Browse free open source Python Algorithms and projects below. Use the toggles on the left to filter open source Python Algorithms by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 1
    Algorithms in Python

    Algorithms in Python

    Data Structures and Algorithms in Python

    Algorithms in Python is a collection of algorithm and data structure implementations (primarily in Python) meant to serve as both learning material and reference code for engineers. It includes code for graph algorithms, heap data structures, stacks, queues, and more — each implemented cleanly so learners can trace logic and adapt for their problems. The repository is particularly useful for people preparing for competitive programming, job interviews, or building a foundational understanding of algorithmic patterns. Because it’s openly maintained, you can browse through issues, see test cases, and observe coding style in a “learning through code” fashion. It also serves as a playground where you can add problems, measure performance, and compare different algorithmic approaches. For anyone striving to move from “I know the syntax” to “I know how to use the right algorithm at the right time,” this repository is a practical asset.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    AlphaTensor

    AlphaTensor

    AI discovers faster, efficient algorithms for matrix multiplication

    AlphaTensor, developed by Google DeepMind, is the research codebase accompanying the 2022 Nature publication “Discovering faster matrix multiplication algorithms with reinforcement learning.” The project demonstrates how reinforcement learning can be used to automatically discover efficient algorithms for matrix multiplication — a fundamental operation in computer science and numerical computation. The repository is organized into four main components: algorithms, benchmarking, nonequivalence, and recombination. These contain implementations of the discovered matrix multiplication algorithms, tools to benchmark their real-world performance, proofs of nonequivalence among thousands of solutions, and methods for decomposing larger problems into smaller factorizations. Users can explore AlphaTensor’s discovered algorithms interactively using Colab notebooks or Python scripts.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    AsyncSocket is a python module used for asynchronous socket connections that supports connection and read/write timeouts.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Baselines

    Baselines

    High-quality implementations of reinforcement learning algorithms

    Unlike the other two, openai/baselines is not currently a maintained or prominent repo in the OpenAI organization (and I found no strong reference in OpenAI’s main GitHub). Historically, “baselines” repositories are often used for baseline implementations of reinforcement learning algorithms or reference models (e.g. in the RL domain). If there was an OpenAI “baselines” repo, it might have contained reference implementations for reinforcement learning or model policy baselines to compare new work against. However, I couldn’t locate an active “openai/baselines” in the latest OpenAI repos, so it may have been archived, removed, or merged into other projects. If you meant a different “baselines” (e.g. OpenAI Baselines for reinforcement learning), I can look up that specific one.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Payments you can rely on to run smarter. Icon
    Payments you can rely on to run smarter.

    Never miss a sale. Square payment processing serves customers better with tools and integrations that make work more efficient.

    Accept payments at your counter or on the go. It’s easy to get started. Try the Square POS app on your phone or pick from a range of hardworking hardware.
    Learn More
  • 5
    Belkerda

    Belkerda

    a customizable number-guessing system

    Belkerda is a simple Python AI program that takes a user's input, builds a log of random numbers, picks a random entry, and displays it. If it is correct, then it reenters that number back into the log several times, overwriting the original, random numbers. If it is not, however, it overwrites a lower amount of entries.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Binarytree

    Binarytree

    Python library for studying Binary Trees

    Binarytree is Python library that lets you generate, visualize, inspect and manipulate binary trees. Skip the tedious work of setting up test data, and dive straight into practicing algorithms. Heaps and BSTs (binary search trees) are also supported. Binarytree supports another representation which is more compact but without the indexing properties. Traverse trees using different algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    This is a Python script for Blender which uses short (quaternion-based, floretion-based) algorithms to draw curves in space. The user can create new shapes and curves by setting a variety of parameters.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Blender Multibool, Searching for Fractal

    Blender Multibool, Searching for Fractal

    Multibool function is slow ;)

    Booleans all meshes on the screen. Plus: A fractal generator and attractor generator with a delicious SEARCH function ;) <meta name="google-site-verification" content="cULQewNGfx-aXCQR9fTJZ1Z7DXbLA5GjqjvAfF_oH5I" />
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Modules for developing, configuring and running a computation based on function blocks entirely in Python. Function block based computation is a data, event and state driven approach to data processing.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Automated RMM Tools | RMM Software Icon
    Automated RMM Tools | RMM Software

    Proactively monitor, manage, and support client networks with ConnectWise Automate

