...This architecture allows richer semantic interpretation, enabling use cases such as scene decomposition, object-level editing, layered captioning, and more fine-grained multimodal reasoning than with flat image encodings alone. By combining text and structured image representations, it aims to facilitate tasks where both descriptive and structural understanding are important, such as detailed image QA, interactive image editing via prompt layers, and image-conditioned generation with structural control. The layered approach supports training signals that help the model learn how visual elements relate to each other and to textual context, rather than simply learning global image embeddings.