Showing 14 open source projects for "data flow"

View related business solutions
  • Cut Data Warehouse Costs up to 54% with BigQuery Icon
    Cut Data Warehouse Costs up to 54% with BigQuery

    Migrate from Snowflake, Databricks, or Redshift with free migration tools. Exabyte scale without the Exabyte price.

    BigQuery delivers up to 54% lower TCO than cloud alternatives. Migrate from legacy or competing warehouses using free BigQuery Migration Service with automated SQL translation. Get serverless scale with no infrastructure to manage, compressed storage, and flexible pricing—pay per query or commit for deeper discounts. New customers get $300 in free credit.
    Try BigQuery Free
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • 1
    Claude-Flow

    Claude-Flow

    The leading agent orchestration platform for Claude

    Claude-Flow v2 Alpha is an advanced AI orchestration and automation framework designed for enterprise-grade, large-scale AI-driven development. It enables developers to coordinate multiple specialized AI agents in real time through a hive-mind architecture, combining swarm intelligence, neural reasoning, and a powerful set of 87 Modular Control Protocol (MCP) tools. The platform supports both quick swarm tasks and persistent multi-agent sessions known as hives, facilitating distributed AI...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    snorkel

    snorkel

    A system for quickly generating training data with weak supervision

    ...Given this premise, we set out to explore the radical idea that you could bring mathematical and systems structure to the messy and often entirely manual process of training data creation and management, starting by empowering users to programmatically label, build, and manage training data. Snorkel Flow, an end-to-end machine learning platform for developing and deploying AI applications. Snorkel Flow incorporates many of the concepts of the Snorkel project with a range of newer techniques around weak supervision modeling, data augmentation, multi-task learning, data slicing and structuring.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    DocArray

    DocArray

    The data structure for multimodal data

    ...The foundation data structure of Jina, CLIP-as-service, DALL·E Flow, DiscoArt etc. Data science powerhouse: greatly accelerate data scientists’ work on embedding, k-NN matching, querying, visualizing, evaluating via Torch/TensorFlow/ONNX/PaddlePaddle on CPU/GPU. Data in transit: optimized for network communication, ready-to-wire at anytime with fast and compressed serialization in Protobuf, bytes, base64, JSON, CSV, DataFrame.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    DeerFlow

    DeerFlow

    Deep Research framework, combining language models with tools

    ...It supports asynchronous task coordination, modular tool integration, and orchestrates the data flow between agents — making it suitable for large-scale or multi-stage research pipelines. Users can deploy it locally or on server infrastructure, integrate custom tools, and benefit from its flexible configuration.
    Downloads: 0 This Week
    Last Update:
    See Project
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 5
    LLMs-from-scratch

    LLMs-from-scratch

    Implement a ChatGPT-like LLM in PyTorch from scratch, step by step

    LLMs-from-scratch is an educational codebase that walks through implementing modern large-language-model components step by step. It emphasizes building blocks—tokenization, embeddings, attention, feed-forward layers, normalization, and training loops—so learners understand not just how to use a model but how it works internally. The repository favors clear Python and NumPy or PyTorch implementations that can be run and modified without heavyweight frameworks obscuring the logic. Chapters...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    HY-Motion 1.0

    HY-Motion 1.0

    HY-Motion model for 3D character animation generation

    HY-Motion 1.0 is an open-source, large-scale AI model suite developed by Tencent’s Hunyuan team that generates high-quality 3D human motion from simple text prompts, enabling the automatic production of fluid, diverse, and semantically accurate animations without manual keyframing or rigging. Built on advanced deep learning architectures that combine Diffusion Transformer (DiT) and flow matching techniques, HY-Motion scales these approaches to the billion-parameter level, resulting in strong instruction-following capabilities and richer motion outputs compared to existing open-source models. The training strategy for the HY-Motion series includes extensive pre-training on thousands of hours of varied motion data, fine-tuning on curated high-quality datasets, and reinforcement learning with human feedback, which improves both the plausibility and adaptability of generated motion sequences.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 7
    ChatterBot