    Out-of-the-box scripts. Around-the-clock monitoring. Unmatched automation capabilities. Start doing more with less and exceed service delivery expectations.
    Learn More
  • 10
    "Blue Planet" is a research project simulating the behaviour and darwinian evolution of unicellular lifeforms, each controlled by its own genetic program. Moreover, "Blue Planet Inhabitants" are suited for swarm intelligence and swarm research.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11

    CSST

    Cascade and Sharing Survival Trees, an ensemble for survival analysis

    Cascading and Sharing Survival Trees (CSST) is a tree-based enseble that allows to efficiently analize survival data. It is a strightforward extension of the CS4 method for lifetime collections of data. The CSST software comes along with its companion the CSST Prediction tool, to use the ensemble prediction in everyday life. Please, refer to the user's manual for further information.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    An experimental language designed to be very simple, but expressive enough to represent mathematical constructions and have strong introspective capabilities.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Clone Digger is a duplicate code detection tool, which supports Python and Java languages. Discovered clones can differ in small subexpressions; comments and whitespaces are ignored. Clone digger is platform-independent and is written in Python language
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    Coach is a python framework that models the interaction between an agent and an environment in a modular way. With Coach, it is possible to model an agent by combining various building blocks, and training the agent on multiple environments. The available environments allow testing the agent in different fields such as robotics, autonomous driving, games and more. It exposes a set of easy-to-use APIs for experimenting with new RL algorithms and allows simple integration of new environments to solve. Coach collects statistics from the training process and supports advanced visualization techniques for debugging the agent being trained. Coach supports many state-of-the-art reinforcement learning algorithms, which are separated into three main classes - value optimization, policy optimization, and imitation learning. Coach supports a large number of environments which can be solved using reinforcement learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Code Catalog in Python

    Code Catalog in Python

    Algorithms and data structures for review for coding interview

    code-catalog-python serves as a grab-bag of small, readable Python examples that illustrate common algorithms, data structures, and utility patterns. Each snippet aims to be self-contained and easy to study, with clear inputs, outputs, and the essential logic on display. The catalog format lets you scan for an example, copy it, and adapt it to your use case without wading through a large framework. It favors clarity over micro-optimizations so learners can grasp the idea before worrying about edge performance. Over time it becomes a personal cookbook of solutions you can remix across projects. This approach is especially helpful when you need a quick refresher on a technique you haven’t used in a while.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Consistent Depth

    Consistent Depth

    We estimate dense, flicker-free, geometrically consistent depth

    Consistent Depth is a research project developed by Facebook Research that presents an algorithm for reconstructing dense and geometrically consistent depth information for all pixels in a monocular video. The system builds upon traditional structure-from-motion (SfM) techniques to provide geometric constraints while integrating a convolutional neural network trained for single-image depth estimation. During inference, the model fine-tunes itself to align with the geometric constraints of a specific input video, ensuring stable and realistic depth maps even in less-constrained regions. This approach achieves improved geometric consistency and visual stability compared to prior monocular reconstruction methods. The project can process challenging hand-held video footage, including those with moderate dynamic motion, making it practical for real-world usage.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17

    Cryptography Tools

    Classic & Modern Cryptography tools

    Cryptography Tools is a project to develop demonstration tools on classic (currently Caesar and Playfair) & modern crypto-systems, including private & public key encryptions, digital signatures, cryptographic hashes and authenticated encryption.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    DEBay

    DEBay

    Deconvolutes qPCR data to estimate cell-type-specific gene expression

    DEBay: Deconvolution of Ensemble through Bayes-approach DEBay estimates cell type-specific gene expression by deconvolution of quantitative PCR data of a mixed population. It will be useful in experiments where the segregation of different cell types in a sample is arduous, but the proportion of different cell types in the sample can be measured. DEBay uses the population distribution data and the qPCR data to calculate the relative expression of the target gene in different cell types in the sample. The user manual of DEBay: https://sourceforge.net/projects/debay/files/UserManual.pdf Sample data: https://sourceforge.net/projects/debay/files/Test_data/ Citation Information: Vimalathithan Devaraj, Biplab Bose. DEBay: A computational tool for deconvolution of quantitative PCR data for estimation of cell type-specific gene expression in a mixed population. Heliyon, 2020, 6(7), e04489. https://doi.org/10.1016/j.heliyon.2020.e04489
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Data Algorithm/leetcode/lintcode

    Data Algorithm/leetcode/lintcode

    Data Structure and Algorithm notes

    This work is some notes of learning and practicing data structures and algorithms. Part I is a brief introduction of basic data structures and algorithms, such as, linked lists, stack, queues, trees, sorting and etc. This book notes about learning data structure and algorithms. It was written in Simplified Chinese but other languages such as English and Traditional Chinese are also working in progress.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Detectron2

    Detectron2

    Next-generation platform for object detection and segmentation

    Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up rewrite of the previous version, Detectron, and it originates from maskrcnn-benchmark. It is powered by the PyTorch deep learning framework. Includes more features such as panoptic segmentation, Densepose, Cascade R-CNN, rotated bounding boxes, PointRend, DeepLab, etc. Can be used as a library to support different projects on top of it. We'll open source more research projects in this way. It trains much faster. Models can be exported to TorchScript format or Caffe2 format for deployment. With a new, more modular design, Detectron2 is flexible and extensible, and able to provide fast training on single or multiple GPU servers. Detectron2 includes high-quality implementations of state-of-the-art object detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21

    Distant Speech Recognition

    Beamforming and Speech Recognition Toolkit

    BTK contains C++ and Python libraries that implement speech processing and microphone array techniques such as speech feature extraction, speech enhancement, speaker tracking, beamforming, dereverberation and echo cancellation algorithms. The Millennium ASR provides C++ and python libraries for automatic speech recognition. The Millennium ASR implements a weighted finite state transducer (WFST) decoder, training and adaptation methods. These toolkits are meant for facilitating research and development of automatic distant speech recognition.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    DomainBed

    DomainBed

    DomainBed is a suite to test domain generalization algorithms

    DomainBed is a PyTorch-based research suite created by Facebook Research for benchmarking and evaluating domain generalization algorithms. It provides a unified framework for comparing methods that aim to train models capable of performing well across unseen domains, as introduced in the paper In Search of Lost Domain Generalization. The library includes a wide range of well-known domain generalization algorithms, from classical baselines such as Empirical Risk Minimization (ERM) and Invariant Risk Minimization (IRM) to more advanced techniques like Domain Adversarial Neural Networks (DANN), Adaptive Risk Minimization (ARM), and Invariance Principle Meets Information Bottleneck (IB-ERM/IB-IRM). DomainBed also integrates multiple standard datasets—including RotatedMNIST, PACS, VLCS, Office-Home, DomainNet, and subsets from WILDS—allowing consistent experimentation across image classification tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DualPipe

    DualPipe

    A bidirectional pipeline parallelism algorithm

    DualPipe is a bidirectional pipeline parallelism algorithm open-sourced by DeepSeek, introduced in their DeepSeek-V3 technical framework. The main goal of DualPipe is to maximize overlap between computation and communication phases during distributed training, thus reducing idle GPU time (i.e. “pipeline bubbles”) and improving cluster efficiency. Traditional pipeline parallelism methods (e.g. 1F1B or staggered pipelining) leave gaps because forward and backward phases can’t fully overlap with communication. DualPipe addresses that by scheduling micro-batches from both ends of the pipeline in a bidirectional fashion—i.e. some micro-batches flow forward while others flow backward—so that computation on one partition can coincide with communication for another.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Elementary Algorithms

    Elementary Algorithms

    Book of elementary algorithms and data structures

    This book introduces elementary algorithms and data structure. It includes side-by-side comparison of purely functional realization and their imperative counterpart. From 2020/12, I started re-writing this book. The PDF can be downloaded for preview (EN, 中文). The 1st edition in Chinese (中文) was published in 2017. I recently switched my focus to the Mathematics of programming, the new book is also available in (github). To build the book in PDF format from the sources, you need the following software pre-installed, TeXLive, The book is built with XeLaTeX, a Unicode friendly version of TeX. You need the GNU make tool, in Debian/Ubuntu like Linux, it can be installed through the apt-get command.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    FATE

    FATE

    An industrial grade federated learning framework

    FATE (Federated AI Technology Enabler) is the world's first industrial grade federated learning open source framework to enable enterprises and institutions to collaborate on data while protecting data security and privacy. It implements secure computation protocols based on homomorphic encryption and multi-party computation (MPC). Supporting various federated learning scenarios, FATE now provides a host of federated learning algorithms, including logistic regression, tree-based algorithms, deep learning and transfer learning. FATE became open-source in February 2019. FATE TSC was established to lead FATE open-source community, with members from major domestic cloud computing and financial service enterprises. FedAI is a community that helps businesses and organizations build AI models effectively and collaboratively, by using data in accordance with user privacy protection, data security, data confidentiality and government regulations.
    Downloads: 0 This Week
    Last Update:
    See Project