Browse free open source Python Algorithms and projects below. Use the toggles on the left to filter open source Python Algorithms by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • 1
    Clipper

    Clipper

    Polygon and line clipping and offsetting library (C++, C#, Delphi)

    This library is now obsolete and no longer being maintained. It has been superceded by my Clipper2 library - https://github.com/AngusJohnson/Clipper2.
    Leader badge
    Downloads: 4,972 This Week
    Last Update:
    See Project
  • 2
    GFPGAN

    GFPGAN

    GFPGAN aims at developing Practical Algorithms

    GFPGAN aims at developing Practical Algorithms for Real-world Face Restoration. Colab Demo for GFPGAN; (Another Colab Demo for the original paper model) Online demo: Huggingface (return only the cropped face) Online demo: Replicate.ai (may need to sign in, return the whole image). Online demo: Baseten.co (backed by GPU, returns the whole image). We provide a clean version of GFPGAN, which can run without CUDA extensions. So that it can run in Windows or on CPU mode. GFPGAN aims at developing a Practical Algorithm for Real-world Face Restoration. It leverages rich and diverse priors encapsulated in a pretrained face GAN (e.g., StyleGAN2) for blind face restoration. Add V1.3 model, which produces more natural restoration results, and better results on very low-quality / high-quality inputs.
    Downloads: 63 This Week
    Last Update:
    See Project
  • 3
    Real-ESRGAN

    Real-ESRGAN

    Real-ESRGAN aims at developing Practical Algorithms

    Real-ESRGAN is a highly popular open-source project that provides practical algorithms for general image and video restoration using deep learning-based super-resolution techniques. It extends the original Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) approach by training on synthetic degradations to make results more robust on real-world images, effectively enhancing resolution, reducing noise/artifacts, and reconstructing fine detail in low-quality imagery. The repository includes inference and training scripts, a model zoo with different pretrained models (including general and anime-oriented variants), and support for batch and arbitrary scaling, making it adaptable for diverse enhancement tasks. It emphasizes usability with utilities that handle alpha channels, gray/16-bit images, and tiled inference for large inputs, and can be run via Python scripts or portable executables.
    Downloads: 26 This Week
    Last Update:
    See Project
  • 4
    ImageAI

    ImageAI

    A python library built to empower developers

    ImageAI is an easy-to-use Computer Vision Python library that empowers developers to easily integrate state-of-the-art Artificial Intelligence features into their new and existing applications and systems. It is used by thousands of developers, students, researchers, tutors and experts in corporate organizations around the world. You will find features supported, links to official documentation as well as articles on ImageAI. ImageAI is widely used around the world by professionals, students, research groups and businesses. ImageAI provides API to recognize 1000 different objects in a picture using pre-trained models that were trained on the ImageNet-1000 dataset. The model implementations provided are SqueezeNet, ResNet, InceptionV3 and DenseNet. ImageAI provides API to detect, locate and identify 80 most common objects in everyday life in a picture using pre-trained models that were trained on the COCO Dataset.
    Downloads: 15 This Week
    Last Update:
    See Project
  • Atera - The depth of a full-stack IT platform, with the power of AI. Icon
    Atera - The depth of a full-stack IT platform, with the power of AI.

    Atera introduces your autonomous AI agent - Ensure operational efficiency at any scale with 24/7 autonomous IT support.

    Atera prioritizes security and compliance through robust protections that align with industry standards. Our AI-driven features were built on responsible AI principles and empower IT teams to work efficiently while maintaining trust and compliance.
    Learn More
  • 5
    MADDPG

    MADDPG

    Code for the MADDPG algorithm from a paper

    MADDPG (Multi-Agent Deep Deterministic Policy Gradient) is the official code release from OpenAI’s paper Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. The repository implements a multi-agent reinforcement learning algorithm that extends DDPG to scenarios where multiple agents interact in shared environments. Each agent has its own policy, but training uses centralized critics conditioned on the observations and actions of all agents, enabling learning in cooperative, competitive, and mixed settings. The code is built on top of TensorFlow and integrates with the Multiagent Particle Environments (MPE) for benchmarking. Researchers can use it to reproduce the experiments presented in the paper, which demonstrate how agents learn behaviors such as coordination, competition, and communication. Although archived, MADDPG remains a widely cited baseline in multi-agent reinforcement learning research and has inspired further algorithmic developments.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    The Algorithms Python

    The Algorithms Python

    All Algorithms implemented in Python

    The Algorithms-Python project is a comprehensive collection of Python implementations for a wide range of algorithms and data structures. It serves primarily as an educational resource for learners and developers who want to understand how algorithms work under the hood. Each implementation is designed with clarity in mind, favoring readability and comprehension over performance optimization. The project covers various domains including mathematics, cryptography, machine learning, sorting, graph theory, and more. With contributions from a large global community, it continually grows and improves through collaboration and peer review. This repository is an ideal reference for students, educators, and developers seeking hands-on experience with algorithmic concepts in Python.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Active Learning

    Active Learning

    Framework and examples for active learning with machine learning model

    Active Learning is a Python-based research framework developed by Google for experimenting with and benchmarking various active learning algorithms. It provides modular tools for running reproducible experiments across different datasets, sampling strategies, and machine learning models. The system allows researchers to study how models can improve labeling efficiency by selectively querying the most informative data points rather than relying on uniformly sampled training sets. The main experiment runner (run_experiment.py) supports a wide range of configurations, including batch sizes, dataset subsets, model selection, and data preprocessing options. It includes several established active learning strategies such as uncertainty sampling, k-center greedy selection, and bandit-based methods, while also allowing for custom algorithm implementations. The framework integrates with both classical machine learning models (SVM, logistic regression) and neural networks.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Consistent Depth

    Consistent Depth

    We estimate dense, flicker-free, geometrically consistent depth

    Consistent Depth is a research project developed by Facebook Research that presents an algorithm for reconstructing dense and geometrically consistent depth information for all pixels in a monocular video. The system builds upon traditional structure-from-motion (SfM) techniques to provide geometric constraints while integrating a convolutional neural network trained for single-image depth estimation. During inference, the model fine-tunes itself to align with the geometric constraints of a specific input video, ensuring stable and realistic depth maps even in less-constrained regions. This approach achieves improved geometric consistency and visual stability compared to prior monocular reconstruction methods. The project can process challenging hand-held video footage, including those with moderate dynamic motion, making it practical for real-world usage.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    DomainBed

    DomainBed

    DomainBed is a suite to test domain generalization algorithms

    DomainBed is a PyTorch-based research suite created by Facebook Research for benchmarking and evaluating domain generalization algorithms. It provides a unified framework for comparing methods that aim to train models capable of performing well across unseen domains, as introduced in the paper In Search of Lost Domain Generalization. The library includes a wide range of well-known domain generalization algorithms, from classical baselines such as Empirical Risk Minimization (ERM) and Invariant Risk Minimization (IRM) to more advanced techniques like Domain Adversarial Neural Networks (DANN), Adaptive Risk Minimization (ARM), and Invariance Principle Meets Information Bottleneck (IB-ERM/IB-IRM). DomainBed also integrates multiple standard datasets—including RotatedMNIST, PACS, VLCS, Office-Home, DomainNet, and subsets from WILDS—allowing consistent experimentation across image classification tasks.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Nonprofit Budgeting Software Icon
    Nonprofit Budgeting Software

    Martus Solutions provides seamless budgeting, reporting, and forecasting tools that integrate with accounting systems for real-time financial insights

    Martus' collaborative and easy-to-use budgeting and reporting platform will save you hundreds of hours each year. It's designed to make the entire budgeting process easier and create unlimited financial transparency.
    Learn More
  • 10
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    Gym by OpenAI is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents, everything from walking to playing games like Pong or Pinball. Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no assumptions about the structure of your agent, and is compatible with any numerical computation library, such as TensorFlow or Theano. The gym library is a collection of test problems — environments — that you can use to work out your reinforcement learning algorithms. These environments have a shared interface, allowing you to write general algorithms.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    TorBot

    TorBot

    Dark Web OSINT Tool

    Contributions to this project are always welcome. To add a new feature fork the dev branch and give a pull request when your new feature is tested and complete. If its a new module, it should be put inside the modules directory. The branch name should be your new feature name in the format <Feature_featurename_version(optional)>. On Linux platforms, you can make an executable for TorBot by using the install.sh script. You will need to give the script the correct permissions using chmod +x install.sh Now you can run ./install.sh to create the torBot binary. Run ./torBot to execute the program. Crawl custom domains.(Completed). Check if the link is live.(Completed). Built-in Updater.(Completed). TorBot GUI (In progress). Social Media integration.(not Started).
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    X's Recommendation Algorithm

    X's Recommendation Algorithm

    Source code for the X Recommendation Algorithm

    The Algorithm is Twitter’s open source release of the core ranking system that powers the platform’s home timeline. It provides transparency into how tweets are selected, prioritized, and surfaced to users, reflecting Twitter’s move toward openness in recommendation algorithms. The repository contains the recommendation pipeline, which incorporates signals such as engagement, relevance, and content features, and demonstrates how they combine to form ranked outputs. Written primarily in Scala, it shows the architecture of large-scale recommendation systems, including candidate sourcing, ranking, and heuristics. While certain components (such as safety layers, spam detection, or private data) are excluded, the release provides valuable insights into the design of real-world machine learning–driven ranking systems. The project is intended as a reference for researchers, developers, and the public to study, experiment with, and better understand the mechanisms behind social media content.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    JavaBlock
    Free Java Flowchart simulator / interpreter
    Leader badge
    Downloads: 49 This Week
    Last Update:
    See Project
  • 14
    AlphaTensor

    AlphaTensor

    AI discovers faster, efficient algorithms for matrix multiplication

    AlphaTensor, developed by Google DeepMind, is the research codebase accompanying the 2022 Nature publication “Discovering faster matrix multiplication algorithms with reinforcement learning.” The project demonstrates how reinforcement learning can be used to automatically discover efficient algorithms for matrix multiplication — a fundamental operation in computer science and numerical computation. The repository is organized into four main components: algorithms, benchmarking, nonequivalence, and recombination. These contain implementations of the discovered matrix multiplication algorithms, tools to benchmark their real-world performance, proofs of nonequivalence among thousands of solutions, and methods for decomposing larger problems into smaller factorizations. Users can explore AlphaTensor’s discovered algorithms interactively using Colab notebooks or Python scripts.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Data Algorithm/leetcode/lintcode

    Data Algorithm/leetcode/lintcode

    Data Structure and Algorithm notes

    This work is some notes of learning and practicing data structures and algorithms. Part I is a brief introduction of basic data structures and algorithms, such as, linked lists, stack, queues, trees, sorting and etc. This book notes about learning data structure and algorithms. It was written in Simplified Chinese but other languages such as English and Traditional Chinese are also working in progress.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Detectron2

    Detectron2

    Next-generation platform for object detection and segmentation

    Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up rewrite of the previous version, Detectron, and it originates from maskrcnn-benchmark. It is powered by the PyTorch deep learning framework. Includes more features such as panoptic segmentation, Densepose, Cascade R-CNN, rotated bounding boxes, PointRend, DeepLab, etc. Can be used as a library to support different projects on top of it. We'll open source more research projects in this way. It trains much faster. Models can be exported to TorchScript format or Caffe2 format for deployment. With a new, more modular design, Detectron2 is flexible and extensible, and able to provide fast training on single or multiple GPU servers. Detectron2 includes high-quality implementations of state-of-the-art object detection.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    FATE

    FATE

    An industrial grade federated learning framework

    FATE (Federated AI Technology Enabler) is the world's first industrial grade federated learning open source framework to enable enterprises and institutions to collaborate on data while protecting data security and privacy. It implements secure computation protocols based on homomorphic encryption and multi-party computation (MPC). Supporting various federated learning scenarios, FATE now provides a host of federated learning algorithms, including logistic regression, tree-based algorithms, deep learning and transfer learning. FATE became open-source in February 2019. FATE TSC was established to lead FATE open-source community, with members from major domestic cloud computing and financial service enterprises. FedAI is a community that helps businesses and organizations build AI models effectively and collaboratively, by using data in accordance with user privacy protection, data security, data confidentiality and government regulations.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    YAPF

    YAPF

    A formatter for Python files

    YAPF is a Python code formatter that automatically rewrites source to match a chosen style, using a clang-format–inspired algorithm to search for the “best” layout under your rules. Instead of relying on a fixed set of heuristics, it explores formatting decisions and chooses the lowest-cost result, aiming to produce code a human would write when following a style guide. You can run it as a command-line tool or call it as a library via FormatCode / FormatFile, making it easy to embed in editors, CI, and custom tooling. Styles are highly configurable: start from presets like pep8, google, yapf, or facebook, then override dozens of options in .style.yapf, setup.cfg, or pyproject.toml. It supports recursive directory formatting, line-range formatting, and diff-only output so you can check or fix just the lines you touched.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Evolving Objects

    Evolving Objects

    This project have been merged within Paradiseo.

    See the new project page: https://nojhan.github.io/paradiseo/ (Archived project page: http://eodev.sourceforge.net/)
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20

    Cryptography Tools

    Classic & Modern Cryptography tools

    Cryptography Tools is a project to develop demonstration tools on classic (currently Caesar and Playfair) & modern crypto-systems, including private & public key encryptions, digital signatures, cryptographic hashes and authenticated encryption.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 21
    Modular toolkit for Data Processing MDP
    The Modular toolkit for Data Processing (MDP) is a Python data processing framework. From the user's perspective, MDP is a collection of supervised and unsupervised learning algorithms and other data processing units that can be combined into data processing sequences and more complex feed-forward network architectures. From the scientific developer's perspective, MDP is a modular framework, which can easily be expanded. The implementation of new algorithms is easy and intuitive. The new implemented units are then automatically integrated with the rest of the library. The base of available algorithms is steadily increasing and includes signal processing methods (Principal Component Analysis, Independent Component Analysis, Slow Feature Analysis), manifold learning methods ([Hessian] Locally Linear Embedding), several classifiers, probabilistic methods (Factor Analysis, RBM), data pre-processing methods, and many others.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 22
    Digraph3

    Digraph3

    A collection of python3 modules for Algorithmic Decision Theory

    This collection of Python3 modules provides a large range of implemented decision aiding algorithms useful in the field of outranking digraphs based Multiple Criteria Decision Aid (MCDA), especially best choice, linear ranking and absolute or relative rating algorithms with multiple incommensurable criteria. Technical documentation and tutorials are available under the following link: https://digraph3.readthedocs.io/en/latest/ The tutorials introduce the main objects like digraphs, outranking digraphs and performance tableaux. There is also a tutorial provided on undirected graphs. Some tutorials are problem oriented and show how to compute the winner of an election, how to build a best choice recommendation, or how to linearly rank or rate with multiple incommensurable performance criteria. Other tutorials concern more specifically operational aspects of computing maximal independent sets (MISs) and kernels in graphs and digraphs.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 23
    pycrc

    pycrc

    CRC C source generator

    pycrc is an easy to use CRC (cyclic redundancy check) calculator and C source code generator. The generated source code can be optimized for simplicity, speed or space. pycrc contains a long parameter list of common CRC models. The program is self contained and does not require installation. Apart from a python installation, it does not require other libraries to be installed.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    CloudI: A Cloud at the lowest level
    CloudI is an open-source private cloud computing framework for efficient, secure, and internal data processing. CloudI provides scaling for previously unscalable source code with efficient fault-tolerant execution of ATS, C/C++, Erlang/Elixir, Go, Haskell, Java, JavaScript/node.js, OCaml, Perl, PHP, Python, Ruby, or Rust services. The bare essentials for efficient fault-tolerant processing on a cloud!
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25

    Distant Speech Recognition

    Beamforming and Speech Recognition Toolkit

    BTK contains C++ and Python libraries that implement speech processing and microphone array techniques such as speech feature extraction, speech enhancement, speaker tracking, beamforming, dereverberation and echo cancellation algorithms. The Millennium ASR provides C++ and python libraries for automatic speech recognition. The Millennium ASR implements a weighted finite state transducer (WFST) decoder, training and adaptation methods. These toolkits are meant for facilitating research and development of automatic distant speech recognition.
    Downloads: 3 This Week
    Last Update:
    See Project