    ChatterBot

    Machine learning, conversational dialog engine for creating chat bots

    ...This makes it easy for developers to create chat bots and automate conversations with users. For more details about the ideas and concepts behind ChatterBot see the process flow diagram. The language independent design of ChatterBot allows it to be trained to speak any language. Additionally, the machine-learning nature of ChatterBot allows an agent instance to improve it’s own knowledge of possible responses as it interacts with humans and other sources of informative data. An untrained instance of ChatterBot starts off with no knowledge of how to communicate. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 8
    FlowLens MCP

    FlowLens MCP

    Open-source MCP server that gives your coding agent

    ...It works together with a companion browser extension: when a user reproduces a bug or a complicated UI interaction, the extension captures a rich session log, including screen/video recording, network traffic, console logs, DOM events, storage changes, and more, and exports it. The MCP server then loads this captured “flow” and exposes it to the AI agent via the Model Context Protocol (MCP), letting the agent examine, search, filter, and reason about the session just as a human developer would, without needing the agent to re-run the flow or rely on minimal reproduction data (logs, screenshots).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    nlpaug

    nlpaug

    Data augmentation for NLP

    This Python library helps you with augmenting nlp for your machine learning projects. Visit this introduction to understand Data Augmentation in NLP. Augmenter is the basic element of augmentation while Flow is a pipeline to orchestra multi augmenters together.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 10
    Machine-Learning

    Machine-Learning

    kNN, decision tree, Bayesian, logistic regression, SVM

    Machine-Learning is a repository focused on practical machine learning implementations in Python, covering classic algorithms like k-Nearest Neighbors, decision trees, naive Bayes, logistic regression, support vector machines, linear and tree-based regressions, and likely corresponding code examples and documentation. It targets learners or practitioners who want to understand and implement ML algorithms from scratch or via standard libraries, gaining hands-on experience rather than relying...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    OpenAI Glow

    OpenAI Glow

    Copy code in "Glow: Generative Flow with Invertible 1x1 Convolutions"

    Glow is an open source generative model released by OpenAI that demonstrates flow-based generative modeling techniques. Unlike models that rely on approximate inference, Glow uses invertible transformations to directly learn the data distribution, allowing for exact likelihood computation and efficient sampling. The model is capable of producing high-quality synthetic images while maintaining interpretable latent spaces that enable meaningful manipulation of generated outputs. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    Forecasting Best Practices

    Forecasting Best Practices

    Time Series Forecasting Best Practices & Examples

    Time series forecasting is one of the most important topics in data science. Almost every business needs to predict the future in order to make better decisions and allocate resources more effectively. This repository provides examples and best practice guidelines for building forecasting solutions. The goal of this repository is to build a comprehensive set of tools and examples that leverage recent advances in forecasting algorithms to build solutions and operationalize them. Rather than...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Aida Lib

    Aida Lib

    Aida is a language agnostic library for text generation

    Aida is a language-agnostic library for text generation. When using Aida, first you compose a tree of operations on your text that includes conditions via branches and other control flow. Later, you fill the tree with data and render the text. A building block is a variable class: Var. Use it to represent a value that you want to control later. A variable can hold numbers (e.g. float, int) or strings. You can create branches and complex logic with Branch. The context, represented by the class Ctx, is useful to create rules that depends on what has been written before. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Tangent

    Tangent

    Source-to-source debuggable derivatives in pure Python

    Existing libraries implement automatic differentiation by tracing a program's execution (at runtime, like PyTorch) or by staging out a dynamic data-flow graph and then differentiating the graph (ahead-of-time, like TensorFlow). In contrast, Tangent performs ahead-of-time autodiff on the Python source code itself, and produces Python source code as its output. Tangent fills a unique location in the space of machine learning tools. As a result, you can finally read your automatic derivative code just like the rest of your program. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB