuses on open-source model support, letting you load families like Llama and Mistral directly in the client for fully local inference. Because everything happens in-browser, it can work offline once models are cached, which is helpful for air-gapped environments or travel. The interface mirrors the...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    ChatterBot

    ChatterBot

    Machine learning, conversational dialog engine for creating chat bots

    ...This makes it easy for developers to create chat bots and automate conversations with users. For more details about the ideas and concepts behind ChatterBot see the process flow diagram. The language independent design of ChatterBot allows it to be trained to speak any language. Additionally, the machine-learning nature of ChatterBot allows an agent instance to improve it’s own knowledge of possible responses as it interacts with humans and other sources of informative data. An untrained instance of ChatterBot starts off with no knowledge of how to communicate. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    Deep Learning Models

    Deep Learning Models

    A collection of various deep learning architectures, models, and tips

    This repository collects clear, well-documented implementations of deep learning models and training utilities written by Sebastian Raschka. The code favors readability and pedagogy: components are organized so you can trace data flow through layers, losses, optimizers, and evaluation. Examples span fundamental architectures—MLPs, CNNs, RNN/Transformers—and practical tasks like image classification or text modeling. Reproducible training scripts and configuration files make it straightforward to rerun experiments or adapt them to your own datasets. The repo often pairs implementations with notes on design choices and trade-offs, turning it into both a toolbox and a learning resource. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    ADAMS

    ADAMS

    ADAMS is a workflow engine for building complex knowledge workflows.

    ADAMS is a flexible workflow engine aimed at quickly building and maintaining data-driven, reactive workflows, easily integrated into business processes. Instead of placing operators on a canvas and manually connecting them, a tree structure and flow control operators determine how data is processed (sequentially/parallel). This allows rapid development and easy maintenance of large workflows, with hundreds or thousands of operators.
    Leader badge
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    nlpaug

    nlpaug

    Data augmentation for NLP

    This Python library helps you with augmenting nlp for your machine learning projects. Visit this introduction to understand Data Augmentation in NLP. Augmenter is the basic element of augmentation while Flow is a pipeline to orchestra multi augmenters together.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    tf2_course

    tf2_course

    Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

    ...Rather than being book-based, it is course-based, meaning the flow, examples and structure lean toward interactive teaching and incremental builds. It’s well-suited for those who want a focused, deep-learning path rather than a broad ML textbook.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Machine-Learning

    Machine-Learning

    kNN, decision tree, Bayesian, logistic regression, SVM

    Machine-Learning is a repository focused on practical machine learning implementations in Python, covering classic algorithms like k-Nearest Neighbors, decision trees, naive Bayes, logistic regression, support vector machines, linear and tree-based regressions, and likely corresponding code examples and documentation. It targets learners or practitioners who want to understand and implement ML algorithms from scratch or via standard libraries, gaining hands-on experience rather than relying...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    OpenAI Glow

    OpenAI Glow

    Copy code in "Glow: Generative Flow with Invertible 1x1 Convolutions"

    Glow is an open source generative model released by OpenAI that demonstrates flow-based generative modeling techniques. Unlike models that rely on approximate inference, Glow uses invertible transformations to directly learn the data distribution, allowing for exact likelihood computation and efficient sampling. The model is capable of producing high-quality synthetic images while maintaining interpretable latent spaces that enable meaningful manipulation of generated outputs. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    Forecasting Best Practices

    Forecasting Best Practices

    Time Series Forecasting Best Practices & Examples

    Time series forecasting is one of the most important topics in data science. Almost every business needs to predict the future in order to make better decisions and allocate resources more effectively. This repository provides examples and best practice guidelines for building forecasting solutions. The goal of this repository is to build a comprehensive set of tools and examples that leverage recent advances in forecasting algorithms to build solutions and operationalize them. Rather than...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Aida Lib

    Aida Lib

    Aida is a language agnostic library for text generation

    Aida is a language-agnostic library for text generation. When using Aida, first you compose a tree of operations on your text that includes conditions via branches and other control flow. Later, you fill the tree with data and render the text. A building block is a variable class: Var. Use it to represent a value that you want to control later. A variable can hold numbers (e.g. float, int) or strings. You can create branches and complex logic with Branch. The context, represented by the class Ctx, is useful to create rules that depends on what has been written before. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Easy Machine Learning

    Easy Machine Learning

    Easy Machine Learning is a general-purpose dataflow-based system

    ...In the system, a learning task is formulated as a directed acyclic graph (DAG) in which each node represents an operation (e.g. a machine learning algorithm), and each edge represents the flow of the data from one node to its descendants.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Tangent

    Tangent

    Source-to-source debuggable derivatives in pure Python

    Existing libraries implement automatic differentiation by tracing a program's execution (at runtime, like PyTorch) or by staging out a dynamic data-flow graph and then differentiating the graph (ahead-of-time, like TensorFlow). In contrast, Tangent performs ahead-of-time autodiff on the Python source code itself, and produces Python source code as its output. Tangent fills a unique location in the space of machine learning tools. As a result, you can finally read your automatic derivative code just like the rest of your program. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    This code uses a technique originally developed for facial recognition to describe shear stress distributions in open channel flow. In this approach, a synthetic database of images representing normalized shear stress distributions is formed from the training data set using recurrence plot analysis. A face recognition algorithm is then employed to synthesize the recurrence plots and transform the original database into short-dimension vectors containing similarity weights proportional to the principal components of the distribution of images. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    sprayqc

    sprayqc

    LC-MS/MS monitoring

    SprayQc is composed of multiple plug-in software components that use computer vision to analyze electrospray conditions, monitor the chromatographic device for stable backpressure, interact with a column oven to control pressure by temperature and ensure that the mass spectrometer is still acquiring data. Action is taken when a failure condition has been detected, such as stopping the column oven and the LC flow as well as automatically notifying the appropriate operator. Additionally, all defined metrics can be recorded synchronized on retention time with the MS acquisition file, allowing for later inspection and providing valuable information for optimization. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →